Control Systems (Lecture note #7)

Size: px
Start display at page:

Download "Control Systems (Lecture note #7)"

Transcription

1 6.5 Conrol Sysms (Lcur no #7) Ls Tm: Gnrlz gnvcors Jorn form Polynoml funcons of squr mrx bg pcur: on brnch of h cours Vcor spcs mrcs lgbrc quons Egnvlus Egnvcors Dgonl form Cnoncl form Soluons o : x x u; y Cx Du Mrx funcons such s Th lnr lgbr ools wll lso b usful for ohr objcvs. Rvw: gonl form n Jorn form ll gnvlus of r snc gonlzbl Thr r rp gnvlus.g wh mulplcy. If (- I)= n - (- I)= hr xs LI soluons o (- I)v= n hy r ll gnvcors. If hs s h cs for ll rp gnvlus gonlzbl If (- I)=n - (- I) < hr xs gnrlz gnvcors no gonlzbl hr xs Jorn blocs

2 Dfnon. vcor v s gnrlz gnvcor of gr ssoc wh f I v bu I v Dno v v v Iv I v I v I v v I v I v v Iv I v v v Wh s h nw rprsnon w.r.. {v v. v }?.. [v v v ] = [v v v ]Ā v v v v v v v v v :.. Jorn bloc :.... Polynoml funcons of squr mrx L f()= = b polynoml funcon of. If =QĀQ - hn f() = Qf(Ā)Q -. L () b h chrcrsc polynoml of. Cyly-Hmlon Thorm: () = ny polynoml cn b xprss s polynoml of gr n-

3 Thorm. Gvn C nn n polynoml f) L h snc gnvlus of b =...m ch wh mulplcy n (n +n + +n m = n). L Thn f()=g() ff whr f g( ) β l n β βn f (l) ( ) = g (l) ( ) l =..n - =.. m l f l f () ( ) f( ) Unr h bov conon h coffcns s cn b rmn 5 Gnrl funcons of squr mrx: Dfnon: Gvn C nn. L h snc gnvlus of b =...m ch wh mulplcy n (n +n + +n m = n). L f() b gnrl funcon wh {f (l) ( )} wll fn. Suppos h g() s polynoml ssfyng f (l) ( ) = g (l) ( ) l =..n - =.. m Thn f() g(). Gnrlly g s polynoml of gr n-. 6

4 Toy: Som proprs of ; Soluon o connuous-m sysm x x u; y Cx Du Soluon o h scr-m sysm x[ ] [] u[]; y[] Cx[] Du[] Equvln s quons 7 Som proprs for From h fnon I!! Th followng cn b vrf I; ( ) ; ; Cuon: + usully os no qul o. W only hv + = whn = 8

5 Mor proprs:? I!!!! L -! 9 Mor proprs: τ τ τ? τ! τ! I I! τ τ τ ( ~ ssumng h - xss! = I) I I Ths wll b us o compu h oupu rspons unr consn npus.! 5

6 Exmpl. Lplc Trnsform of L L! ~ ssumng < si L s s s s I s s s L or L si si L How o compu (si - ) -? si ~ ssumng s s suffcnly lrg Exmpl. f() = (s - ) -. Compu f() = (si - ) -. () = ( - ) wh of mulplcy f () ( ) = (s - ) - f () ( ) = (s - ) - f () ( ) = (s - ) - g() = + ( - ) + ( - ) g () ( ) = = (s - ) - g () ( ) = = (s - ) - g () ( ) = = (s - ) - g() = (s - ) - + (s - ) - ( - ) + (s - ) - ( - ) g() = (s - ) - I + (s - ) - ( - ) + (s - ) - ( - ) 6

7 7 s s s s s s g() ) (si I) ( I ) (s ) (s ) (s g() / L ) L( W wll compu ; Som of s proprs; Soluon o connuous-m sysm Du Cx y u; x x Toy: Du[] Cx[] y[] u[]; [] ] x[ Soluon o h scr-m sysm Equvln s quons

8 S-Spc Soluons n Rlzons Soluons of Dynmc Equons x: n u: p y: q Consr lnr sysm: x x u; y Cx Du : nn rl mrx; : np rl mrx C: qn rl mrx; D: qp rl mrx Gvn x( ) = x n u() unqu soluon x() y() Wh s h soluon? 5 Rcll h rlr w rv h soluon for h npu/oupu scrpon bs on suprposon: y() G( τ)u(τ)τ Qusons: g g G( τ) g q ( - τ) ( - τ) ( - τ) g g g q ( - τ) ( - τ) ( - τ) Gvn sysm mrcs CD wh s G()? Wh s h rspons u o nl s? nohr pproch s by usng Lplc rnsform: ŷ (s) C(sI ) x() [C(sI ) D]û(s) g g g p p qp ( - τ) ( - τ) ( - τ) owns: h Lplc rnsform of u() my b no vlbl you my n o pproxm. 6 8

9 S-Spc Soluons Th sysm: x x u; y Cx Du Gvn x() n u() for. Th soluon for x n y s x() y() C x() x() ( τ) C u ( ) ; ( τ) u ( ) Du() Clrly wo prs: zro-npu rsp. + zro-s rsp. Lnry lso obvous. W now how o compu. Th ngron cn b on numrclly hrough scrzon. ( τ) u ( ) G(-)=C (-) ( )Δ u( ) 7 W frs consr h s x: x () x() u(); Rcll h Th y pr x x ( )x x x (**) Plug (*) no (**) x x u x u x() u() Ingr from o ; x( ) u( ) x( ) x() u( ) (*) Prmulplyng o boh ss nong - = I x( ) x() (- ) u( ) 8 9

10 W vrfy h h soluon x( ) x() u( ) ssfs x () x() u(); (-τ) x() x() u( τ)τ (-τ) (-τ) x() u( τ)τ u( τ) x() x() u() (-τ) u( τ)τ u( ) lso s clr h h nl conon s ssf. Fnlly y( ) Cx() Du() C x() C (- ) (- ) τ u( ) Du() 9 Dffrn wys o compu : From Dfnon : Form () n fn { } n ( ) (l) Consruc n (n - ) h orr polynoml such h g (l) ( ) = ( ) (l) for ll n l = g() From Dfnon :! Us Jorn form =QĀQ - = Q Ā Q - subl for compur Us h nvrs Lplc rnsform of (si-) -. =L - (si-) -

11 Exmpl: n LTI sysm: x () x() u(); y [ ]x Gvn x()=; u()= for. Compu y(). Sp : Compu. Egnvlus of r L g() = +b; f()=. From g(-)=-+b= - ; g(-)=-+b= -. = ; b= - - -; bi ( ) ( ) Sp : (- ) From y( ) C x() C u( ) y() - [ ] τ ( τ) [ u( τ)τ ] τ ( ( τ) ( τ) ) τ Som proprs bou h zro-npu rspons x() x Consr Jorn bloc!!! For gnrl h rms of r lnr combnons of n m R( ) < for ll. hn s ll rms convrgs o x() lwys convrgs o. Sbl sysm. R( ) > for som. hn s som rms vrg. Thr xs x such h x() grows unboun. Unsbl R( for ll. ll gnvlus wh rl prs r smpl s boun for ll bu no convrg o. crcl cs R( ) for ll. som gnvlus wh rl prs r rp unboun; x() unboun for som x. unsbl

12 Toy: W wll compu ; Som of s proprs; Soluon o connuous-m sysm x x u; y Cx Du Soluon o h scr-m sysm x[ ] [] u[]; Equvln s quons y[] Cx[] Du[] Dscrzon connuous-m sysm W us scrzon for x x u; y Cx Du Dgl smulon wh compur; Implmnon hrough gl conrollr pproch : Suppos w now x(t). If T s smll nough x(t T) x(t) x(t)t (x(t) u(t))t x(( )T) x(t) Tx(T) Tu(T) (I T)x(T) Tu(T) y(t) Cx(T) Dy(T) x[]: x(t); u[]: u(t) Smpl bu no ccur. x() x(t) x(t) x(t) x[ ] (I T)x[] Tu() y[] Cx[] Du[]

13 pproch : Rl suon: conrol u mplmn by compur n gl-nlog convrr. Durng holng pro u() = u(t) for ll [T (+)T) = Soluon T n (+)T x[ ] T T ( T (T-τ) x[] : x( T) x() u( τ)τ T ( )T )T (( x() )T-τ) u( τ)τ ( )T T (T-τ) T x() u( τ) τ T TT T (T-τ) x() u( τ)τ T T (T-τ) x[] u[]τ (()T-τ) T T (T-τ) x[] τ u[] : x[] u[] u( τ)τ 5 Th scrz sysm: whr x[ ] x[] u[] y[] C x[] D u[] T T (T-τ) τ C C Ths xcly scrbs h npu-s npu-oupu rlonshp nsns T T T For noc h T T T (T-τ) T τ T τ τ ( T T τ T T T T I [ I] τ ) τ [ D I] D 6

14 From CT sys. o DT sys. x x u y Cx Du T x[ ] x[] u[] y[] C x[] D u[] L h smplng pro b T. Thn Exmpl: [ I] C C D T. D Us mlb: =xpm(*t); =nv()*(-y())*; Soluon of Dscr-m Equons Th DT sysm: x[ ] x[] u[] y[] Cx[] Du[] Th soluon s rv n srghforwr wy: x[]=x[]+u[] x[]=x[]+u[]=(x[]+u[])+u[] = x[]+u[]+u[] x[]=x[]+u[]= x[]+ u[]+u[]+u[] x[] x[] y[] C x[] m m m C u[m] m u[m] Du[] 8

15 Som proprs bou h zro-npu rspons x[] x Consr Jorn bloc For gnrl h rms of r lnr combnons of ( ) m ( ) ( )( ) ( )! < for ll. hn s ll rms convrgs o x[] lwys convrgs o. Sbl sysm. > for som. hn s som rms vrg. Thr xs x such h x[] grows unboun. Unsbl for ll. ll gnvlus wh un mgnu r smpl s boun for ll bu no convrg o. Crcl cs for ll. som gnvlus wh un mgnu r rp unboun; x[] unboun for som x Unsbl!! 9 n Erlr Exmpl: Inrs n morzon How o scrb pyng bc cr lon ovr four yrs wh nl b D nrs r n monhly pymn p? L x[] b h moun you ow h bgnnng of h h monh. Thn x[+] = ( + r) x[] p Inl n rmnl conons: x[] = D n fnl conon x[8] = How o fn p? y solvng h sysm x[8]= D+ p p 5

16 Th sysm: x[+] = ( + r) x[] + () p Soluon: u x[] x[] ( r) ( r) x[] D m m m m ( r) ( r) u[m] m m ( )p p ( r) Gvn D=; r=.; x[8]=; (.) (.). 8 8 p ( r) D r p Your monhly pymn p= Toy: W wll compu ; Som of s proprs; Soluon o connuous-m sysm x x u; y Cx Du Soluon o h scr-m sysm x[ ] [] u[]; Equvln s quons y[] Cx[] Du[] 6

17 Equvln s quons Gvn s-spc scrpon: x x u; y Cx Du L P b nonsngulr mrx. - Dfn x Px hn x P x x Px Px Pu PP x Pu y Cx Du CP x Du Dno PP x x u; - P y Cx Du C CP D D No: For DT sysms h quvln rnsformon s h sm. - (*) (**) (*) n (**) r s o b quvln o ch ohr n h procur from (*) o (**) s cll n quvln rnsformon Rcll: PP - n r smlr o ch ohr Thy hv sm gnvlus. Sm sbly prf. Wh o w xpc from h wo rnsfr funcons: n G(s) C(sI ) D G(s) C(sI ) D To vrfy G(s) G(s) G(s) C(sI ) D CP (spp PP ) P - - CP - (P(sI - )P ) P D - CP P(sI ) P P D D (XYZ) Z C(sI ) D Y X 7

18 8 5 u x x x Q Dfn z xs). nvrs (h L Q - u z z such h n Compu Exmpl: Gvn s quon Q Q Q - - Soluon:. L Q Immly. How o g? Q ; Q ; Q ; Q Q Q Q Q Q Q Q Q 6 hs o ssfy (*) L =[ ] (*) cn b wrn s (**) From Cyly-Hmlon s horm: ()=. ) )(s (s si Δ(s) s s s s s Δ() I = = = = =[ ] ssfs For

19 Nx Tm: How o l wh complx gnvlus Rlzon of rnsfr funcon Smulon of sysms by usng Smuln Cours projc n mor from lnr lgbr Qurc funcons n posv-fnnss 7 Problm S #7. Th sysm: x x x() Compu x() for.. For h LTI sysm - x() x() - u(); y [ ]x ) Gvn x()=[ ] compu h zro-npu rspons y(); b) Gvn u()= for compu h zro-s rspons y(); c) L h smplng pro b T=.. Us mlb o compu h scrz sysm mrcs. 8 9

20 Mrm Rvw (Lcur #-Lcur #6) Molng of LTI sysms Lnr lgbr Vcor spcs: LI LD bss nnr prouc orhogonl Lnr lgbrc quon: rng spc null spc conons for h xsnc of soluon ll soluons Egnvlus gnvcors gonl form Gnrlz gnvcors Jorn from Polynoml funcons of mrx 9 Mol of crcu: S vrbls? n v S n oupu quons? u R v L v L R L L R vl v R L v v v C C C C R L v C x R L C L L u L v x R L L u() C v - - R y - L L v v L y R R v x x u y Cx Du u

21 Ingrors + mplfrs + u() - x x x x u x /s /s x y = x x x y() Wh r h s vrbls? Slc oupu of ngrors s SVs Wh r h s n oupu quons? x x x u x y x x u C D Exmpl u + + /s u /s + /s + y + +

22 Lnr lgbr scs Elmnry oprons h prsrv rmnn Elmnry oprons h prsrv rn Us lmnry opron o rnsform mrx no uppr or lowr rngulr form Lnr Inpnnc s of vcors {x x.. x m } n R n s LD f {.. m } n R no ll zro s.. x + x m x m = (*) If h only s of { } = o m s.. h bov hols s = =.. = m = hn {x } = o m s s o b LI Gvn {x x.. x m } form m x x... x If = hs unqu soluon LI; If = hs nonunqu soluon LD. If rn()=m h soluon s unqu LI If rn()<m h soluon s no unqu LD.

23 5 Exmpls: r h followng ss of vcors LI or LD? c b f c b c b LI f h rn of h mrx quls h numbr of columns 6 ss n Rprsnons s of LI vcors {.. n } of R n s s o b bss of R n f vry vcor n R n cn b xprss s unqu lnr combnon of hm For ny x R n hr xs unqu {.. n }s.. n n n.. x n n :... x n... x : Rprsnon of x wh rspc o h bss Thorm: In n n-mnsonl vcor spc (or subspc) ny s of n LI vcors qulfs s bss

24 Chng of bss: Gvn bss... ; n L h nw bss b: Thn Q n n n Q For x such h x... n β n W hv x -... Q β n 7 Lnr lgbrc quon x = y If () ([ : y]) (.. y R()) hn h quons r nconssn n hr s no soluon If () = ([ : y]) hn ls on soluon If () = ([ : y]) < n (.. () > ) hn hr r nfn numbr of soluons If () = ([ : y]) = n (.. () = ) hn hr s unqu soluon For n nn mrx x = y hs unqu soluon y R m ff - xss or 8

25 Ky concps: ssum R mn. Rng spc R(): {yr m : xss xr n s.. y=x} subspc of R m mnson = () rn of bss: form by h mxml numbr of LI columns of Null spc N(): {xr n : x=} subspc of R n mnson ()=n-() bss: form by () LI soluons o x=. 9 Exmpl: Th rng spc R() s spnn by { } Wh s h rlonshp mong h vcors? Wh r () ()? Th mnson of R()? Th bss of R()? Th null spcs? 5 5

26 Prmrzon of ll soluons Thorm: Gvn mn mrx n m vcor y. L x p b soluon o x = y. L ()=. Suppos > n h null spc s spnn by {n n n } Th s of ll soluons s gvn by {x = x p + n + n + + n : R} 5 Egnvlus gnvcors n gonl form sclr s cll n gnvlu of C nn f nonzro x C n such h x = x n x s h gnvcor ssoc wh. Cs : ll gnvlus r snc Thorm: h ss of gnvcors {v v.v n } s LI. L Q=[v v v n ] hn - Q Q : : : n 5 6

27 Dfnon. vcor v s gnrlz gnvcor of gr ssoc wh f I v bu I v Dno v v v Iv I v I v I v v I v I v v Iv I v v v Wh s h nw rprsnon w.r.. {v v. v }?.. [v v v ] = [v v v ]Ā... v v v v v v v v : : Jorn bloc v Polynoml funcons of squr mrx. Compuon of. Toy s mrl wll no b nclu n h mrm. Qusons? 5 7

28 Mrm xm: 6.-9: pm Oc (Thursy) Opn boo opn nos No clculor No Lpop Goo luc! 55 8

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wv hnon hyscs 5c cur 4 Coupl Oscllors! H& con 4. Wh W D s T " u forc oscllon " olv h quon of oon wh frcon n foun h sy-s soluon " Oscllon bcos lr nr h rsonnc frquncy " hs chns fro 0 π/ π s h frquncy ncrss

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

Exponential Stability Analysis of a System Comprised of a Robot and its Associated Safety Mechanism

Exponential Stability Analysis of a System Comprised of a Robot and its Associated Safety Mechanism rongs of nnul onfrn of hn nsu of ommunons Eponnl Sbl nlss of Ssm omprs of obo n s sso Sf Mhnsm Whu GUO ng YNG prmn of Mhms n nforms sn Zhngzhou Unvrs of lgh nusr Zhngzhou hn; E-ml: whguosr@hooomn; ngp66@hoon

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Chapter 4 A First Analysis of F edback edbac

Chapter 4 A First Analysis of F edback edbac Chr 4 A Fr Anly of Fbck 4. h Bc quon of Conrol On-loo ym - Ouu - rror - On-loo rnfr funconolf Clo-loo ym U Uny fbck rucur hr xrnl nu: - : rfrnc h ouu xc o rck - W: urbnc - V : nor no Ouu: ffc by boh nu

More information

CIVL 7/ D Boundary Value Problems - Quadrilateral Elements (Q8) 1/9

CIVL 7/ D Boundary Value Problems - Quadrilateral Elements (Q8) 1/9 CIVL / -D Boundry Vlu Problm - Qudrlrl Elmn (Q) /9 EIGH-ODE QUADRILAERRAL ELEMES (Q) h nx n our lmn dvlopmn logcl xnon of h qudrlrl lmn o qudrclly nrpold qudrlrl lmn dfnd by gh nod, four h vrc nd four

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

State Observer Design

State Observer Design Sa Obsrvr Dsgn A. Khak Sdgh Conrol Sysms Group Faculy of Elcrcal and Compur Engnrng K. N. Toos Unvrsy of Tchnology Fbruary 2009 1 Problm Formulaon A ky assumpon n gnvalu assgnmn and sablzng sysms usng

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Generalized Half Linear Canonical Transform And Its Properties

Generalized Half Linear Canonical Transform And Its Properties Gnrlz Hl Lnr Cnoncl Trnorm An I Propr A S Guh # A V Joh* # Gov Vrh Inu o Scnc n Humn, Amrv M S * Shnkrll Khnlwl Collg, Akol - 444 M S Arc: A gnrlzon o h Frconl Fourr rnorm FRFT, h lnr cnoncl rnorm LCT

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

INTEGRAL TRANSFORM METHODS FOR SOLVING FRACTIONAL PDES AND EVALUATION OF CERTAIN INTEGRALS AND SERIES

INTEGRAL TRANSFORM METHODS FOR SOLVING FRACTIONAL PDES AND EVALUATION OF CERTAIN INTEGRALS AND SERIES ITEGRAL TRASFORM METHODS FOR SOLVIG FRACTIOAL PDES AD EVALUATIO OF CERTAI ITEGRALS AD SERIES *A. Aghl nd H. Znl *Drmn of Ald Mhmcs, Unvrsy of Guln Rsh-Irn *Auhor for Corrsondnc ABSTRACT In hs work, h uhors

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Chapter 7 Stead St y- ate Errors

Chapter 7 Stead St y- ate Errors Char 7 Say-Sa rror Inroucon Conrol ym analy an gn cfcaon a. rann ron b. Sably c. Say-a rror fnon of ay-a rror : u c a whr u : nu, c: ouu Val only for abl ym chck ym ably fr! nu for ay-a a nu analy U o

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Frequency Response. Response of an LTI System to Eigenfunction

Frequency Response. Response of an LTI System to Eigenfunction Frquncy Rsons Las m w Rvsd formal dfnons of lnary and m-nvaranc Found an gnfuncon for lnar m-nvaran sysms Found h frquncy rsons of a lnar sysm o gnfuncon nu Found h frquncy rsons for cascad, fdbac, dffrnc

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Filter Design Techniques

Filter Design Techniques Fltr Dsgn chnqus Fltr Fltr s systm tht psss crtn frquncy componnts n totlly rcts ll othrs Stgs of th sgn fltr Spcfcton of th sr proprts of th systm ppromton of th spcfcton usng cusl scrt-tm systm Rlzton

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder Nolr Rgrsso Mjor: All Egrg Mjors Auhors: Aur Kw, Luk Sydr hp://urclhodsgusfdu Trsforg Nurcl Mhods Educo for STEM Udrgrdus 3/9/5 hp://urclhodsgusfdu Nolr Rgrsso hp://urclhodsgusfdu Nolr Rgrsso So populr

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz 96- Physcl Chmstry (I) Frst Quz lctron rst mss m 9.9 - klogrm, Plnck constnt h 6.66-4 oul scon Sp of lght c. 8 m/s, lctron volt V.6-9 oul. Th functon F() C[cos()+sn()] s n gnfuncton of /. Th gnvlu s (A)

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University Lcur 4 : Bacpropagaon Algorhm Pro. Sul Jung Inllgn Sm and moonal ngnrng Laboraor Chungnam Naonal Unvr Inroducon o Bacpropagaon algorhm 969 Mn and Papr aac. 980 Parr and Wrbo dcovrd bac propagaon algorhm.

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

innovations shocks white noise

innovations shocks white noise Innovaons Tm-srs modls ar consrucd as lnar funcons of fundamnal forcasng rrors, also calld nnovaons or shocks Ths basc buldng blocks sasf var σ Srall uncorrlad Ths rrors ar calld wh nos In gnral, f ou

More information

Chapter 1: Review of Quantum Mechanics. Postulates of Quantum Mechanics: 1-3

Chapter 1: Review of Quantum Mechanics. Postulates of Quantum Mechanics: 1-3 Chr : Rw of Qunum Mhns In hs lur you wll lrn..ll h you mgh h forgon: Posuls of qunum mhns Commuon rlons Shrongr n snrg urs Tm lomn Dnsy orors n nsy mrs Dohrn n qunum mhns C 47 Srng 9 Frhn Rn Cornll nrsy

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

9. Simple Rules for Monetary Policy

9. Simple Rules for Monetary Policy 9. Smpl Ruls for Monar Polc John B. Talor, Ma 0, 03 Woodford, AR 00 ovrvw papr Purpos s o consdr o wha xn hs prscrpon rsmbls h sor of polc ha conomc hor would rcommnd Bu frs, l s rvw how hs sor of polc

More information

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Oscillations of Hyperbolic Systems with Functional Arguments *

Oscillations of Hyperbolic Systems with Functional Arguments * Avll ://vmd/gs/9/s Vol Iss Dcmr 6 95 Prvosly Vol No Alcons nd Ald mcs AA: An Inrnonl Jornl Asrc Oscllons of Hyrolc Sysms w Fnconl Argmns * Y So Fcly of Engnrng nzw Unvrsy Isw 9-9 Jn E-ml: so@nzw-c Noro

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Analytical Study of a Special Case of Complex Canonical Transform

Analytical Study of a Special Case of Complex Canonical Transform lobl Jornl o Mhmcl Scncs: hory n Prccl Volm, Nmbr 3 00, pp 6--70 Inrnonl Rsrch Pblcon Hos hp://wwwrphoscom Anlycl Sy o Spcl Cs o Complx Cnoncl rnsorm PR Dshmkh n AS h Pro Rm Mgh Ins o chnology & Rsrch,

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò Scl nly of nvronmnl D - cdmc r 8-9 Prof. Frnndo Snò XRISS - PR 5 bl of onn Inroducon... xrc (D mprcl covrnc m)...7 xrc (D mprcl covrnc m)... xrc 3 (D mprcl covrnc m)... xrc 4 (D mprcl covrnc m)...3 xrc

More information

Chapter 8: Propagating Quantum States of Radiation

Chapter 8: Propagating Quantum States of Radiation Quum Opcs f hcs Oplccs h R Cll Us Chp 8: p Quum Ss f R 8. lcmc Ms Wu I hs chp w wll cs pp quum ss f wus fs f spc. Cs h u shw lw f lcc wu. W ssum h h wu hs l lh qul h -c wll ssum l. Th lcc cs s fuc f l

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

t=0 t>0: + vr - i dvc Continuation

t=0 t>0: + vr - i dvc Continuation hapr Ga Dlay and rcus onnuaon s rcu Equaon >: S S Ths dffrnal quaon, oghr wh h nal condon, fully spcfs bhaor of crcu afr swch closs Our n challng: larn how o sol such quaons TUE/EE 57 nwrk analys 4/5 NdM

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

V. Light amplification & Spontaneous emission

V. Light amplification & Spontaneous emission V. Lgh mplfon & Sponnous msson nrgy Lsrs r bsd on onnous msson nd lgh mplfon, hh r nds of qunum phnomnon. Ths hpr qunum mhnlly dsrbs lgh mplfon. nrgy lvl of n om A mr s omposd of oms, nd n om s omposd

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields Appl M Fall 6 Nuruhr Lcur # r 9/6/6 4 Avanc lcromagnc Thory Lc # : Poynng s Thorm Tm- armonc M Fls Poynng s Thorm Consrvaon o nrgy an momnum Poynng s Thorm or Lnar sprsv Ma Poynng s Thorm or Tm-armonc

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Chapter 13 Laplace Transform Analysis

Chapter 13 Laplace Transform Analysis Chapr aplac Tranorm naly Chapr : Ouln aplac ranorm aplac Tranorm -doman phaor analy: x X σ m co ω φ x X X m φ x aplac ranorm: [ o ] d o d < aplac Tranorm Thr condon Unlaral on-dd aplac ranorm: aplac ranorm

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-chip RLC Interconnect Load

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-chip RLC Interconnect Load Inrnonl Journl of Elcrcl n Elcroncs Engnrng : Explc Dly n Powr Esmon Mho for MOS Invrr Drvng on-hp R Inrconnc o Susm Shoo Mhumn D n Rjb r bsrc h rssv-nucv-cpcv bhvor of long nrconncs whch r rvn by MOS

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information