ASSERTION AND REASON

Size: px
Start display at page:

Download "ASSERTION AND REASON"

Transcription

1 ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct choic : Choics r : (A) Sttmt is Tru, Sttmt is Tru; Sttmt is corrct pltio for Sttmt. (B) Sttmt is Tru, Sttmt is Tru; Sttmt is NOT corrct pltio for Sttmt. (C) Sttmt is Tru, Sttmt is Fls. (D) Sttmt is Fls, Sttmt is Tru. INDEFINITE & DEFINITE INGEGRATION 9. Lt F() idfiit itgrl of cos. Sttmt-: Th fuctio F() stisfis F( + ) = F() rl Sttmt-: cos ( + ) = cos.. Sttmt-: d c ot foud whil d c foud. Sttmt-: is ot diffrtil t =.. Sttmt-: d = t ( ) + C Sttmt-: d = t + C. Sttmt-: If y is fuctio of such tht y( y) = th d log( y) y d Sttmt-: = log ( y) + c y. Sttmt : f() = logsc Sttmt : f() is priodic. Sttmt : 9/ / d l c Sttmt : d l c. Sttmt : t d t ; whr [] = G.I.F. Sttmt : [t ] = for < < t d [t ] = for t <. 6. Sttmt : / d t Sttmt : / / f () d f d d d t cot f () d f ( )d. 7. Sttmt : 8. Sttmt : si d Sttmt : t sc d t c cos d. of 68

2 Sttmt : f () f () d f () c. 9. Sttmt : If f() stisfis th coditios of Roll's thorm i [, ], th f ()d Sttmt : If f() stisfis th coditios of Roll's thorm i [, ], th f ()d. Sttmt : [ si cos ]d, whr [] dots G.I.F. quls 8. Sttmt : If f() = si + cos, th f().. Lt f() cotiuous fuctio such tht Sttmt :. Lt I = f ()d, I f ()d 7 Sttmt : d, N Sttmt I : I. I, I... is icrsig squc. Sttmt II : is icrsig fuctio.. Lt f priodic fuctio of priod. Lt g() = f ()d 7 f (t) dt d h() = g( + ) g(). Sttmt : h is priodic fuctio. Sttmt : g( + ) g() = g(). log d log c Sttmt : f () f () d f () c.. Sttmt :. Sttmt : If I = dt d t / dt I, th I = I. t Sttmt : 6. Sttmt : 8 < mi. [], [ ] d 6 d. Sttmt : If m is th smllst d M is th grtst vlu of fuctio f() i itrvl (, ), th th vlu of th itgrl f ()d is such tht for <, w hv M( ) 7. Sttmt : si d (si cos)+c A Th A is Sttmt : si cos d cos 8. d() Sttmt : is qul to c f () d M( ). 6 of 68

3 / Sttmt : d is / l + + c / 9. Sttmt : is / Sttmt : f ()d f ( ) t d / 6. Sttmt : If f stisfis f( + y) = f() + f(y), y R th Sttmt : If f is odd fuctio th f ()d = f ()d =. Sttmt : If f() is odd fuctio of th f (t)dt is v fuctio of () Sttmt : If grph of y = f() is symmtric out y is th f() is lwys v fuctio.. Sttmt : Ar oudd y y = {}, {} is frctiol prt of =, = d is is. Sttmt : Ar oudd y y = si, =, = is sq. uit.. Sttmt-: lim... r Sttmt-: lim f f ()d r, symols hv thir usul mig.. Sttmt-: If I = t d, th (I + I 6 ) = t. t Sttmt-: If I = t d, th - I - = I, N. d. Sttmt-: If > d c <, th th vlu of th itgrl will of th typ t - c A c, whr A, B, C, r costts. B Sttmt-: If >, c < th + + c c writt s sum of two squrs. 6. Sttmts-: d c Sttmts-: / () (f () f ()d = f() + c 7. Sttmts-: d = log t - ( + /) + c ( ) t d Sttmts-: t c l 8. Sttmts-: c Sttmts-: (f() + f()) d = f() + c. (l ) l 9. Sttmts-: d c Sttmts-: For itgrtio y prts w hv to follow ILATE rul. 6. Sttmts-: A fuctio F() is tidrivtiv of fuctio f() if F () = f() Sttmts-: Th fuctios +,, + r ll tidrivtivs of th fuctio. 6. Sttmts-: d =, < 7 of 68

4 Sttmts-: If f() is fuctio cotiuous vry whr i th itrvl (, ) cpt = c th c f ()d f ()d f ()d c 6. Sttmts-: d Sttmts-: m d M th lst d th mimum vlu of cotiuous fuctio y = f() i [, ] th 6. Sttmts-: d m( ) f ()d M( ) Sttmts-: if f() g() h() i (, ) th 6. Sttmts-: d. f ()d g()d h()d Sttmts-: For y fuctios f() d g(), itgrl o th itrvl (,), th f ()g()d f ()d g ()d 6. Sttmts-: d Sttmts-: If F() is tidrivtiv of cotiuous fuctio (, ) th cos 66. Sttmts-: c itgrtd y sustitutio it si = t. ( si ) Sttmts-: All itgrds r itgrtd y th mthod of sustitutio oly. 67. Sttmt- : si cos d cos = t c Sttmt- : (f() + f ()d = f() + c 68. Sttmts-: ()cos (. )d. si (. ) C Sttmts-: f () '()d, () t quls f (t)dt. 69. Sttmts-: log d log c Sttmts-: 7. Sttmts-: 7. Sttmts-: du uvd u vd vd d d d C ( ) si f ()d F() F() Sttmts-: Sttmts-: 7. Sttmts-: Th vlu of ( )( )d c ot cd 8 f () f '() d f () C f () d f ()d f ( )d 8 of 68

5 Sttmts-: If m f() M [, ] th m( ) f ()d ( )M 7. Sttmts-: / / (si ) d Sttmts-: Ar oudd y y = d y = is / / (si ) (cos ) 9 log 7. Sttmts-: d = log + + c Sttmts-: ( ) 7. Sttmts-: d = t ( ) + c Sttmts-: cos ( ) 76. Sttmt- : f() = Sttmts-: f() = 77. Sttmt- : Sttmts-: Sic 78. Sttmts- : l t dt ( ), th f() = - t t l t dt, th f() + t si d d. t si f f (l ) is odd fuctio. So, tht si d = ( + ) COSt ( t ) c Sttmts-: f () d f ()d f ()d d c si. 79. Sttmts-: Th vlu of th itgrl d logs to [, ] f () d log f () c f () sc d t c f ()d f ()d if f( + ) = f() 9 sq. uits Sttmts-: If m & M r th lowr oud d th uppr ouds of f() ovr [, ] d f is itgrl, th m ( ) f ()d M( ). 8. Sttmts-: [cot ]d = cot, whr [] dots grtst itgr fuctio. Sttmts-: f ()d is dfid oly if f() is cotiuous i (, ) [] fuctio is discotiuous t ll itgrs 8. Sttmts-: d = Sttmts-: f ()d if f() is odd fuctio. 8. Sttmts-: All cotiuous fuctios r itgrl Sttmts-: If fuctio y = f() is cotiuous o itrvl [,] th its dfiit itgrl ovr [, ] ists. 8. Sttmts-: If f() is cotiuous o [, ], d if f ()d, th f() = t lst oc i [, ] Sttmts-: If f is cotiuous o [, ], th t som poit c i [, ] f = 8. Sttmts-: d Sttmts-: c c f ()d f () d f ()d f ()d whr C (A, B) 9 of 68

6 8. Sttmts-: log d Sttmts-: If f is odd fuctio f ()d d k 86. Sttmt- If d th Sttmt- : ( ) = k k d d d 87. Sttmt- : m m! d m { []d Sttmts-: 88. Sttmts-: cos d Sttmts-: f ()d f ()d cos 89. Sttmts-: d Sttmts-: cos cos 9. Sttmts-: [] d( ) Sttmts-: c c d ( )! f ()d f ()d f ()d whr < c <. f ()d f ( )d [ ] [] d d 9. d Sttmts-: Sttmts-: t f ()d f ( )d ANSWER 9. D. B. D. C. A. A. A 6. C 7. D 8. A 9. A. D. D. D. A. A. C 6. A 7. D 8. C 9. A. A. C. C. D. C. A 6. C 7. A 8. A 9. B 6. B 6. A 6. A 6. A 6. A 6. D 66. C 67. C 68. A 69. C 7. A 7. A 7. A 7. B 7. A 7. A 76. D 77. A 78. A 79. D 8. A 8. A 8. B 8. A 8. A 8. A 86. A 87. C 88. A 89. D 9. A 9. A d. cos( )cos( ) () Qu. from Compt. Ems (Idfiit Itgrl) si( ) cos( ) cosc ( ) log c () cosc ( ) log c si( ) cos( ) si( ) cos( ) cosc ( ) log c cosc ( ) log c si( ) cos( ) d. [AISSE 989] () / / [( ) ( ) ( ) ] c () / / [( ) ( ) ( ) ] c / / [( ) ( ) ] c No of ths ( ) cos si. d [EAMCET 99] si cos 7 7 () log( si cos ) () log( si cos ) 7 log( si cos ) No of ths. If (si cos ) d si( c), th th vlu of d c is [Roork 978] 6 of 68

7 () c / d k ( ritrry costt) () c / d / c / d is ritrry costt No of ths. d ( ) () log 8 8 c () log si cos 6. d si cos () si c () si c d 7. ( ) () log( ) log( ) 8. d ( ) p q (t ) () log[ q t q p ( p q q t 9. d () ( ) / c 9 / ( ) 9 / ( ) q (t c / ) c ) ] c [AI CBSE 98] c [IIT 986] log [IIT 979] () () [IIT 98] d. quls [MP PET ] si cos () si c c log log( ) log[ q t No of ths ( 9 log( ) / ) No of ths p ( q (t / ) si c c () t c () t c cot c cot c d. [MP PET 988; BIT Rchi 979] c () c log c c () log c c log c c log c. si d [Roork 977] () [si cos ] c () [si cos ] c [si cos ] c [si cos ] c. d / (9 ) () 9 si. d () c [si ] c () () 9 si c [si si c si c ] c ) ] c c si c No of ths 9 6 of 68

8 . If f( )si cos d log( f( )) c, th f () ( ) () si cos d 6. si cos () t t c () () si t cos [AISSE 986] t c cos t si t c 7. d [MP PET 99] () t c () cot c t c 8. (log ) d [IIT 97, 77] cos No of ths cot si c () (log ) log c () (log ) log c (log ) log c (log ) log c 9. Th vlu of () ( ( ) d will [UPSEAT 999] ) t ( ) ( ) t [ ]. t sc d [IIT 977] () sc sc c 6 sc sc c 9 () () sc sc c 6 No of ths. si d [MP PET 99] () si si. d () c c () ( t / c si si ) t ( si c () si c si c si c si cos si. If,, th cos d si () si c si cos c () si cos cos si. 6 If d A B log(9 ) C, th A, B d C r [IIT 99] 9 () 6 A, B, C log costt () A, B, C log costt 6 c c ) c c 6 of 68

9 A, B, C log costt 6 No of ths. Th vlu of sc d will [UPSEAT 999] () sc t log(sc t ) () sc t log(sc t ) sc t log(sc t ) sc t log(sc t ) 8 6. d ( ) [IIT 98; MP PET 99] () ( ( ) ) c c () ( ) ( ) c c 7. If I si d, th for wht vlu of K, KI (si cos ) costt [MP PET 99] () () 7 8. d Th vlu of will [UPSEAT 999] () log log () log log 9. d [AISSE 98] () / / ( ) ( ) c () / / ( ) ( ) c / / ( ) ( ) c 6 No of ths. cos si cos log d cos si [IIT 99] () () (cos si) (cos si ) (cos si) cos si log cos si cos si log cos si cos si log cos si si log t log sc. d ( si cos ) () si cos si cos si cos si cos () [MNR 989; RPET ] si cos si cos No of ths 6 of 68

10 . If u cos d d v si d, th ( )( u v ) () (). If (log I ) d, th I I () (log ) () (log ) ( ) ( ) ( log ) (log ). / si d [Roork 98] () / cos c () / cos c / si c / si c. If d 9 l( ) 7 l( ) A, th A 6 [MP PET 99] () l( ) costt () l( ) costt Costt No of ths 6. d cos () t t c () t t c t t c No of ths 7. d qul to [MP PET ] () t () t t ( ) No of ths 8. d (si si ) [IIT 98] () log( cos ) log( cos ) log( cos ) 6 () 6 log( cos ) log( cos ) log( cos ) 6 log( cos ) log( cos ) log( cos ) No of ths 9. If d log ( ) ( ) t A, ( )( ) whr A is y ritrry costt, th th vlu of is () / () / /6 /. ( ) d If log C, th th vlus of d r rspctivly ( ) ( ) [Roork ] () /, / (), /, / /, ¾ (Dfiit Itgrl). If I is th grtst of th dfiit itgrls [Krtk CET ] [MP PET 998] 6 of 68

11 I I cos d, I cos d / d, I d, th () I I () I I I I I I. Lt f () fuctio stisfyig f ( ) f( ) with f ( ) d g () th fuctio stisfyig f( ) g( ). Th vlu of itgrl f ( ) g( ) d is qul to () ( 7) () ( ) ( ) No of ths. If m Im (log ) d stisfis th rltio I m k lim, th () k () l m k No of ths. Lt f positiv fuctio. Lt k ) k I k k ) I is [IIT 997 Cclld] f ( d, I f ( d wh k. Th / I () () k /. If f ( t) dt t f( t) dt, th th vlu of f () is () / () / 7 6. () d is qul to [AMU ] () 7. If is y itgr, th cos ( ) d cos () () [IIT 98; RPET 99; UPSEAT ] No of ths d 8. Th vlu of th dfiit itgrl lis i th itrvl [, ]. Th smllst such itrvl is 6 (), () [, ] 7, No of ths 7 9. Lt,,c o-zro rl umrs such tht 8 8 ( cos )( c) d ( cos )( c) d Th th qudrtic qutio c hs () No root i (, ) () At lst o root i (, ) A doul root i (, ) No of ths. If f( ) t dt,, [IIT 98; CEE 99] th [MNR 99] [AIEEE ; DCE ] [IIT 998; AMU ] 6 of 68

12 () f d f r cotious for () f is cotious ut f is ot cotious for f d f r ot cotious t f is cotious t ut f is ot so. Lt g( ) f( t) dt whr f ( t), t [,] d f ( t) for t (, ], th [IIT Scrig ] () g () () g () g () g () cos. Th vlu of d,, is () () f ( ). If ( ), { ( )} f( ) f I g d, d f( ) ))} I I g{ ( d, th th vlu of f ( ) I () (). Lt f : R R d g : R R cotiuous fuctios, th th vlu of th itgrl / [ f ( ) f( )] [ g( ) g( )] d / [IIT 99; DCE ; MP PET ] () () is [IIT Scrig ; AIEEE ] [AIEEE ]. Th umrs P, Q d R for which th fuctio f( ) P Q R stisfis th coditios f ( ), f (log ) d 6. log 9 [ f ( ) R] d r giv y () P, Q, R () P, Q, R P, Q, R P, Q 6, R si 7 7 d si d quls () 7 () 6 7. Lt f ( ) d, f( ) d d f( ) d, th th vlu of ( ) f( ) d [IIT 99] () () 8. Giv tht d, th th vlu of ( )( )( c ) ( )( c)( c ) d is ( )( 9) () 6 () 8 [MP PET ] [Krtk CET 99] 9. If l( m, ) t m ( t) dt, th th prssio for l ( m, ) i trms of l ( m, ) is [IIT Scrig ] () l( m, ) m m () l( m, ) m 66 of 68

13 . l( m, ) m m m l( m, ) lim ()... lim () Zro t. If f( ) d t, t, th f ()... () No of ths [AIEEE ] [IIT Scrig ] 9. For which of th followig vlus of m, th r of th rgio oudd y th curv y d th li y m quls [IIT 999] () (). Ar closd tw th curv y ( ) d li ov -is is [MP PET ] () (). Wht is th r oudd y th curvs y 9 d y 8 is [DCE 999] 9 () () 9 si 6 No of ths. Th r oudd y th curvs y d y is [IIT Scrig ] () () 6. Th volum of sphricl cp of hight h cut off from sphr of rdius is qul to [UPSEAT ] () h ( h) () ( h)( h h) h No of ths 7. If for rl umr y, [ y] is th grtst itgr lss th or qul to y, th th vlu of th itgrl / [ si ] d is () () 8. A If f( ) A si B, f d f ( ) d, th th costts A d B r rspctivly [IIT 99] () d () d 9. If I d, th d () I () I / [IIT 999] 67 of 68

14 I / I. I t d, th lim [ I I ] quls () / (). Th r oudd y th curvs y l, y l, y l d l () sq. uit () 6 sq. uit sq. uit No of ths si. d si, ( N) quls [Kurukshtr CEE 998] () () ( ). If ) d, th ( () () No of ths. si d is [AIEEE ] () () 8 8. ( si ) d cos () / () / is [AIEEE ] y is [AIEEE ] 7 6. O th itrvl,, th grtst vlu of th fuctio f( ) (6 cos t si t) dt / () () Dos ot ist No of ths 7. If I d, I d, I d, I d, th [AIEEE ] () I I () I I I I I I 8. If f( ) f, th d f( ) is qul to () l l () ( l ) No of ths [AIEEE ] [MNR 99; P. CET ; UPSEAT ] [J & K ] 9. If d d d, th th vlu of d will rspctivly [AMU ] (), (),,,. Th si d cosi curvs itrscts ifiitly my tims givig oudd rgios of qul rs. Th r of o of such rgio is [DCE ] () () 68 of 68

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Inverse Trigonometrical Functions 1. Properties of Inverse Trigonometrical Function. 1. The domain of sin x is [Roorkee Screening 1993] (a) (d)

Inverse Trigonometrical Functions 1. Properties of Inverse Trigonometrical Function. 1. The domain of sin x is [Roorkee Screening 1993] (a) (d) Inverse Trigonometrical Functions Basic Level Properties of Inverse Trigonometrical Function. The domain of [Roorkee Screening 99] ( ) [ ] ( 0 ) ( ). The range of [DCE 00] ( ) ( 0 ). cos equal to [Pb.

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

[BIT Ranchi 1992] (a) 2 (b) 3 (c) 4 (d) 5. (d) None of these. then the direction cosine of AB along y-axis is [MNR 1989]

[BIT Ranchi 1992] (a) 2 (b) 3 (c) 4 (d) 5. (d) None of these. then the direction cosine of AB along y-axis is [MNR 1989] VECTOR ALGEBRA o. Let a i be a vector which makes an angle of 0 with a unit vector b. Then the unit vector ( a b) is [MP PET 99]. The perimeter of the triangle whose vertices have the position vectors

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

ELLIPSE. 1. If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is [Karnataka CET 2000]

ELLIPSE. 1. If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is [Karnataka CET 2000] ELLIPSE. If the ltus rectum of ellipse e equl to hlf of its mior is, the its eccetricit is [Krtk CET 000] / / / d /. The legth of the ltus rectum of the ellipse is [MNR 7, 0, ] / / / d 0/. Eccetricit of

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : (0755) 00 000, 9890 5888 WhatsApp 9009 60 559 QUADRATIC EQUATIONS PART OF fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Math 1272 Solutions for Fall 2004 Final Exam

Math 1272 Solutions for Fall 2004 Final Exam Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (RIEMANN AND RIEMANN-STIELTJES INTEGRAL OF A SINGLE VARIABLE, INTEGRAL CALCULUS, FOURIER SERIES AND SPECIAL FUNCTIONS INSTRUCTOR: CEZAR LUPU Problem.

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Supplemental Handout #1. Orthogonal Functions & Expansions

Supplemental Handout #1. Orthogonal Functions & Expansions UIUC Physics 435 EM Fields & Sources I Fll Semester, 27 Supp HO # 1 Prof. Steve Errede Supplemetl Hdout #1 Orthogol Fuctios & Epsios Cosider fuctio f ( ) which is defied o the itervl. The fuctio f ( )

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Things I Should Know Before I Get to Calculus Class

Things I Should Know Before I Get to Calculus Class Things I Should Know Bfor I Gt to Calculus Class Quadratic Formula = b± b 4ac a sin + cos = + tan = sc + cot = csc sin( ± y ) = sin cos y ± cos sin y cos( + y ) = cos cos y sin sin y cos( y ) = cos cos

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Problem Session (3) for Chapter 4 Signal Modeling

Problem Session (3) for Chapter 4 Signal Modeling Pobm Sssio fo Cht Sig Modig Soutios to Pobms....5. d... Fid th Pdé oimtio of scod-od to sig tht is giv by [... ] T i.. d so o. I oth wods usig oimtio of th fom b b b H fid th cofficits b b b d. Soutio

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv.

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1. PROBLEMS Us grhic rrsttio to dtrmi th zros of th followig fuctios to o corrct dciml : ( 4 4si ; (b ; (c ( ; (d 4 8 ; ( ; (f ; (g t I ordr to obti grhicl solutio of f ( o th itrvl [,b], ty th followig sttmts

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

For all Engineering Entrance Examinations held across India. Mathematics

For all Engineering Entrance Examinations held across India. Mathematics For ll Egieerig Etrce Exmitios held cross Idi. JEE Mi Mthemtics Sliet Fetures Exhustive coverge of MCQs subtopic wise. 95 MCQs icludig questios from vrious competitive exms. Precise theory for every topic.

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information