Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Size: px
Start display at page:

Download "Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x."

Transcription

1 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ Qu.. L f () = sin + sin + + sin + hn h primiiv of f() w.r.. is 3 3 3sin 3 3os 3 () + C () + C () sin 3 + C (d) os3 + C whr C is n rirry onsn. (od-vt3paq5) Qu.. If h dpndn vril y is hngd o z y h susiuion y = n z hn h diffrnil quion + = + + is hngd o d z d = dz os z + k, hn h vlu of k quls d d y ( y) dy d y d () () () (d) (od-vt3paq) l n d is qul o (od-vt5paq) Qu. 3. () + C (). n Qu.. Th vlu of h dfini ingrl l () ( l ) 8 8 (8) + n + C (d) Non f '() + f '( ) d quls (od-vt5paq3) () f (8) + f ( 8) () f (8) f ( 8) () (d) f ( 8) f (8) Qu. 5. ln + d ln quls (od-vt5paq) () () () (d) Qu. 6. If g() os d, = hn g () g() + g( ) () g() g( ) () g()g + quls (od-vt5paq5) (d) [ g() g ] Qu. 7. L f posiiv funion. L = ( ) = ( ) I Thn is I k I f d; I f d, k k () k () / () (d) k whr k >. (od-vt5paq7) Qu. 8. d 6 hs h vlu qul o (od-vt5paq8) () C r s () r s + C () C 6 6 (d) C

2 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6. d = d, hn (od-vt5paq) Qu. 9. If () =, =, = () =, =, = () =, =, = (d) =, =, = Qu.. If n - d= - ln hn h vlu of h dfini ingrl ( + ) n d quls () l n () +l n () l n (d) l n (od-vt5paq) Qu.. n d n n lim n quls (od-vt5paq) () () () (d) Qu.. If f is oninuous funion nd F() = ( + 3). f (u)du d hn F"() is qul o () 7f () () 7f '() () 3f '() (d) 7f () (od-vt5paq5) os l n sin d is qul o (od-vt5paq6) sin Qu. 3. ( + + ) () / () () (d) Qu.. L f :[, ) R oninuous srily inrsing funion, suh h (od-vt5paq7) 3 f () =.f ()d for vry. Th vlu of f (6) is () () 6 () (d) 36 Qu. 5. If h vlu of dfini ingrl / + o d, is qul o / 6 / + hn ( + ) quls sin / 6 () () + () (d) 3 (od-vt5paq8) n Qu. 6. L J = l ln d 3 nd K = d + hn + () J + K = () J K = () J + K < (d) non (od-vt5paq)

3 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 3 of 6 Qu. 7. Th vlu of > sisfying h quion l n d =, is (od-vt5paq) () () () (d) Qu. 8. If + u F() = f ()d whr f() = du hn h vlu of F"() quls (od-vt5paq3) u () 7 7 () 5 7 () 57 (d) Qu. 9. L f oninuous funion on [, ]. If F() = f ()d f ()d ( ( + ) ) som (,) hn hr is suh h (od-vt8paq6) () f ()d = f ()d () f ()d f ()d = f ()( + ) () f ()d f ()d = f ()( ( + ) ) (d) f ()d + f ()d = f ()( ( + ) ) Qu.. Th vlu of h dfini ingrl = + os sin / I os sin os sin sin sin d, / () ( + ) () ( os sin) os / () os sin is / / (d) [ os+ sin ] / () ( + ) () ( os+ sin) os / () / / (d) [ os+ sin ] + (odvtpaq) Qu.. A nk wih piy of lirs originlly onins gms of sl dissolvd in lirs of wr. Bginning im = nd nding im = minus, wr onining gm of sl pr lirs nrs h nk h of lirs pr minu, nd h wll mid soluion is drind from h nk r of lir/minu. Th diffrnil quion for h moun of sl y in h nk im is () dy = y d + dy = () d ( ) () dy = y d + y + (d) dy = y d 5 + (od-vtpaq)

4 Qu.. L y IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 y = y() soluion o h diffrnil quion y' + y =, hn lim is (od-vtpaq) () zro () () (d) Non isn. Qu. 3. Th r of h rgion oundd low y y = sin, ov y y = os nd on h lf y y-is, is () () () + (d) (od-vtpaq7) Qu.. d is qul o (od-vt3paq) () () () (d) Qu. 5. If. d hs h vlu qul o k hn h vlu of k quls (od-vtpaq) Qu. 6. L () () () 8 (d) d + p + q = n + C 8 r N nd nd no disin, hn h vlu of ( p + q + r) quls (od-vtpaq5) () 6 () 6 () 6 (d) 6 / sin l n(sin ) o d is (od-vt7paq7) Qu. 7. ( + ) () () () (d) Indrminn Qu. 8. L () y = l n + os hn h vlu of d () + os d y () + quls (od-vt7paq8) y / ( + os ) (d) ( + os ) d Qu. 9. Th vlu of dfini ingrl is (od-vt8paq) ( + )( + ) () / () / () / 8 (d) /6 Qu. 3. Th prssion 3 d y y on h llips 3 + y = is qul o (od-vt9paq5) d () 9 () 9 () 9 (d) 9 Qu. 3. Th vlu of h dfini ingrl ( N ) sin d n is qul (od-vt9paq6) + os n () n l n () n l n () nl n (d) n ln

5 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 5 of 6 Comprhsion Typ # Prgrph for Q. o Q. 3 A urv in rprsnd prmrilly y h quions = os nd y = sin is prmr. Thn. Th rlion wn h prmr nd h ngl α wn h ngn o h givn urv nd h -is is givn y, quls (od-vtpaq,,3) () α () + α () α d y (d) α. Th vlu of h poin whr = is d () () () (d) 3 F() y d h poin h vlu of F F() is 3. If = ( + ) / () () () (d) # Prgrph for Q. o Q. 6 L f () is drivl funion sisfying f() f() d = + n( + ) l wih f () =l n. L g() = f '() hn (od-vtpaq,5,6,). Rng of g () is () [, ) () [, ) () [, ) (d) [, ) 5. For h funion f whih on of h following is orr? () f is nihr odd nor vn () f is rnsndnl () f is injiv (d) f is symmri w.r.. origin. 6. f () d quls () l n ( 3+ ) () l n ( + ) () l n + (d) # 3 Prgrph for Q. 7 o Q. 9 Suppos nd r posiiv rl numrs suh h =. L for ny rl prmr, h disn from h origin h lin + y = dnod y D() hn (od-vt6paq.5.6) 7. Th vlu of h dfini ingrl d I = is qul o ( D() ) + () + () + 8. Th vlu of whih I is minimum, is () 9. Minimum vlu of I is () () () () + (d) (d) () () (d) + r + +

6 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 6 of 6 Assrion & Rson Typ In his sion h qu. onins STATEMENT- (Assrion) & STATEMENT-(Rson).Eh qusion hs hois (A), (B), (C) nd (D), ou of whih only on is orr. Bul (A) STATEMENT- is ru, STATEMENT- is Tru; STATEMENT- is orr plnion for STATEMENT-. Bul (B) STATEMENT- is Tru, STATEMENT- is Tru; STATEMENT- is NOT orr plnion for STATEMENT-. Bul (C) STATEMENT- is Tru, STATEMENT- is Fls. Bul (D) STATEMENT- is Fls, STATEMENT- is Tru. Qu.. Smn : L f () = + d is odd funion nd g() = f '() is n vn funion. us (od-vtpaq8) Smn : For diffrnil funion f () if f '() is n vn funion hn f() is n odd funion. Qu.. Smn : Th soluion of ( y d dy) o = ny d n is sin y = y us Smn : Suh yp of diffrnil quions n only solvd y h susiuion = vy. Qu. 3. Considr h following smns (od-vt6paq) (od-vtpaq) ) Smn : us 3 3 d = = = 3 3 Smn : If f is oninuous on [,] hn f ()d = F() F() whr F is ny nidriviv of f, h is F' = f. Mor hn On My Corr Typ Qu.. Whih of h following dfini ingrl(s) hs/hv hir vlu qul o h vlu of ls on of h rmining hr? (od-vtpaq3) () / 6 + sin.os d sin () / 6 + os / sin / os / sin / os d () / 6 os + sin d Qu.. Whih of h following dfini ingrl vnishs? (d) 3/ d 3 (od-vtpaq6) n () ( n+ ) / d n N + () log ( log ) ln d () \ sin d (d) os m.sin n d, whr ( m, n I) nd ( m n) is vn ingr.

7 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 7 of 6 Qu. 3. Th funion f is oninuous nd hs h propry f ( f ()) = for ll [,] hn nd J = f ()d () 3 f + f = () h vlu of J qul o (od-vt8paq) () f.f = 3 3 (d) / sin d 3 hs h sm vlu s J. ( sin + os ) Qu.. Th diffrnil quion orrsponding o h fmily of urvs y = A os( B + D ), is () of ordr 3 () of ordr () dgr (d) dgr (od-vtpaq3) d Qu. 5. quls (od-vt7paq3) + + () + n + C 3 3 () n n + C () + n + C 3 3 (d) n + n + C whr C is n rirry onsn. Qu. 6. If h indpndn vril is hngd o y hn h diffrnil quion d y dy dy d d d + = is hngd o d dy d = k dy whr k quls (od-vt7paq6) () () () (d) d dy n d Qu. 7. L L = lim n whr R hn L n (od-vt9paq9) n + () () () (d) Sujiv Typ ( Up o digi) 7 Qu.. If h vlu of h dfini ingrl ( ) (od-vt8pdq) 7 C7. d is qul o k whr k N. Find k.

8 Qu.. D. No h IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 8 of 6 [SOLUTION] Singl Corr Typ sin + sin + + sin + = sin + sin + + sin + = sin 3 ( + + = = 3) 3 os 3 sin 3 d C. = + Qu.. D. Givn y = n z dy dz s z. d = d... () Now d y d z dz d = s z. +. (s z) [using produ rul] d d d d d z dz d dz = s z. +. (s z). d d dz d s z. d y d z dz = +.s z.n z d d d...() Now ( ) ( + ) y n z + = +.s z. = + + n z.s z. + y d s z d d dy dz dz dz dz = + s z + n z.s z d d From () nd (3) w hv RHS of() = (3)...(3) d z dz s z. = + s z d d d z dz os z k. = + = d d d n d d n Qu. 3. A. I = ( ln ) d = ( + ln ) d L = = l = ( + l ) = = + = + I d C C Qu.. B. f '() + f '( ) I = d; us King nd dd Rsul + Qu. 5. C. I = + ln d ln d n = n + d = d I = = pu l ( l ) Qu. 6. A. + + g( + ) = os d = os d + os d = g() + os d = g() + g. k Qu. 7. D. = ( ) = ( ) I f d;i f d k k k Using King k k k I = ( k)f ( ) d I = f ( ) d I = f ( ) d = I =. I k k k I

9 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 9 of 6 Qu. 8. C. d d d pu = d = = L 6 = u ; 3 du du; d = du 6 u Qu. 9. A. u du u 6 = C C. 6 = + = + u 6 6. d = d diffrniing oh sids, w g. = = ( + ( ) + ) =,( ) =, = =, =, =. Qu.. A. I = n ( + )d = o d n d = = n d n d = + ( ) = n d n ( ) d n d n n. + = = = l l Qu.. B. Qu.. A. n+ n+ n n lim. = lim. lim. =. n + n + + / n n n n n n F'() = ( + 3) f (u)du f ''() = ( + 3)f () + f (u)du. F''() = 7f () + 7f (). sin Qu. 3. C. Ingrnd is (.)' = = = = sin sin..... / Qu.. B. Givn 3 f () =.f ()d diffrniing, 3f ()f '() = f () f () f '() = ; 3 f () = + C Bu f () = C = f (6) = 6. 6 / os o os d; pu = ; d = d Qu. 5. A. ( + ) / 6 / / ( + ) = ( ) os () o().os () d os () o().os () d / 6 / 6 / 6 6 / 6 = os () = + + =.

10 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 ( + ) ln ln d Qu. 6. A. J + K = d = 3 + sr = J + K = ( J + K) J + K =. + Qu. 7. A. l n I = ln d = ln.. d n = l = = ` ln = [ ln ] = ( s > ) ln = =. Qu. 8. C. Now f '() = =... () F() = f ()du F'() = f () F''() = f ''() F''() = f '() Form () f '() = 56 + = 57. Qu. 9. B. Givn F() = f ()d f () d ( d ( + ) )... () s f is oninuous hn F() is lso oninuous. Also pu =. F() = f () d = f () d nd pu = hn F () = F() hn Roll s horm is pplil o F () som (, ) suh h F'() = F'() = f ()d f () d + ( ( + )) f () + f () = Now [ ] F'() f () d f () d = f () ( + ) [ ] F = f () d ( ) Qu.. A. / + os os I = os(sin ) + sin(sin ) d / = + + / [{ os(sin ) sin(sin ) } os { os(sin ) sin(sin ) }] d f () f '() = os + sin. Qu.. B. Qu.. B. dy y y ()() = = d + + dy y y ()() = = d + +

11 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 Qu. 3. (B) / / os y dy + / = sin y] os y] sin y dy / / / = =. Qu.. D. = sin θ d = 8sin θ.os θ dθ / sin θ I = 8sin θ.os θdθ = 8 os θ / sin θdθ / sin θdθ = / θ sin θ = =. Qu. 5. D. / Us Wlli s formul o g. I =. d pu = sin θ 8 sin θos θd θ. Qu. 6. C d + I = = d = d ( + ) + 7 ( ) 7 k ln ln + = ln l + = = ln + C p + q + r = Qu. 7. C. / / d I = sin d = sin = lim sin = = d Qu. 8. A. l ( + os ) os sin ( sin ) sin y = n + os y y = + os + os n( os ) os l + + y / =. y = = = + =. y / ( + os ) ( + os ) ( + os ) Qu. 9. B. ( + )( + ) d I =...() = d. + + (using King) d I =...() dding () nd () ( + )( + ) ( + ) d d d ( + )( + ) ( + ) ( + ) I = = = d I = = n = / ( + ) [onvr i ino vlu of dfini ingrl T is sm s]

12 Qu. 3. B. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 Diffrniing impliiy w hv 6 + 8yy' = nd hn y' = 3 ; yy'' + ( y' ) = 3 y diffrniing gin nd susiu for y w hv 3+ ( y' ) + yy'' = nd hn yy'' = y muliplying y y, 9 3 d y 3y + + y = d 3y y + y y '' = y y'' = u 3 + y = nd hn n Qu. 3. A. I = d... sin + os y y''' = vry poin on h llips] 3 9 or ( n ) n sin I = d... + os dd () nd () n n sin sin I = n d I = n d U sin g f d n f d + os = + os / / / n sin d sin d os d I =. = n = n + os + os + sin = n.ln + sin ] = n ln Ans. / Comprhsion Typ # Prgrph for Q. o Q C.. - B C. (i) dy d y = sin = [os + sin ] = os = [os sin ] d d dy os + sin = = n α d os sin n + = n α + α = α. (ii) (iii) s d y + d y = =. d (os sin ) d = / / F() = (os + sin ) d = sin + C F F() = + C =.

13 . - B B A. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 3 of 6 # Prgrph for Q. o Q. 6 (I) f () f ()d = + n ( + ) l diffrniing f '() f () = + + ( + ) f '() = + rng of g() = f '() is [,). + f '() = + f '() is odd f() is vn. Ingring (), i.. d d f '() = f () = f () n () I, + = l + d whr I = ; pu = n θ d = s dθ + s θdθ + I = = os θdθ = n ( os θ o θ ) = n + C n θs θ l l + f () ln ln + C f () = ln ln + C + + l f () = lm C; pu =,f () ln f () = ln C = f () = n + +. Now f ()d =. ln d + II I ingring y prs f ().] f '()d f () d = + = ln + ln + + = ln + ln + + { } = ln + n + {} = n + = n + l l l.

14 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: of 6 # 3 Prgrph for Q. 7 o Q C. 8. D. 9. B. (i) D() = = = + ( ) + ( ) + ( D() ) I = ( + ) d = = ( ) ( ) ( ) + ( ) = = = +. (ii) Now pu I = I = + = + I is minimum if = =. = = (iii) nd Imin = =. Qu.. C. If f () is odd f '() Qu.. C. Qu. 3. D. Assrion & Rson Typ is vn u onvrs is no ru.g. If f '() = sin hn f () = sin os + C ; f ( ) = sin + os + C f () + f ( ) = onsn whih nd no o zro For S-: f () = + d; g() = + f ( ) = + d; = y f ( ) + y dy f () + f ( ) = f is odd nd g is oviously vn. 3 d dos no is. Mor hn On My Corr Typ Qu.. A,B,C,D. No h h ingrnd in A,B nd C ll rdus o (+sin ) 3 I = ( sin ) d os ] + = = ( ) os = / 6 Now, D = d 3 Pu = os θ + 3sin θ d = sin θos θ dθ 3/

15 whn IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 5 of 6 3 = hn sin θ = θ = 6 whn = hn sin θ = θ = / / sin θ I =.sin θ os θ dθ = os θ dθ = θ sin θ = θ sin θ os θ Qu.. A,B,C,D. / 6 / = = + 3 A,B,C, D. 6 (A). Pu = / nd dd o g rsul / ] / 6 / / 6 (B). n n l l d if f () = f '() = l l l l n n n n I = ln = ln = n n n l l l (C). = d = d / / I = sin d = sin d = sin d = I I = I =. / ln Alrnivly for (C); pu ( ) = I sin d = (odd funion) ln (D). sin n.os m d sin(n m) sin(n m) d = + + os(n + m) os(n m) = + = + = n + m n m n + m n m n + m n m Qu. 3. A,B,D. Givn f ( f ()) = + rpling f () ( ) f ( ) = f () + Now = = ( ) J f ()d f d f f f () = f () + f () + f =... () (A) (Using King) J = ( f () + f ( ) ) d; J = d = J =. Qu.. A,D. y = A[ os B os D sin B sin D] y = C os B + C sin B... () ( A os D C ; A sin D C ) = = = + = + y BC sin B BC os B y BC sin B BC os B y = B ( C os B + C sin B ) y = B y = B y d y dy d y yy3 yy = y =. 3 d d d

16 IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 Qusion. & Soluion. In. Cl. Pg: 6 of 6 d d + / + Qu. 5. B,C. I =. n n = = = + + / 3/ / = n + C. 3 3 Alrnivly : ( ) d d ( + + ) ( + ) ( + + ) ( + + )( + ) ( + + )( + ) I = = = d d d d = / 3 / + / 3 / ( ) d + + = = Qu. 6. A,C,D. n n n n C. Qu. 7. A, B, C Considr nd I = =.n ( n n) = n n n n + n if < = = = if > L lim n n / if A, B, C 7 Qu.. 8 L = ( ) 7 7 I C d II Sujiv Typ ( Up o digi) I I = C. +. d = C.. d zro I.B.P. gin 6 mor ims ( 7 )! 7! 7! = C. d = !! ! 7! =. = = k = 8 7!7! 8 8 k Ans. ]

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C. MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Tim: 3hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A, B and C. SECTION -A Vry Short Answr Typ Qustions. 0 X = 0. Find th condition

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

Equations and Boundary Value Problems

Equations and Boundary Value Problems Elmn Diffnil Equions nd Bound Vlu Poblms Bo. & DiPim, 9 h Ediion Chp : Sond Od Diffnil Equions 6 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ กด วล ยร ชต Topis Homognous

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Midterm. Answer Key. 1. Give a short explanation of the following terms. ECO 33-00: on nd Bnking Souhrn hodis Univrsi Spring 008 Tol Poins 00 0 poins for h pr idrm Answr K. Giv shor xplnion of h following rms. Fi mon Fi mon is nrl oslssl produd ommodi h n oslssl sord, oslssl

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

Calculus II Solutions review final problems

Calculus II Solutions review final problems Calculus II Solutions rviw final problms MTH 5 Dcmbr 9, 007. B abl to utiliz all tchniqus of intgration to solv both dfinit and indfinit intgrals. Hr ar som intgrals for practic. Good luck stuing!!! (a)

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Things I Should Know Before I Get to Calculus Class

Things I Should Know Before I Get to Calculus Class Things I Should Know Bfor I Gt to Calculus Class Quadratic Formula = b± b 4ac a sin + cos = + tan = sc + cot = csc sin( ± y ) = sin cos y ± cos sin y cos( + y ) = cos cos y sin sin y cos( y ) = cos cos

More information

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

08 - DIFFERENTIAL CALCULUS Page 1 ( Answers at the end of all questions ) ( d ) it is at a constant distance from the o igin [ AIEEE 2005 ]

08 - DIFFERENTIAL CALCULUS Page 1 ( Answers at the end of all questions ) ( d ) it is at a constant distance from the o igin [ AIEEE 2005 ] 08 - DIFFERENTIAL CALCULUS Page ( ) + 4 + + sec sec... sec n n n n n n sec ( b ) cosec ( c ) tan ( d ) tan [ AIEEE 005 ] ( ) The normal to the curve = a ( cos θ + θ sin θ ), y = a ( sin θ θ cos θ ) at

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Section 4.3 Logarithmic Functions

Section 4.3 Logarithmic Functions 48 Chapr 4 Sion 4.3 Logarihmi Funions populaion of 50 flis is pd o doul vry wk, lading o a funion of h form f ( ) 50(), whr rprsns h numr of wks ha hav passd. Whn will his populaion rah 500? Trying o solv

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS (B) 2 log (D) ( 1) = where z = MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Inventory Management Model with Quadratic Demand, Variable Holding Cost with Salvage value

Inventory Management Model with Quadratic Demand, Variable Holding Cost with Salvage value Asr Rsr Journl of Mngmn Sins ISSN 9 7 Vol. 8- Jnury Rs. J. Mngmn Si. Invnory Mngmn Modl wi udri Dmnd Vril Holding Cos wi Slvg vlu Mon R. nd Vnkswrlu R. F-Civil Dp of Mmis Collg of Miliry Enginring Pun

More information

ENJOY MATHEMATICS WITH SUHAAG SIR

ENJOY MATHEMATICS WITH SUHAAG SIR R-, OPPOSITE RAILWAY TRACK, ZONE-, M. P. NAGAR, BHOPAL :(0755) 00 000, 80 5 888 IIT-JEE, AIEEE (WITH TH, TH 0 TH, TH & DROPPERS ) www.tkoclasss.com Pag: SOLUTION OF IITJEE 0; PAPER ; BHARAT MAIN SABSE

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information