(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Size: px
Start display at page:

Download "(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is"

Transcription

1 [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs of f. Th h vlu of g'() is cos 7 7 o of hs Q.5 If, b d c r rl umbrs h h vlu of bc b c c Lim l ( si b) d quls bc c b Q.6 Th vlu of h dfii igrl ( d )( ) ( > ) is Q.7 L = ( si ) si d h Lim is qul o som fucio of. / / / Q.8 Th vlu of h dfii igrl )si ( )cos 8 ( d, is 8

2 Q.9 L C = si () d h Lim C () quls d Q. If sisfis h quio cos si d = ( < < ), h h vlu is ± si ± si ± si ± si Q. If f () = g() d d g() = h f () quls /7 quls quls co b drmid Q. A fucio f () sisfis f () = si + f '() ( si si ) d h f () is si si si cos cos si Q. Suppos h fucio g () = b ( N) sisfis h quio ( p q) g () d = for ll lir fucios (p + q) h = b = b = ; = = ; b = = ; b = Q. Th vlu of 5 r r Lim is qul o r r 5 Q.5 If F () = f () d whr f () = u u du h h vlu of F '' () quls 7 7 Q.6 L f () = 5 7 d d h () = f g() , whr g () is dfid for ll, g'() iss for ll, d g () < for >. If h'() = d g'() =, h h possibl vlus which g() c k

3 Q.7 Th vlu of > sisfyig h quio l d =, is 5 Q.8 L f b o-o-o coiuous fucio such h f () = d f (5) = 7. Giv h vlu of h dfii igrl f ()d quls 7 f () d = 7, h Q.9 L f () b fucio sisfyig f ' () = f () wih f () = d g b h fucio sisfyig f () + g () =. Th vlu of h igrl 5 f ()g() d is ( ) g() Q. L f () = d cos whr g () = ( si ) d. Also h() = d f () = si if d f () = h f ' quls l ' () h ' ( ) h ' ( + ) Lim cos si si( ) si Q. Lim d quls d Q. Th vlu of ( ) is co b vlud Q. Lim sc sc... sc ( ) hs h vlu qul o Q. For f () = +, l I = I f (cos )d d I = f (si )d h I / hs h vlu qul o

4 Q.5 If g () = cos d, h g ( + ) quls g () + g () g () g () g () g () [ g ()/g () ] / si Q.6 d is cos / / / / 6 / / / / 6 / / Q.7 L f b posiiv fucio. L I = f ( ) d ; I = ( ) Th I I is k k k / Q.8 If Lim d is qul o whr k N quls k 8 6 k k f d, whr k >. Q.9 Suppos h h qudric fucio f () = + b + c is o-giv o h irvl [, ]. Th h r udr h grph of f ovr h irvl [, ] d h -is is giv by h formul A = f ( ) + f () A = f f A = [ f ( ) f () f ()] A = [ f ( ) f () f ()] f () Q. If d = cos, h f ' (9) is qul o 9 is qul o is qul o is o is Q. L I () = miimum vlu is si d whr '' is posiiv rl. Th vlu of '' for which I () is is 6

5 / Q. L u = cos si d d v = Q. / cos si d, h h rlio bw u d v is u = v u = v u = v u = v d = / si d Q. L f () = d / si d / si d / si. If g () is h ivrs of f () h g'() hs h vlu qul o d Q.5 Domi of dfiiio of h fucio f () = is R R + R + {} R {} Q.6 Th s of vlus of '' which sisfy h quio ( log ) d = log is R R + < > Q.7 l( ) Lim d quls / / Q.8 Vribl d y r rld by quio = y y y d y y d Q.9 Th vlu of h dfii igrl ( )( ) is d y. Th vlu of is qul o d y y / / /8 /6 Q. If f & g r coiuous fucios i [, ] sisfyig f () = f ( ) & g () + g ( ) = h f ().g()d = d f ()d f ()d f ()d f ()d

6 Q. If f () d = + f ()d, h h vlu of h igrl f () d is qul o / / Q. Th vlu of h dfii igrl ( )d is qul o Q. If h vlu of dfii igrl h h vlu of '' quls [log ] d whr >, d [] dos h grs igr, is Q. l l( l ) ll( l ) d quls + Q.5 L f b coiuous fucios sisfyig f ' (l ) = dfid s f () = f () = if if if if for for f () = f () = d f () = h f () c b if if if if Q.6 Th vlu of 8 si d is qul o Q.7 Lim k k, > is qul o () () () () Q.8 Th irvl [, ] is dividd io qul sub-irvls by h pois,,,...,, whr = < < <... < =. If = i i for i =,,,... h qul o 8 6 Lim is i i

7 (si )d Q.9 Th bsolu vlu of ( 8 is lss h ) Q.5 L > d l f () is moooic icrsig such h f () = d f () = b h f ()d f quls + b b + b b + b Q.5 Lim (!) is qul o b () d l d Q.5 Th vlu of h limi, Lim d is quls / o is 7 Q.5 Th vlu of h dfii igrl } (si ) Q.5 If Q.55 9 { d whr { } dos h frciol pr fucio. 6 9 c o b drmid cos d = k d h 'k' quls f l d is qul o zro is qul o o is qul o Q.56 Th vlu of h dfii igrl d, is c o b vlud Q.57 Posiiv vlu of '' so h h dfii igrl d chivs h smlls vlu is 8 8

8 Q.58 Th vlu of r) r ( d quls k k! ( + )!! Q.59 Th vlu of h fucio f () = + + (l + l) d whr f ' () vishs is + Q.6 Lim ( ) d is qul o l l Q.6 + d is qul o ( N). ( )!!! ( )! Q.6 Th ru s of vlus of '' for which h iquliy (. ) d is ru is: [, ] (, ] [, ) (, ] [, ) Q.6 If h vlu of h igrl d is, h h vlu of d is : ( ) Q.6 If g () is h ivrs of f () d f () hs domi [, 5], whr f () = d f (5) = h h vlus of 5 f ()d g(y) dy quls Q.65 Which o of h followig fucios is o coiuous o (,)? f()= co h () = si 9 Q.66 If f () = si ; g () = cos for [, ] A = f () d ; B = g() d h g() = l () = si d si si(, ), A > ; B < A < ; B > A > ; B > A < ; B <

9 Q.67 Th vlu of d is udfid Q.68 l d = l 7 l l 5 l / Q.69 For < <, l ( cos ). d (si ) is qul o : / 6 si si si si Q.7 Th ru soluio s of h iquliy, 5 6 dz > si d is : R (, 6) ( 6, ) (, ) 5 Q.7 Th igrl, ( cos si si cos ) d hs h vlu qul o / / Q.7 Th vlu of h dfii igrl / si si si d is qul o : 7 6 co Q.7 If h vlu of h dfii igrl d, is qul o /6 + b / h ( + b) quls 6 si Q.7 For U = ( ) d ; V = ( ) d N, which of h followig sm(s) is/r ur? U = V U = V U = V U = V Q.75 L S () = l d ( > ) d H () = S ( ). Th H() is : coiuous bu o drivbl i is domi drivbl d coiuous i is domi ihr drivbl or coiuous i is domi drivbl bu o coiuous i is domi.

10 Q.76 L f () = si, h f () f d = f () d f () d f () d [REASONING TYPE] f () d Q.77 Sm- : If f() = ( f () ) d, h f () d = bcus Sm- : f() = + Sm- is ru, sm- is ru d sm- is corrc plio for sm-. Sm- is ru, sm- is ru d sm- is NOT h corrc plio for sm-. Sm- is ru, sm- is fls. Sm- is fls, sm- is ru. Q.78 Cosidr I = Sm-: I = bcus Sm-: d si f () d, whrvr f () is odd fucio Sm- is ru, sm- is ru d sm- is corrc plio for sm-. Sm- is ru, sm- is ru d sm- is NOT h corrc plio for sm-. Sm- is ru, sm- is fls. Sm- is fls, sm- is ru. Q.79 Sm-: Th fucio f () = d is odd fucio d g () = f ' () is v fucio. bcus Sm-: For diffribl fucio f () if f ' () is v fucio h f () is odd fucio. Sm- is ru, sm- is ru d sm- is corrc plio for sm-. Sm- is ru, sm- is ru d sm- is NOT h corrc plio for sm-. Sm- is ru, sm- is fls. Sm- is fls, sm- is ru. Q.8 Giv f () = si d P() is qudric polyomil wih ldig coffici uiy. Sm-: bcus Sm-: P () f ''() d vishs. f () d vishs Sm- is ru, sm- is ru d sm- is corrc plio for sm-. Sm- is ru, sm- is ru d sm- is NOT h corrc plio for sm-. Sm- is ru, sm- is fls. Sm- is fls, sm- is ru.

11 Suppos [COMPREHENSION TYPE] Prgrph for Qusio Nos. 8 o 8 Lim ( d r p ) b si = l whr p N, p, >, r > d b. Q.8 If l iss d is o zro h b > < b < b < b = Q.8 If p = d l = h h vlu of '' is qul o 8 6 / Q.8 If p = d = 9 d l iss h h vlu of l is qul o / / / 7/9 Prgrph for Qusio Nos. 8 o 86 L h fucio f sisfis f () f ' ( ) = f ( ) f ' () for ll d f () =. Q.8 Th vlu of f () f ( ) for ll, is Q.85 d f () 5 hs h vlu qul o 7 Q.86 Numbr of roos of f () = i [, ] is Prgrph for Qusio Nos. 87 o 89 Suppos f () d g () r wo coiuous fucios dfid for. Giv f () = f () d d g () = g() d +. Q.87 Th vlu of f () quls Q.88 Th vlu of g () f () quls g() Q.89 Th vlu of quls g()

12 Q.9 Prgrph for Qusio Nos. 9 o 9 Cosidr h fucio dfid o [, ] R si cos f () = f () d quls if d f () = si () si () si () si () Q.9 Lim f () d quls / /6 / / Prgrph for Qusio Nos. 9 o 9 Suppos d b r posiiv rl umbrs such h b =. L for y rl prmr, h disc from h origi o h li ( ) + (b )y = b dod by D() h Q.9 Th vlu of h dfii igrl I = d D() is qul o b b b Q.9 Th vlu of 'b' which I is miimum, is Q.9 Miimum vlu of I is b + [5] [] [] [MULTIPLE OBJECTIVE TYPE] Q.95 Which of h followig dfii igrl(s) vishs / l (co )d si d / d ( l ) / Q.96 Th quio = hs ls o roo i (, ) ls o roo i (, ) ls wo roos i (, ) o roo i (, ) cos d

13 Q.97 Which of h followig r ru?. f (si ) d =. f (si ) d f ( ) d =. f ( ) d f cos d =. f cos Q.98 Th vlu of d is : ( ) b c d f ( c) d = b c f ( ) d + l + l l co + l + co / / / Q.99 Suppos I = cos( si ) d ; I = cos( si ) d d I = cos( si ) d, h I = I + I = I + I + I = I = I Q. If I = d ; N, h which of h followig sms hold good? I + = + ( ) I I = 8 I = I 8 = Q. If f() = d whr > h h vlu(s) of sisfyig h quio, f() + f(/) = is : Q. L f () = cos() d h which of h followig hold ru? f () is o dfid Lim f () iss d quls Lim f () iss d is qul o f () is coiuous = Q. Th fucio f is coiuous d hs h propry f f () = for ll [, ] d J = f ()d h f + f = h vlu of J qul o f f = si d (si cos ) hs h sm vlu s J

14 Q. L f() is rl vlud fucio dfid by : f() = + f ()d + f ()d h which of h followig hold(s) good? f ()d f() + f( ) = f ()d > f ()d f() f( ) = Q.5 L f () d g () r diffribl fucio such h f () + g () d = si (cos si ), d f '() + () g = h f () d g () rspcivly, c b cos si, si, cos si, si si, cos Q.6 L f () = si b c d whr,b, c r o zro rl umbrs, h Lim f () idpd of idpd of d b d hs h vlu quls o c. idpd, b d c. dpd oly o c. d Q.7 L L = Lim whr R h L c b is [MATCH THE COLUMN] Q.8 Colum I Colum II Suppos, f () = log () log () log (5)... log () h h sum f ( k ) quls (P) 5 k (B L f () = ( ) ( )( ) (Q) 55 h f ()d is (R) 5 (C I A.P. h sris coiig 99 rms, h sum of ll h (S) 59 odd umbrd rms is 55. Th sum of ll h 99 rms of h A.P. is Lim r ( r) quls

15 T Q.9 L Lim (si si ) d = L h T T Colum I Colum II for =, h vlu of L is (P) for = h vlu of L is (Q) / for = h vlu of L is (R) R {,, } h vlu of L is (S) Q. Colum I Colum II cos Th fucio f () = is o dfid =. si (P) Th vlu of f () so h f is coiuous = is d Th vlu of h dfii igrl whr d b r igrs h ( + b) quls quls + b l (Q) sc Giv d = h h vlu of () is qul o (R) / L = () d d b = si () d h (S) Lim b hs h vlu qul o Q. Colum I Colum II g() cos d If f () = whr g () = ( si ) d (P) h h vlu of f ' If f () is o zro diffribl fucio such h (Q) f ()d = f () for ll, h f () quls (R) b If ( ) d is mimum h ( + b) is qul o (S) si b If Lim = h ( + b) hs h h vlu qul o

16 Q. Colum-I Colum-II Lim si l( ) ( y) y dy quls (P) Lim ( ) quls (Q) L f () = Lim h Lim f () quls (R) k k (S) Q. L f () = ( si ) d d g () = ( cos) d whr [, ]. Th quiy f () g() i h irvl giv i colum-i, is Colum-I,,, 7 Colum-II (P) (Q) (R) giv posiiv o giv 7,, (S) o posiiv Q. Colum-I Colum-II 8 (8) 8 Th vlu of h dfii igrl d Lim...( )... d quls (P) + l d is qul o (Q) / quls (R) / (S)

17 Q.5 Colum-I Colum-II si (si ) cos (cos ) d (P) d si (Q) si cos d quls (R) (S) Q.6 Colum-I Colum-II L f () = si cos si h h vlu of f () is cos L g () = (cos ) l d d f = (P) riol d d g () = (Q) irriol h h vlu of g is (R) igrl If rl umbrs d y sisfy ( + 5) + (y ) = () h h miimum vlu of ( y ) is (S) prim L k () = of k ( ) is ( ) d 6 d k ( ) = h h vlu

18 Q. C Q. A Q. B Q. C Q.5 A Q.6 A Q.7 A Q.8 A Q.9 D Q. D Q. A Q. B Q. B Q. C Q.5 C Q.6 C Q.7 A Q.8 C Q.9 D Q. C Q. D Q. B Q. A Q. C Q.5 A Q.6 D Q.7 D Q.8 C Q.9 D Q. A Q. A Q. A Q. C Q. B Q.5 D Q.6 B Q.7 A Q.8 B Q.9 B Q. B Q. C Q. A Q. A Q. A Q.5 D Q.6 D Q.7 C Q.8 B Q.9 C Q.5 D Q.5 A Q.5 B Q.5 B Q.5 A Q.55 A Q.56 B Q.57 A Q.58 D Q.59 D Q.6 B Q.6 C Q.6 D Q.6 B Q.6 A Q.65 D Q.66 A Q.67 C Q.68 A Q.69 A Q.7 D Q.7 A Q.7 D Q.7 A Q.7 C Q.75 B Q.76 A Q.77 C Q.78 D Q.79 C Q.8 A Q.8 D Q.8 A Q.8 B Q.8 B Q.85 A Q.86 A Q.87 A Q.88 A Q.89 B Q.9 A Q.9 B [SINGLE OBJECTIVE TYPE] Q.9 C Q.9 D Q.9 B Q.95 ABC Q.96 ABC Q.97 ABCD Q.98 ACD Q.99 ABC Q. AB Q. CD Q. CD Q. ABD Q. BD [MULTIPLE OBJECTIVE TYPE] [MATCH THE COLUMN] Q.5 CD Q.6 AD Q.7 ABC Q.8 S; R; S; Q Q.9 Q; S; P; R Q. R; P; S; R Q. S; R; R; Q Q. S; R; P; Q, R Q. Q; R; S; P Q. S; P; Q Q.5 Q; S; Q Q.6 Q; P; P, R; P, R, S ANSWERS

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm . Mhmicl ools which mk you lif much simpl.. Usful ppoimio fomul usig ul logihm I his chp, I ps svl mhmicl ools, which qui usful i dlig wih im-sis d. A im-sis is squc of vibls smpd by im. As mpl of ul l

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 Approm Igro M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 7 L d Rg Edpo Ruls Rm sum ppromo o grl L dpo ppromo Rg dpo ppromo clculus ppls d * L d R d

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Objective Mathematics

Objective Mathematics . If sum of '' terms of a sequece is give by S Tr ( )( ), the 4 5 67 r (d) 4 9 r is equal to : T. Let a, b, c be distict o-zero real umbers such that a, b, c are i harmoic progressio ad a, b, c are i arithmetic

More information

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2 ChE 39 - Chicl iics & Rcor Dsig - Sprig 9 Soluio o Howor ssig. Dvis progrssio of sps h icluds ll h spcis dd for ch rcio. L M C. CH C CH3 H C CH3 H C CH3H 4 Us h hrodyic o clcul h rgis of h vrious sgs of

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

MA6451-PROBABILITY AND RANDOM PROCESSES

MA6451-PROBABILITY AND RANDOM PROCESSES MA645-PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES Dr. V. Valliammal Darm of Alid Mahmaics Sri Vkaswara Collg of Egirig Radom variabl Radom Variabls A ral variabl whos valu is drmid by h oucom

More information

( ) ( ) ( ) ( ) (b) (a) sin. (c) sin sin 0. 2 π = + (d) k l k l (e) if x = 3 is a solution of the equation x 5x+ 12=

( ) ( ) ( ) ( ) (b) (a) sin. (c) sin sin 0. 2 π = + (d) k l k l (e) if x = 3 is a solution of the equation x 5x+ 12= Eesio Mahemaics Soluios HSC Quesio Oe (a) d 6 si 4 6 si si (b) (c) 7 4 ( si ).si +. ( si ) si + 56 (d) k + l ky + ly P is, k l k l + + + 5 + 7, + + 5 9, ( 5,9) if is a soluio of he equaio 5+ Therefore

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

UNIT III STANDARD DISTRIBUTIONS

UNIT III STANDARD DISTRIBUTIONS UNIT III STANDARD DISTRIBUTIONS Biomial, Poisso, Normal, Gomric, Uiform, Eoial, Gamma disribuios ad hir roris. Prard by Dr. V. Valliammal Ngaiv biomial disribuios Prard by Dr.A.R.VIJAYALAKSHMI Sadard Disribuios

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

A Bessel polynomial framework to prove the RH

A Bessel polynomial framework to prove the RH A Bl poloil frwork o prov h RH Dr lu Bru Friburg i Br wwwri-hpohid Jur Abrc Th Gu-Wirr di fucio f : bl rprio of Ri duli quio i h for f d f d Th odifid Bl-Hkl fucio : rc Y / J J Y co d dd ih coh : coh r

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

Strange Combinatorial Connections. Tom Trotter

Strange Combinatorial Connections. Tom Trotter Strange Combinatorial Connections Tom Trotter Georgia Institute of Technology trotter@math.gatech.edu February 13, 2003 Proper Graph Colorings Definition. A proper r- coloring of a graph G is a map φ from

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

Geometry Problem Solving Drill 08: Congruent Triangles

Geometry Problem Solving Drill 08: Congruent Triangles Geometry Problem Solving Drill 08: Congruent Triangles Question No. 1 of 10 Question 1. The following triangles are congruent. What is the value of x? Question #01 (A) 13.33 (B) 10 (C) 31 (D) 18 You set

More information

PART - III : MATHEMATICS

PART - III : MATHEMATICS JEE(Advnced) 4 Finl Em/Pper-/Code-8 PART - III : SECTION : (One or More Thn One Options Correct Type) This section contins multiple choice questions. Ech question hs four choices (A), (B), (C) nd (D) out

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information