RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

Size: px
Start display at page:

Download "RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group"

Transcription

1 RING-RING DESIGN Miriam Fitterer, CERN - KIT for the LHeC study group

2 LHeC Design Options

3 LHeC Design Options Linac-Ring

4 LHeC Design Options Linac-Ring Ring-Ring Point 4 P Z4 5 P M4 5 P X4 6 Point 5 P X5 6 P o in t 3.3 P Z 3 3 RZ3 3 UJ 3 2 UJ 3 3 RE 32 RE 38 UJ 4 3 RE 42 UX4 5 UJ 4 4 RA4 3 UL4 4 UA4 3 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS RF P M5 6 TU5 6 UJ 5 6 UL5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 P X6 4 TD 62 P M6 5 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 TZ3 2 P M3 2 P o in t 3.2 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 US 2 5 UJ 2 6 UX2 5 e p P X2 4 UL 24 UW 2 5 UA2 3 UJ 2 4 UJ 23 RA2 3 RH2 3 UJ 2 2 TI 2 RE 22 PMI 2 RE 18 RT 18 P o in t 1.8 S P S Point 1 P M1 5 PM 18 P X1 5 P X1 6 P X1 4 UJ 1 8 US 1 5 RR1 7 UJ 1 7 UL1 6 UL1 4 UJ 1 4 RF TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RE 78 RE 82 UJ 83 UJ 8 2 TZ7 6 LEP LHC LHeC RR7 7 UJ 7 6 RR7 3

5 LHeC Design Options Linac-Ring Ring-Ring P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 P X2 4 UL 24 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS S P S Point 1 US A1 5 RF e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RE 78 RE 82 UJ 83 UJ 8 2 RR7 7 RR7 3 TZ7 6 LEP LHC LHeC UJ 7 6

6 General Layout

7 General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 TI 1 8 UJ 1 6 ATLAS S P S Point 1 US A1 5 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 UX1 5 TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RE 78 RE 82 UJ 83 UJ 8 2 TZ7 6 LEP LHC RR7 7 UJ 7 6 RR7 3

8 General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC

9 General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS S P S Point 1 US A1 5 RF e-injector TI 1 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

10 General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 Bypass CMS x 124 m free sections IP5 UJ TD UD m 92 m z RE 28 N RE 68 UP UJ 2 7 UA2 7 Point 2 Point 7 P M7 6 RE 72 S.BP -20 E.BP P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TI 1 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

11 General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 Detector UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 Bypass CMS x 124 m free sections IP5 UJ TD UD m 92 m z RE 28! $# N RE 68 UP 68-10! "# UJ 2 7 UA2 7 Point 2 l* 1 Point 7 P M7 6 RE 72 S.BP -20 E.BP P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TI 1 2 l* 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

12 Injector LHeC requires new 10 GeV e+/e- injector Pre-injector: e.g. LIL+EPA type e+/e- Injector (LEP) GeV at extraction Injector: simplified and down scaled ELFE design: Total filling time less than 10 minutes 0.6 GeV from EPA 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV Recirculating linac 10 GeV to LHeC

13 Main Ring Design Parameters Electrons Protons Energy 60 GeV 7 TeV Current 100 ma 860 ma Part. per bunch Numb. of bunches εx /εy 5.0 / 2.5 nm 0.5 / 0.5 nm Pγ < 50 MW

14 Main Ring - Integration I p-ring and e-ring have to fit into the existing LHC tunnel Match e-ring and p-ring circumference, because: p-beam could be heated up by the e-beam in the case of asymmetric collision schemes [*] [*] K. Hirata and E. Keil, Barycenter motion of beams due to beam-beam interaction in asymmetric ring colliders, Proc. EPAC 1990 LHeC Bypasses increase the circumference compensation by placing the ring more on the inside in respect to the LHC Typical cross section of the LHC tunnel

15 Main Ring - Integration II Main Challenges: 1. QRL jumper connection at every second proton quadrupole in the main arc and around 8 per straight section QRL jumper connection 2. Insertions, especially Dump Area, Collimation, RF, Cryogenics...

16 Main Ring - Optics Βx, Βy, 100Dx 100Dy m Main Arc: sm 2 LFODO, LHeC LFODO, LHC FODO lattice with no elements at positions of QRL jumper connection main integration interferences avoided Βx, Βy, 100Dx 100Dy m Insertions sm similar design for even and odd insertions exemplarily avoiding QRL jumper connections in insertions detailed design for each insertions at a later stage, but no real show stoppers

17 Bypass Layout General Design: Insertion of a straight section into the lattice leads to a separation normal bend straight ΔBP LBP Lnew tunnel Ltot, straight sections ATLAS m m 1061 m 172 m inverted bend arc CMS m m 1061 m 297 m Bypass ATLAS x S.BP1 20 E.BP1 Bypass CMS x 124 m free sections 20 RF m 50 m -500 IP1 500 z IP m 92 m -10 z free sections -10 RF 42 m 42 m Injection S.BP -20 E.BP -20

18 Bypass Optics TLIR IR TRIR DSLSSL LSSL BP Nomenclature LSSR DSLSSR βx, max 142 βy, max 138 Βx, Βy, 100Dx 100Dy m LSSL IR LSSR DSLSSL TLIR TRIR DSLSSR sm

19 0.3 electron beam x [m] Proton final focusing half quadrupole Interaction Region separator dipole Proton beam 1 Degree m Electron final focusing quads Electron beam proton beam proton half quadrupole Proton final focusing half quadrupole -15 electron doublet Electron separator dipole SR Absorber z [m] 10 Degree m Electron final focusing quads separator dipole synrad absorber synrad absorber proton beam electron beam x [m] Proton beam Electron beam electron triplet Electron separator dipole SR Absorber proton half quadrupole z [m]

20 Beamsize: σ = βɛ High Acceptance (1 Degree) Parameters Reminder: Beta-function (drift space) β(s) =β + l 2 High Luminosity (10 Degree) β Electrons Protons βx 0.4 m 4.05 m βy 0.2 m 0.97 m l* 6 m m σx 45 µm σy 22 µm Crossing angle 1 mrad Luminosity cm -2 s -1 Luminosity loss factor 86% Luminosity cm -2 s -1 Pγ Ec 51 kw 163 kev Electrons Protons βx 0.18 m 1.8 m βy 0.1 m 0.5 m l* 1.2 m m σx 30 µm σy 15.8 µm Crossing angle 1 mrad Luminosity cm -2 s -1 Luminosity loss factor 75% Luminosity cm -2 s -1 Pγ Ec 33 kw 126 kev

21 IR Optics - Electrons 1 Degree 600 Βx, Βy, 100Dx 100Dy m sm

22 IR Optics - Electrons 10 Degree Βx, Βy, 100Dx 100Dy m sm

23 e-a Collisions Assume present nominal Pb beam in LHC: same beam size as protons, fewer bunches (592 bunches, Nb= Pb 82+ nuclei) Assume e-injector chain can provide the desired bunch pattern (592 bunches of Nb= e - ) Lepton-nucleus and lepton-nucleon luminosity at 60 GeV and 45 MW synchrotron radiation losses L= cm -2 s -1 Len= cm -2 s -1

24 Main Ring NC Magnet Design Dipole Challenge: Field reproducibility at injection (10 GeV) Constant field quality during the ramp Compactness Compatibility with synchrotron radiation power 35 cm Models by BINP (silicon steel iron lamination) and CERN (interleaved iron plastic laminations plastic: iron=2:1) achieving required field reproducibility. Beam Energy GeV Number of magnets 3080 Magnetic length Magnetic field Vertical aperture Pole width Conductor material Total power consumption of all dipoles at 60 GeV Cooling Field reproducibility 5.35 m Gauss 40 mm 150 mm copper/aluminium 0.8 MW air or water (depending on tunnel ventilation) <0.1 Gauss

25 Arc quadrupole: Main Ring NC Magnet Design Quadrupole Challenge: Compactness Insertion/bypass quadrupoles: 30 cm Number of magnets Magnetic length Magnetic field 368 (QF) (QD) 1.0 m 8.4 (QD) T/m (QF) Number of magnets Magnetic length Magnetic field 35 cm 148 (QF) (QD) 1.0 m (QF) / 0.7 m (QD) approx. 18 T/m Radial aperture 30 mm Radial aperture 30 mm Weight 700 kg Weight 700 kg (QF) / 500 kg (QD) Conductor material copper Conductor material copper Total power (60 GeV) 2.5 kw Total power (60 GeV) 6.0 kw (QF) / 4.5 kw (QD) Cooling water Cooling water

26 Proton SC IR Magnets Separation Scheme: 0.3 Electron final focusing quads Proton final focusing half quadrupole separator dipole proton beam x [m] electron beam Proton beam Electron beam Electron separator dipole synrad absorber SR Absorber proton half quadrupole Magnet Design: similar to LHC MQXA magnets, no real challenges in respect of gradient Challenge: - field free region for electron - allow for a minimal distance between electron and proton beam z [m]

27 e Proton SC IR Magnets Proton SC magnet design Q1: Half Quadrupole with field free regions for the e-beam Radial aperture B0 g0 Beam separation operation percentage on the load line of the sc Bfringe e-aperture gfringe e-aperture Q2: Single aperture Q1 Q2 35 mm 137 T/m 2.5 T 65 mm 36 mm 137 T/m 107 mm 77% 73% 0.03 T 0.8 T/m T 0.5 T/m 200

28 Main Ring RF SPL type cavities: 120 cavities MHz in total 500 MV 9.8 MV/m (conservative assumpt., SPL assumes 25 MV/m) 8 double cell cavities in 12 m cryomodules, 15 cryomodules total ->180 m + space for quads etc. feed two cavities with one 1 MW klystron UJ 2 7 RA2 7 UJ 2 6 UJ 3 2 UJ 3 3 RE 28 TZ3 2 UX2 5 P o in t 3.3 P Z 3 3 RZ3 3 RE 32 P X2 4 UJ 2 4 P M3 2 UA2 7 Point 2 P GC2 UL 26 P M2 5 UP 2 5 US 2 5 e p P o in t cryomodules = 2 36 m 2 12 klystrons RA2 3 RH2 3 UL 24 UJ 2 2 RE 38 UW 2 5 UA2 3 UJ 23 TI 2 UJ 4 3 RE 42 RE 22 PMI 2 RE 18 Point 4 RA4 3 RT 18 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 TI 1 8 UJ 1 6 ATLAS P M4 5 US 4 5 UW 4 5 US A1 5 P X4 6 TX4 6 UL4 6 S P S UJ 4 6 Point 1 P X1 5 RF P M1 5 UX1 5 P X1 4 RA4 7 UA4 7 US 1 5 UL1 4 UJ 1 4 e-injector 9 cryomodules = 108 m 36 klystrons TI 1 2 UJ 4 7 UJ 1 3 RR1 3 N LS S 4 RT1 2 RE 48 RE 52 UJ 12 RR 53 TT 40 PGC 8 UJ 5 3 TJ 8 UL 54 TI 8 UP 5 3 RZ5 4 UXC5 5 RE 12 RE 88 P M5 4 US C5 5 UJ 88 UJ CMS Point 5 UJ 8 7 RH 87 P X5 6 RF UA8 7 P M5 6 UJ 5 6 UL5 6 TU5 6 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 UJ 5 7 RR 57 RE 58 RE 62 P Z8 5 UL 84 UX 85 UP 62 P X8 4 UD 62 TD 62 UJ 62 UJ 63 UA6 3 UJ 6 4 TX8 4 UL6 4 RA6 3 P M6 5 P X6 4 P Z6 5 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UA 83 UJ 8 4 RA8 3 Point 7 P M7 6 RE 78 RE 82 UJ 83 UJ 8 2 Point 6 TZ7 6 TX6 4 UX6 5 UJ 6 6 LEP LHC LHeC RA6 7 RR7 7 RE 68 RE 72 UJ 6 8 TD6 8 UJ 7 6 RR7 3 UD6 8 UP 68

29 Cryogenics Bypasses: Cryogenic requirements: SPL type cryomodules three cryoplants (like LHC/ LEP2) 2 K operation Total electrical power: approx. 5 MW '()*+,&-.&/)0-%-123!4& /)0-53$+(& 8;:&#!$%& :)0-&53$+(&!"#!$%& '()*+,&-.&/)0-%-123!4& 0.6 GeV from EPA 6786'&& 1!(!/(-)& /$9!)+& 6.87 GeV 3.73 GeV 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC ~20 m Injector: Cryogenic requirements: 12 ILC (XFEL) type cryomodules one cryoplant of modest size 2 K operation

30 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

31 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

32 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

33 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

34 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

35 Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam) High luminosity ep/a-collisions reachable with proven technology

36 THANK YOU FOR YOUR ATTENTION

37 Basic Refrigerator Layout D-&!%(.7=-&!"#$%&'()*# B.()9':(;&(>&7##&& %-4"-.7%9.-&#-G-#1&>.(4& HII&J&%(&CI&J&,""-.& '(#)&*(+& 67.4& 7;)&/D3&'.<(=-;$'1& 2!-.=-E&F-.7.)E&,)(5&!"#$%&'(#)&*(+& /(0-.&'(#)&*(+-1&& 23(#)&'(4".-11(.15& B.()9':(;&(>&C&J& 2K7;)-4&'(#)&*(+-1L&M.& M;-&#7.=-&N2O5&P6&Q&C&J&& %"+*&,&-%"+# 8$1%.$*9:(;&*(+&!9""#<&%(&1%.$;=&(>&'.<(4()9#-1&

38 Polarization Polarization of 25% to 40% at 60 GeV can be reasonably aimed for with harmonic closed orbit spin matching precision alignment of the magnets to better of 150 µm rms needed to achieve a high polarization level option of having siberian snakes

39 Synchrotron Radiation IR 1 Degree e - Power [kw] critical energy [kev] DL QL QL QR QR DR Total/ Avg

40 Synchrotron Radiation IR 10 Degree e - Power [kw] critical energy [kev] DL QL QL QL QR QR QR DR Total/ Avg

41 Main Ring Lattice Parameters Beam Energy 60 GeV Numb. of Part. per Bunch Numb. of Bunches 2808 Circumference m Syn. Rad. Loss per Turn MeV Power MW Damping Partition J x /J y /J e 1.5/1/1.5 Damping Time τ x s Damping Time τ y s Damping Time τ e s Polarization Time min Coupling Constant κ 0.5 Horizontal Emittance (no coupling) 5.53 nm Horizontal Emittance (κ = 0.5) 4.15 nm Vertical Emittance (κ = 0.5) 2.07 nm RF Voltage V RF 500 MV RF frequency f RF 721 MHz Bunch Length 6.88 mm Max. Hor. Beta m Max. Ver. Beta m Deg 10 Deg possible working point <Qx<24 83<Qy<84

H.Burkhardt, DIS 2008, Future Facilities WG Tue 08/04/2008. LHeC Ring-Ring. early stage : all rather preliminary!

H.Burkhardt, DIS 2008, Future Facilities WG Tue 08/04/2008. LHeC Ring-Ring. early stage : all rather preliminary! H.Burkhardt, DIS 2008, Future Facilities WG Tue 08/04/2008 LHeC Ring-Ring early stage : all rather preliminary LHeC : LHC Proton-Ion Ring + Electron Ring (or Linac, see next talk) Introduction - baseline

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Beam Optics design for CEPC collider ring

Beam Optics design for CEPC collider ring Beam Optics design for CEPC collider ring, Yuan Zhang, Yuanyuan Wei, Sha Bai, Dou Wang, Huiping Geng, Chenghui Yu, Jie Gao IHEP, Beijing 1st workshop on applications of high energy Circular Electron-Positron

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

The Large Hadron electron Collider (LHeC) at the LHC

The Large Hadron electron Collider (LHeC) at the LHC The Large Hadron electron Collider (LHeC) at the LHC F. Zimmermann, F. Bordry, H. H. Braun, O.S. Brüning, H. Burkhardt, A. Eide, A. de Roeck, R. Garoby, B. Holzer, J.M. Jowett, T. Linnecar, K. H. Mess,

More information

Lattice design and dynamic aperture optimization for CEPC main ring

Lattice design and dynamic aperture optimization for CEPC main ring Lattice design and dynamic aperture optimization for CEPC main ring Yiwei Wang, Feng Su, Sha Bai, Yuan Zhang, Dou Wang, Huiping Geng, Chenghui Yu, Jie Gao HKUST IAS conference, 23-26 Jan 2017 Outline Fully

More information

Luminosity Considerations for erhic

Luminosity Considerations for erhic Luminosity Considerations for erhic Fuhua Wang MIT-Bates Linear Accelerator Center Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 1 Thanks BNL: V.Ptitsyn, C.Montag, S. Peggs, T.Roser

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The 2015 erhic Ring-Ring Design Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The Relativistic Heavy Ion Collider RHIC Two superconducting storage rings 3833.845 m circumference

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007 LIS section meeting PS2 design status Y. Papaphilippou April 30 th, 2007 Upgrade of the injector chain (R. Garoby, PAF) Proton flux / Beam power 50 MeV 160 MeV Linac2 Linac4 1.4 GeV ~ 5 GeV PSB SPL RCPSB

More information

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Pedro Castro Introduction to Particle Accelerators DESY, July 2010 What you will see Pedro Castro

More information

A Very Large Lepton Collider in a VLHC tunnel

A Very Large Lepton Collider in a VLHC tunnel A Very Large Lepton Collider in a VLHC tunnel Tanaji Sen Fermilab, Batavia, IL Design strategy Intensity Limitations RF and Optics parameters: Arc, IR Lifetime Scaling the beam-beam parameter Luminosity,

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR CERN-ATS-2012-009 Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC) F. Haug (on behalf of

More information

Why are particle accelerators so inefficient?

Why are particle accelerators so inefficient? Why are particle accelerators so inefficient? Philippe Lebrun CERN, Geneva, Switzerland Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October

More information

FCC-ee Machine Layout and Beam Optics + Matching with synchrotron motion

FCC-ee Machine Layout and Beam Optics + Matching with synchrotron motion FCC-ee Machine Layout and Beam Optics + Matching with synchrotron motion KEK Accelerator Seminar 27 Apr. 2016 KEK, Tsukuba K. Oide Contributed by M. Aiba, S. Aumon, M. Benedikt, A. Blondel, A. Bogomyagkov,

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

The Large Hadron Collider Lyndon Evans CERN

The Large Hadron Collider Lyndon Evans CERN The Large Hadron Collider Lyndon Evans CERN 1.9 K 2.728 K T The coldest ring in the universe! L.R. Evans 1 The Large Hadron Collider This lecture. LHC Technologies Magnets Cryogenics Radiofrequency Vacuum

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London Current and Future Developments in Accelerator Facilities Jordan Nash, Imperial College London Livingston chart (circa 1985) Nearly six decades of continued growth in the energy reach of accelerators Driven

More information

CERN & the High Energy Frontier

CERN & the High Energy Frontier CERN & the High Energy Frontier Emmanuel Tsesmelis CERN Directorate Office Corfu Summer Institute 13th Hellenic School & Workshop on Elementary Particle Physics & Gravity Corfu, Greece 1 September 2013

More information

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Accelerator Design of High Luminosity Electron-Hadron Collider erhic Accelerator Design of High Luminosity Electron-Hadron Collider erhic V. PTITSYN ON BEHALF OF ERHIC DESIGN TEAM: E. ASCHENAUER, M. BAI, J. BEEBE-WANG, S. BELOMESTNYKH, I. BEN-ZVI, M. BLASKIEWICZ, R. CALAGA,

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

An Introduction to Particle Accelerators. v short

An Introduction to Particle Accelerators. v short An Introduction to Particle Accelerators v1.42 - short LHC FIRST BEAM 10-sep-2008 Introduction Part 1 Particle accelerators for HEP LHC: the world biggest accelerator, both in energy and size (as big as

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

The Large Hadron electron Collider at CERN

The Large Hadron electron Collider at CERN The Large Hadron electron Collider at CERN A. Polini (for the LHeC Collaboration) Outline: Introduction Accelerator, Interaction Region and Detector Physics Highlights Future and Outlook A. Polini LHeC

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim S2E (Start-to-End) Simulations for PAL-FEL Aug. 25 2008 Kyungpook Nat l Univ. Eun-San Kim 1 Contents I Lattice and layout for a 10 GeV linac II Beam parameters and distributions III Pulse-to-pulse stability

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

Collider Rings and IR Design for MEIC

Collider Rings and IR Design for MEIC Collider Rings and IR Design for MEIC Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators EIC Collaboration Meeting The Catholic University of America Washington, DC, July 29-31,

More information

General Considerations

General Considerations Advantages of Muons Advantages of leptons over hadrons Energetic Interaction simplicity Minimal synchrotron radiation at high energies Can bend: not forced to linac like e Reuse accelerating structures

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS*

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* V. Ptitsyn, BNL, Upton, NY 11980, USA. Abstract An overview of the proposals of new electron-ion colliders - e-rhic at BNL, EIC at JLab and LHeC at CERN - in

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

TeV Scale Muon RLA Complex Large Emittance MC Scenario

TeV Scale Muon RLA Complex Large Emittance MC Scenario TeV Scale Muon RLA Complex Large Emittance MC Scenario Alex Bogacz and Kevin Beard Muon Collider Design Workshop, BNL, December 1-3, 29 Outline Large Emittance MC Neuffer s Collider Acceleration Scheme

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note - 819 THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC A. Vivoli 1, I. Chaikovska 2, R. Chehab 3, O. Dadoun 2, P. Lepercq 2, F.

More information

Notes on the HIE-ISOLDE HEBT

Notes on the HIE-ISOLDE HEBT EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIE-ISOLDE-PROJECT-Note-13 Notes on the HIE-ISOLDE HEBT M.A. Fraser Abstract The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

More information

Overview of HEMC Scheme

Overview of HEMC Scheme Overview of HEMC Scheme R. B. Palmer, (BNL) JLab 2/28/2011 My birthday Progress on Cooling simulations New Acceleration sequence with higher transmission New System transmission estimate New Wall power

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna The LHC Part 1 Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna Organizzazione Part 1 Part 2 Part 3 Introduction Energy challenge Luminosity

More information

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc International Scientific Spring 2010, March 1-6, 1 2010 R. Garoby slhc 1. Plans for future LHC injectors 2. Implementation stages 3. Final words R.G. 2 3/10/2009 R.G. 3 3 3/10/2009 Motivation 1. Reliability

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

Der lange Weg zu 200 GeV : Luminosität und höchste Energien bei LEP

Der lange Weg zu 200 GeV : Luminosität und höchste Energien bei LEP Der lange Weg zu 200 GeV : Luminosität und höchste Energien bei LEP J. Wenninger CERN SPS/LEP Operation Introduction Beam energies of 100 GeV and more... Luminosity performance Beam energy calibration

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Putting it all together

Putting it all together Putting it all together Werner Herr, CERN (Version n.n) http://cern.ch/werner.herr/cas24/lectures/praha review.pdf 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

FACET-II Design, Parameters and Capabilities

FACET-II Design, Parameters and Capabilities FACET-II Design, Parameters and Capabilities 217 FACET-II Science Workshop, October 17-2, 217 Glen White Overview Machine design overview Electron systems Injector, Linac & Bunch compressors, Sector 2

More information

Engines of Discovery

Engines of Discovery Engines of Discovery R.S. Orr Department of Physics University of Toronto Berkley 1930 1 MeV Geneva 20089 14 TeV Birth of Particle Physics and Accelerators 1909 Geiger/Marsden MeV a backscattering - Manchester

More information

LHC Status and CERN s future plans. Lyn Evans

LHC Status and CERN s future plans. Lyn Evans LHC Status and CERN s future plans Lyn Evans Machine layout L. Evans EDMS document no. 859415 2 Cryodipole overview 1250 1000 Equivalent dipoles 750 500 250 0 01-Jan-01 01-Jan-02 01-Jan-03 01-Jan-04 01-Jan-05

More information

STATUS OF BEPC AND PLAN OF BEPCII

STATUS OF BEPC AND PLAN OF BEPCII STATUS OF BEPC AND PLAN OF BEPCII C. Zhang for BEPCII Team Institute of High Energy Physics, P.O.Box 918, Beijing 139, China Abstract The status of the Beijing Electron-Positron Collider (BEPC) and plans

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Choosing the Baseline Lattice for the Engineering Design Phase

Choosing the Baseline Lattice for the Engineering Design Phase Third ILC Damping Rings R&D Mini-Workshop KEK, Tsukuba, Japan 18-20 December 2007 Choosing the Baseline Lattice for the Engineering Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute

More information

Overview of Acceleration

Overview of Acceleration Overview of Acceleration R B Palmer, Scott Berg, Steve Kahn (presented by Steve Kahn) Nufact-04 RF Frequency Acc types and System Studies Linacs RLA s FFAG s Injection/Extraction US Study 2a acceleration

More information

LHC Collimation and Loss Locations

LHC Collimation and Loss Locations BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Tools of Particle Physics Accelerator Types Accelerator Components Synchrotron-Type

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

Challenges of the Beam Delivery System for the future Linear Colliders

Challenges of the Beam Delivery System for the future Linear Colliders Challenges of the Beam Delivery System for the future s Eduardo Marin eduardo.marin.lacoma@cern.ch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics Barcelona, SPAIN 10

More information

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d. 3.2.2 Magnets The characteristics for the two types of combined function magnets,bd and BF, are listed in table t322_a. Their cross-sections are shown, together with the vacuum chamber, in Figure f322_a.

More information

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug ! " # # $ ' ( # # $ %& ) Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug. 2009. http://www.ippp.dur.ac.uk/workshops/09/sussp65/programme/

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris LHC accelerator status and prospects 2 nd September 2016 - Paris LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 :

More information

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) Budker Institute of Nuclear Physics (BINP, Novosibirsk, Russia) LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE (A.Papash - on

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

SC magnets for Future HEHIHB Colliders

SC magnets for Future HEHIHB Colliders SC magnets for Future HEHIHB Colliders presented by L. Bottura WAMS, Archamps, March 22-23,2004 Overview Few selected examples of drivers for R&D in the next 10 years LHC upgrades scenarios (why? how?)

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

e + e - Linear Collider

e + e - Linear Collider e + e - Linear Collider Disclaimer This talk was lifted from an earlier version of a lecture by N.Walker Eckhard Elsen DESY DESY Summer Student Lecture 3 rd August 2006 1 Disclaimer II Talk is largely

More information

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25 SABER Optics Y. Nosochkov, K. Bane, P. Emma, R. Erickson SABER Workshop, SLAC, March 15-16, 2006 1/25 Outline White paper optics design Beam tracking for SABER and for the old South Arc Magnet overlap

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Luminosity for the 100 TeV collider

Luminosity for the 100 TeV collider Luminosity for the 100 TeV collider M.L.Mangano, contribution to the Luminosity discussion session, Jan 15 2015 IAS programme on The Future of High Energy Physics Critical parameter to determine the physics

More information

FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies

FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies Jose L. Abelleira, Leon Van Riesen Haupt, Andrei Seryi, Emilia Cruz Alaniz (JAI-FCC team) Thanks to the CERN FLUKA team 10 th

More information

LHC upgrade based on a high intensity high energy injector chain

LHC upgrade based on a high intensity high energy injector chain LHC upgrade based on a high intensity high energy injector chain Walter Scandale CERN AT department PAF n. 6 CERN, 15 September 2005 luminosity and energy upgrade Phase 2: steps to reach maximum performance

More information

LHeC Recirculator with Energy Recovery Beam Optics Choices

LHeC Recirculator with Energy Recovery Beam Optics Choices LHeC Recirculator with Energy Recovery Beam Optics Choices Alex Bogacz in collaboration with Frank Zimmermann and Daniel Schulte Alex Bogacz 1 Alex Bogacz 2 Alex Bogacz 3 Alex Bogacz 4 Alex Bogacz 5 Alex

More information

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 CERN Meyrin, Switzerland E-mail: oliver.bruning@cern.ch, edward.nissen@cern.ch, dario.pellegrini@cern.ch, daniel.schulte@cern.ch,

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Nick Walker (for WG3) Snowmass, 2001

Nick Walker (for WG3) Snowmass, 2001 Nick Walker (for WG) Snowmass, 2 General Layout Complete Lattice Final Telescope Beam switchyard Collimation System - basic concept - spoiler protection (MES) - halo tracking (dynamic aperture) Hardware

More information

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6 CERN-ACC-2018-0039 Future Circular Collider PUBLICATION Consolidated EIR design baseline: Milestone M3.6 Tomas Garcia, Rogelio (CERN) et al. 01 November 2018 The European Circular Energy-Frontier Collider

More information