Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University"

Transcription

1 Lcur 4 : Bacpropagaon Algorhm Pro. Sul Jung Inllgn Sm and moonal ngnrng Laboraor Chungnam Naonal Unvr

2

3 Inroducon o Bacpropagaon algorhm 969 Mn and Papr aac. 980 Parr and Wrbo dcovrd bac propagaon algorhm. 986, McCllland and Rumlhar ormulad ncl b ung dmodal uncon Dla rul and gradn dcn algorhm

4 Concp o gradn dcn algorhm Upda Proc Larnng Maurmn Proc Corrc d

5 Gradn algorhm Sp dcn algorhm g Th gradn g

6 Gradn algorhm g H Non algorhm H g Han mar

7 Gradn algorhm m m Han mar m m m m g H

8 Dla rul d d

9 Dla rul d d n n Dla rul Wgh upda

10 Gnralzd dla rul No n d

11 Gnralzd dla rul d d n n n Chan Rul

12 Gnralzd dla rul Funcon hould b drnabl b uncon Thn ' ' d ' So, h gh upda quaon bcom n

13 Sgmodal uncon Nonlnar uncon ' Hprbolc angn uncon Lnar uncon ' '

14 Bacpropagaon algorhm NI b NH b

15 Bacpropagaon algorhm No NINH NH NI NINO NO NH

16 Bacpropagaon algorhm3 d d ' ' ' NH b '

17 Bacpropagaon algorhm4 d d ' No No No ' ' No ' '

18 Calculaon o Bacpropagaon Algorhm5 Upda Proc Larnng Maurmn Proc Corrc No No b ' ' ' ' ' ' b

19 Malab nonlnar uncon poln lnar hardlm Sp uncon, 0, hardlm Sgnum, -, logg gmod radba Radal uncon ang Hprbolc angn alm Sauraon 0, alm Sauraon,

20 Summar o Bacpropagaon Algorhm5 ' b ' ' No ' b ' No '

21 Rul o humb: Larnng. Inal gh ar randoml lcd and normalzd.. Larnng ra lcd a 0 3. Momnum cocn lcd 0 Hghr momnum valu man o rl on mor prvou gh chang. 4. Slc h numbr o r hddn un largr han ha o h cond hddn lar. 5. Tran op hn - h magnud o h gradn ucnl mall - h obcv uncon all blo a d hrhold - a d numbr o raon - hr non longr an mprovmn n rror

22 Rul o humb: Hddn lar. On hddn lar prrrd or conrol applcaon. To or mor hddn lar ar prrrd or parn rcognon applcaon. 3. Th numbr o hddn un ar prrrd o b m o numbr o npu 4. Th numbr o hddn un grar ha on. 5. Th numbr o oupu un prrrd o b l han ha o hddn un. 6. Th numbr o hddn lar nod hould almo b much l han h numbr o ranng ampl. Ohr, rul n poor gnralzaon.

23 Rul o humb3. So, h hap o h nor ll b.on hould nvr u mor hddn lar nod ha ranng ampl.. For XOR problm, nc npu parn 4 h numbr o hddn un hould b l han Ba gh hould b ud and updad n am mar.

24 Tranng Bacpropagaon algorhm. Sar h randoml lcd gh Appl parn p a npu 3. Calcula, 4. Compu rror d 5. A oupu lar, calcula ' 6. A hddn lar, calcula

25 Tranng Bacpropagaon algorhm 6. A hddn lar, calcula 7. Calcula gh chang 8. Parn b parn, go o 0 poch larnng, go o p 9 '

26 Tranng Bacpropagaon algorhm3 9. All parn ar d? allparn p I, go o p, no, go bac o p. 0. Parn b parn larnng, upda gh b b b b b b

27 Tranng Bacpropagaon algorhm4. Rpa ccl unl convrg. 0. Parn b parn larnng, upda gh allparn p p b b b b b b

28 Drabac o Bacpropagaon algorhm. Snc BP u a gradn dcn procdur. Convrgnc can b lo.. I ma b uc a h local mnma.

29 Drabac o Bacpropagaon algorhm 3.No rul or lcng opmal numbr o hddn nuron 4. No rul or lcng opmal numbr o hddn lar. 5. No rul or lcng opmal larnng ra. 6. Wha condon ar rqurd or larg ranng 7. Ho o avod ovr ng? Ovrng: h pon hr h nor ar o ovr h ranng daa hn h prormanc o h nor ar o dgrad.

30 Som oluon or Bacpropagaon algorhm. Prunng proc - I lmna unmporan gh. - Th nor rand h BP, and hn chc gh chang. - Dl h gh h no chang or mall chang. - Rran h rducd z nor.

31 Som oluon or Bacpropagaon algorhm. Wgh addng mhod - I r o g ou o local mnma. - Whn h rror do no convrg or a long m, m o b uc a h local mnma. - Thn add h nuron o acva proc o ump ovr o h global mnma. - I rqur a dnamc programmng ll.

32 Som oluon or Bacpropagaon algorhm 3. Adapv larnng ra - I r o pd up convrgnc. -

33 Unvral Appromaon Thorm Q. Wha h mnmum numbr o hddn lar? A. Unvral appromaon horm or nonlnar npu-oupu mappng. N O - F b N H F

34 Hom or # Drv BP algorhm or npu-hddn-hddn-oupu lar rucur o MLP. Du on Spmbr 4, 03 Hom or #3 Fnd and ud Han mar. Fnd and Sud h Qua-Non Mhod. Du on Ocobr, 03

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò Scl nly of nvronmnl D - cdmc r 8-9 Prof. Frnndo Snò XRISS - PR 5 bl of onn Inroducon... xrc (D mprcl covrnc m)...7 xrc (D mprcl covrnc m)... xrc 3 (D mprcl covrnc m)... xrc 4 (D mprcl covrnc m)...3 xrc

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS hp://www.cs.umass.du/c/orn/faultolransysms ar 4 Analyss Mhods Chapr HW Faul Tolranc ar.4.1 Duplx Sysms Boh procssors xcu h sam as If oupus ar n agrmn - rsul s assumd o b corrc If

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

State Observer Design

State Observer Design Sa Obsrvr Dsgn A. Khak Sdgh Conrol Sysms Group Faculy of Elcrcal and Compur Engnrng K. N. Toos Unvrsy of Tchnology Fbruary 2009 1 Problm Formulaon A ky assumpon n gnvalu assgnmn and sablzng sysms usng

More information

Convergence of Quintic Spline Interpolation

Convergence of Quintic Spline Interpolation Inrnaonal Journal o ompur Applcaons 97 8887 Volum 7 No., Aprl onvrgnc o Qunc Spln Inrpolaon Y.P. Dub Dparmn O Mamacs, L.N..T. Jabalpur 8 Anl Sukla Dparmn O Mamacs Gan Ganga ollg O Tcnog, Jabalpur 8 ASTRAT

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

LQR based Speed Control of BLDC Motors

LQR based Speed Control of BLDC Motors G Inrnaonal ournal o Elcrcal and Elcronc Engnrng (G-IEEE) volu 3 Iu 6 un 6 Q bad pd Conrol o BDC Moor Mha M., Awn.B.G udn, Aan proor Elcrcal & Elcronc Dp. Mar Balo collg o Engnrng, hruvananhapura, rala,

More information

Frequency Response. Response of an LTI System to Eigenfunction

Frequency Response. Response of an LTI System to Eigenfunction Frquncy Rsons Las m w Rvsd formal dfnons of lnary and m-nvaranc Found an gnfuncon for lnar m-nvaran sysms Found h frquncy rsons of a lnar sysm o gnfuncon nu Found h frquncy rsons for cascad, fdbac, dffrnc

More information

Central University of Finance and Economics, Beijing, China. *Corresponding author

Central University of Finance and Economics, Beijing, China. *Corresponding author 016 Jon Inrnaonal Confrnc on Arfcal Inllgnc and Copur Engnrng (AICE 016) and Inrnaonal Confrnc on Nwork and Councaon Scury (NCS 016) ISBN: 978-1-60595-36-5 AdaBoos Arfcal Nural Nwork for Sock Mark Prdcng

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

The Method of Steepest Descent for Feedforward Artificial Neural Networks

The Method of Steepest Descent for Feedforward Artificial Neural Networks IOSR Joural o Mahac (IOSR-JM) -ISSN: 78-578, p-issn:39-765x. Volu, Iu Vr. II. (F. 4), PP 53-6.oroural.org Th Mhod o Sp Dc or Fdorard Arcal Nural Nor Muhaad Ha, Md. Jah Udd ad Md Adul Al 3 Aoca Proor, Dpar

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

First Lecture of Machine Learning. Hung-yi Lee

First Lecture of Machine Learning. Hung-yi Lee Firs Lcur of Machin Larning Hung-yi L Larning o say ys/no Binary Classificaion Larning o say ys/no Sam filring Is an -mail sam or no? Rcommndaion sysms rcommnd h roduc o h cusomr or no? Malwar dcion Is

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses 16.512, okt Proulon Prof. Manul Martnz-Sanhz Ltur 6: Hat Conduton: Thrmal Str Efft of Sold or Lqud Partl n Nozzl Flow An u n hhly alumnzd old rokt motor. 3 2Al + O 2 Al 2 O 2 3 m.. 2072 C, b.. 2980 C In

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer. R A T T L E R S S L U G S NAME: ANSWER KEY DATE: PERIOD PREAP PHYSICS REIEW TWO KINEMATICS / GRAPHING FORM A DIRECTIONS: MULTIPLE CHOICE. Chs h r f h rr answr. Us h fgur bw answr qusns 1 and 2. 0 10 20

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Adaptive Neuro-Fuzzy Inference Controllers for Smart Material Actuators

Adaptive Neuro-Fuzzy Inference Controllers for Smart Material Actuators Adapve Neuro-Fuzz Inference Conrollers for Smar Maeral Acuaors Teodor Lucan Grgore and Ruxandra Mhaela Boez École de Technologe Supéreure, Monréal, Quebec HC K Canada An nellgen approach for smar maeral

More information

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30 HESEUS ARRIVES Mixd hors (SSAA) and String Qartt Dration: ca. 2:30 MARY JANE LEAH Ariadn rss 00034 Soprano 1 Soprano 2 Vocal rangs: & & b Alto 1 & Alto 2 & b nor V b ass b In a pic sch as this, in hich

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Image Processing: 3. Stereo & Structure from Motion. Epipolar geometry. More than one camera (or image) Aleix M. Martinez

Image Processing: 3. Stereo & Structure from Motion. Epipolar geometry. More than one camera (or image) Aleix M. Martinez Imag Procssng: 3. Sro & Srucur from Moon Alx M. Marnz alx@c.osu.du Mor han on camra (or mag) In many applcaons, w can mak us of mor han on camra or of a squnc of mags. hs wo problms ar vry smlar (alhough

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

Track Properities of Normal Chain

Track Properities of Normal Chain In. J. Conemp. Mah. Scences, Vol. 8, 213, no. 4, 163-171 HIKARI Ld, www.m-har.com rac Propes of Normal Chan L Chen School of Mahemacs and Sascs, Zhengzhou Normal Unversy Zhengzhou Cy, Hennan Provnce, 4544,

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

A universal saturation controller design for mobile robots

A universal saturation controller design for mobile robots A unvrsal sauraon conrollr sgn for mobl robos K.D. Do,,Z.P.Jang an J. Pan Dparmn of Elcrcal an Compur Engnrng, Polychnc Unvrsy, NY, USA. Emal: uc@mch.uwa.u.au, zjang@conrol.poly.u Dparmn of Mchancal Engnrng,

More information

Cost Effective Multi-Period Spraying for Routing in Delay Tolerant Networks

Cost Effective Multi-Period Spraying for Routing in Delay Tolerant Networks IEEE/ACM Tranacon On Nworng 85:50-4 Ocobr 00 Co Effcv Mul-Pro Sprayng for Roung n Dlay Tolran Nwor Eyuphan Bulu Mmbr IEEE Zjan Wang an Bollaw K. Szyman Fllow IEEE Abrac In h papr w prn a novl mul-pro prayng

More information

Functions of Two Random Variables

Functions of Two Random Variables Functions of Two Random Variabls Maximum ( ) Dfin max, Find th probabilit distributions of Solution: For an pair of random variabls and, [ ] [ ] F ( w) P w P w and w F hn and ar indpndnt, F ( w) F ( w)

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Fast Space varying Convolution, Fast Matrix Vector Multiplication,

Fast Space varying Convolution, Fast Matrix Vector Multiplication, Fas Space varyng Convoluon Fas Marx Vecor Mulplcaon l and FMRI Acvaon Deecon Janng We Advsors: Prof. Jan P. Allebach Prof. Ilya Pollak Prof. Charles A. Bouman Dr. Peer A. Jansson School of Elecrcal and

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

Lecture 7 - SISO Loop Analysis

Lecture 7 - SISO Loop Analysis Lctr 7 - IO Loop Anal IO ngl Inpt ngl Otpt Anal: tablt rformanc Robtn EE39m - prng 5 Gornvk ontrol Engnrng 7- ODE tablt Lapnov mathmatcal tablt thor - nonlnar tm tablt fnton frt rct mtho xponntal convrgnc

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Functions of Two Random Variables

Functions of Two Random Variables Functions of To Random Variabls Maximum ( ) Dfin max, Find th probabilit distributions of Solution: For an pair of random variabls and, [ ] [ ] F ( ) P P and F, (, ) hn and ar indpndnt, F ( ) F ( ) F (

More information

The Dynamic Programming Models for Inventory Control System with Time-varying Demand

The Dynamic Programming Models for Inventory Control System with Time-varying Demand The Dynamc Programmng Models for Invenory Conrol Sysem wh Tme-varyng Demand Truong Hong Trnh (Correspondng auhor) The Unversy of Danang, Unversy of Economcs, Venam Tel: 84-236-352-5459 E-mal: rnh.h@due.edu.vn

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Mixture Ratio Estimators Using Multi-Auxiliary Variables and Attributes for Two-Phase Sampling

Mixture Ratio Estimators Using Multi-Auxiliary Variables and Attributes for Two-Phase Sampling Opn Journal of Sascs 04 4 776-788 Publshd Onln Ocobr 04 n Scs hp://scrporg/ournal/os hp://ddoorg/0436/os0449073 Mur ao Esmaors Usng Mul-Aular Varabls and Arbus for To-Phas Samplng Paul Mang Waru John Kung

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

MOLP MOLP MOLP Corresponding author,

MOLP MOLP MOLP Corresponding author, h://jnrm.rbau.ac.r پژوهشهای نوین در ریاضی دانشگاه آزاد اسالمی واحد علوم و تحقیقات * Correondng auhor, Emal: j.val@abrzu.ac.r. * تخمین x x x, c x e d.. A x B b.. A x B b, 2 2 2 A d,, e n2 cx, n A 2 mn2

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

Chapter 6 Test December 9, 2008 Name

Chapter 6 Test December 9, 2008 Name Chapr 6 Ts Dcmbr 9, 8 Nam. Evalua - ÄÄ ÄÄ - + - ÄÄ ÄÄ ÄÄ - + H - L u - and du u - du - - - A - u - D - - - ÄÄÄÄ 6 6. Evalua i j + z i j + z i 7 j ÄÄÄ + z 9 + ÄÄÄ ÄÄÄ 9 ÄÄÄ + C 6 ÄÄÄ + ÄÄÄ 9 ÄÄÄ + C 9.

More information

LESSON 10: THE LAPLACE TRANSFORM

LESSON 10: THE LAPLACE TRANSFORM 0//06 lon0t438a.pptx ESSON 0: THE APAE TANSFOM ET 438a Automatic ontrol Sytm Tchnology arning Objctiv Aftr thi prntation you will b abl to: Explain how th aplac tranform rlat to th tranint and inuoidal

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

PHA 5127 Answers Homework 2 Fall 2001

PHA 5127 Answers Homework 2 Fall 2001 PH 5127 nswrs Homwork 2 Fall 2001 OK, bfor you rad th answrs, many of you spnt a lot of tim on this homwork. Plas, nxt tim if you hav qustions plas com talk/ask us. Thr is no nd to suffr (wll a littl suffring

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

SUMMER 17 EXAMINATION

SUMMER 17 EXAMINATION (ISO/IEC - 7-5 Crtifid) SUMMER 7 EXAMINATION Modl wr jct Cod: Important Instructions to aminrs: ) Th answrs should b amind by ky words and not as word-to-word as givn in th modl answr schm. ) Th modl answr

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Solutions to Supplementary Problems

Solutions to Supplementary Problems Solution to Supplmntary Problm Chaptr 5 Solution 5. Failur of th tiff clay occur, hn th ffctiv prur at th bottom of th layr bcom ro. Initially Total ovrburn prur at X : = 9 5 + = 7 kn/m Por atr prur at

More information

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices Comprehense Inegraed Smulaon and Opmaon of LPP for EUV Lhograph Deces A. Hassanen V. Su V. Moroo T. Su B. Rce (Inel) Fourh Inernaonal EUVL Smposum San Dego CA Noember 7-9 2005 Argonne Naonal Laboraor Offce

More information

General Properties of Approaches Maximizing Power Yield in Thermo-Chemical Systems

General Properties of Approaches Maximizing Power Yield in Thermo-Chemical Systems Europan Assocaon or h Dvlopmn o Rnwabl Enrgs, Envronmn and Powr Qualy (EA4EPQ Inrnaonal Conrnc on Rnwabl Enrgs and Powr Qualy (ICREPQ Sanago d Composla (Span, 8h o 30h March, 0 Gnral Proprs o Approachs

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

The Science of Monetary Policy

The Science of Monetary Policy Th Scinc of Monary Policy. Inroducion o Topics of Sminar. Rviw: IS-LM, AD-AS wih an applicaion o currn monary policy in Japan 3. Monary Policy Sragy: Inrs Ra Ruls and Inflaion Targing (Svnsson EER) 4.

More information

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages:

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages: CS 6353 Compilr Construction, Homwork #1 1. Writ rgular xprssions for th following informally dscribd languags: a. All strings of 0 s and 1 s with th substring 01*1. Answr: (0 1)*01*1(0 1)* b. All strings

More information

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

Circle the letters only. NO ANSWERS in the Columns! (3 points each) Chemistry 1304.001 Name (please print) Exam 4 (100 points) April 12, 2017 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Comparison of the performance of best linear unbiased predictors (BLUP)

Comparison of the performance of best linear unbiased predictors (BLUP) Comparon of h prformanc of b lnar unbad prdcor (BLUP) Pkang Yao Synh Spn 130 Wrgh Lan Ea W Chr, PA 19380 USA yao.pr@ynh.com Edward J. Sank III Dparmn of Publc Halh 401 Arnold Hou Unvry of Maachu 711 Norh

More information

Dealing with quantitative data and problem solving life is a story problem! Attacking Quantitative Problems

Dealing with quantitative data and problem solving life is a story problem! Attacking Quantitative Problems Daling with quantitati data and problm soling lif is a story problm! A larg portion of scinc inols quantitati data that has both alu and units. Units can sa your butt! Nd handl on mtric prfixs Dimnsional

More information

Joint State and Parameter Estimation by Extended Kalman Filter (EKF) technique

Joint State and Parameter Estimation by Extended Kalman Filter (EKF) technique Inrnaonal Journal o Engnrng Rsarch an Dvlopmn -ISSN: 78-67 p-issn: 78-8 www.jr.com Volum Issu 8 (Augus 5.4-5 Jon Sa an aramr Esmaon by En alman Flr (EF chnu S. Damoharao.S.L.V. Ayyarao G Sun Dp. o EEE

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2) Company LOGO THERMODYNAMICS The Frs Law and Oher Basc Conceps (par ) Deparmen of Chemcal Engneerng, Semarang Sae Unversy Dhon Harano S.T., M.T., M.Sc. Have you ever cooked? Equlbrum Equlbrum (con.) Equlbrum

More information

Die Mounted Cam Unit General Description of KGSP

Die Mounted Cam Unit General Description of KGSP D Mond Cam Un Gnal Dscpon of UHav d sc ha confoms o hgh podcon ns. U,,, 0mm and 0mm a avalabl fo h monng dh. UAvalabl angl s 0 o a ncmns of 5. U IO spngs a sd. Opon of U Mc pcfcaon(-) / LU32-(h 3-M8p5

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

3 a b c km m m 8 a 3.4 m b 2.4 m

3 a b c km m m 8 a 3.4 m b 2.4 m Chaptr Exris A a 9. m. m. m 9. km. mm. m Purpl lag hapr y 8p 8m. km. m Th triangl on th right 8. m 9 a. m. m. m Exris B a m. m mm. km. mm m a. 9 8...8 m. m 8. 9 m Ativity p. 9 Pupil s own answrs Ara =

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information