Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems

Size: px
Start display at page:

Download "Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems"

Transcription

1 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 1/21 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems Rome, October 21, 2008 Ph-D Candidate - Andrea Di Ciolo andrea.diciolo@roma1.infn.it Physics Department, University of Rome Sapienza Piazzale A. Moro, Rome, Italy

2 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 2/21 PH-D ADVISORS Dr. J. G. Lorenzana University of Rome Sapienza, SMC-INFM and ISC-CNR, Italy Prof. M. Grilli University of Rome Sapienza and SMC-INFM, Italy COLLABORATOR Prof. G. Seibold Institut für Physik, BTU Cottbus, Germany

3 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 3/21 Contents Charge Density Waves + Anomalous Phonon Softening in the Cuprates Hubbard-Holstein Model + Gutzwiller-RPA Method Homogeneous Metal = Charge Inhomogeneities Stripes = Anomalous Phonon Softening Conclusions

4 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 4/21 Charge Density Wave (CDW) Materials K 0.30 MoO 3 La 2 x Sr x CuO 4 Y Ba 2 Cu 3 O 7 x CLASSICAL CDW s 1D-blue bronzes (A 0.30 MoO 3 with A = K, Rb); 2D-dichalcogenides (MC 2 with M=Ta,Ti,Nb,Mo and C=S,Se)... STRONGLY CORRELATED CDW s cuprates, manganites, nickelates, cobaltites...

5 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 5/21 Charge Density Wave (CDW) Materials Rb 0.3 MoO 3 [Brun05] Ca 2 x Na x CuO 2 Cl 2 [Hanaguri04] Dy-BSCCO[Kohsaka07] CDW s in STM (Scansion Tunnelling Microscope) experiments

6 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 6/21 Anomalous Phonon Softening in the Cuprates Stripe Phase[Tranquada96,Bosch01] Bond-Stretching Phonon Branch in LBCO[Reznik06] OUR IDEA: STRIPES Nearly 1D-metallic structures = [Kohn Anomaly] ANOMALOUS SOFTENING OF THE BOND-STRETCHING PHONON BRANCH

7 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 7/21 Hubbard-Holstein Model + Gutzwiller-RPA Method ijσ t ijc iσ c jσ i Uˆn i ˆn i i = ELECTRONIC KINETIC TERM = E-E INTERACTIONS i βx i(ˆn i n) = E-PH COUPLING ( 1 2M P i 2 + ) 1 2 Kx2 i = PHONONIC TERM ADIABATIC LIMIT (M ) κ eph q = λ = χ 0 0 β2 /K e-ph coupling κ q 1 λκ q /χ 0 0 exact relation χ 0 0 density of states of the non-interacting system GUTZWILLER APPROXIMATION (GA) = electronic GROUND STATE + low-energy excitations (quasiparticles) RANDOM PHASE APPROXIMATION (RPA) = FLUCTUATIONS dressed ELECTRONIC SUSCEPTIBILITY: κ q (without e-ph coupling) κ eph q (with e-ph coupling)

8 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 8/21 Homogeneous Metal = Charge Inhomogeneities n=1, U=U c Metal-Insulator Transition κ eph q = κ q 1 λκ q /χ 0 0 U=0 = κ q=2kf maximum = strong phonon anomaly (KOHN ANOMALY) SMALL U = PEIERLS CDW LARGE U = PHASE SEPARATION (PS)

9 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 9/21 Homogeneous Metal = Charge Inhomogeneities GA is accurate U WEAKENS THE EFFECTIVE E-P H COUPLING g q = z0 2 κ q κ 0 q z 0 GA renormalized hopping t tz 2 0

10 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 10/21 Homogeneous Metal = Charge Inhomogeneities 2D - PHASE DIAGRAM OF THE PARAMAGNETIC METAL

11 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 11/21 Kohn Anomaly in 1D and 2D ω 0 bare phonon frequency Results for n = 0.8 and λ = 0.5. U SUPPRESSES THE KOHN ANOMALY.

12 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 12/21 Stripes = Anomalous Phonon Softening REALISTIC PARAMETERS= n = 0.875, U/t = 8, next-nearest hopping t /t = 0.2

13 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 13/21 Stripes = Anomalous Phonon Softening OUR OPTICAL PHONON BRANCHES VS EXPERIMENTAL BRANCHES STRONG ASYMMETRY WELL REPRODUCED NOT TRIVIAL RESULT

14 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 14/21 Conclusions e-ph coupling suppressed by e-e interaction Homogeneous Metal λ Charge Inhomogeneities Peierls CDW = U = PS Optical Phonons + Stripes U Anomalous Phonon Softening

15 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 15/21 Anomalous Phonon Softening in the Cuprates Half-Breathing Phonon Mode Longitudinal Optical Branch[Pintschovius99]

16 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 16/21 Hubbard-Holstein Model + Gutzwiller-RPA Method The susceptibility κ q has all the information on how e-e interaction renormalizes e-ph interaction: κ eph q = κ q 1 λκ q /χ 0 0 = κ q 1 λ q, λq = λ κ q χ 0 0 In the absence of other (first-order) instabilities, for λ = λ c = χ 0 0/κ qc the system undergoes a transition to a CDW state with a typical q c. Increasing U κ q reduced with respect to κ 0 q λ q reduced = U WEAKENS the e-ph coupling. The problem is then reduced to the study of the electronic susceptibility for λ = 0.

17 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 17/21 Hubbard-Holstein Model + Gutzwiller-RPA Method The Hubbard model: H e = ijσ t ij(c iσ c jσ + c jσ c iσ) + i Uˆn i ˆn i GZW TRIAL STATE: ψ G = ˆP g Sd = Sd SLATER DETERMINANT ˆP g = i [1 (1 g)ˆn i ˆn i ] = i [1 (1 g) ˆD i ] For g < 1, ˆPg suppresses double occupancies D i. For g = 0, all the configurations with D i 0 are ruled out. E e [ρ, D] = ψ G H e ψ G ijσ t ijz iσ z jσ ρ jiσ + i UD i z iσ [ρ iiσ, ρ ii, σ, D i ] GZW-renormalized hopping factors ρ jiσ = Sd c iσ c jσ Sd uncorrelated single fermion DENSITY MATRIX

18 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 18/21 Hubbard-Holstein Model + Gutzwiller-RPA Method Computations with the GA+RPA method [Seibold-Lorenzana0103], generalization of the HF+RPA technique [Ring80, Blaizot86] An external field induces small amplitude deviations δd and δρ around the GA saddle point = E e [ρ, D] = E e0 + Tr[h 0 δρ] δρ L 0 δρ + δds 0 δρ δdt K 0 δd with h = δe e /δρ. E = 0 eliminates the δd deviations = δd 2nd order energy deviation: δe e = 1 2 δρ Wδρ The interaction kernel W mediates local and intersite charge deviations.

19 Homogeneous Metal = Charge Inhomogeneities Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 19/21

20 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 20/21 Homogeneous Metal = Charge Inhomogeneities K q 3 2 η q =1 η q =0.5 η q =0 η q =-0.5 η q =-1 K q n=0.99 K q η q =1 η q =0.5 η q =0 η q =-0.5 η q =-1 K q n= U/U c U/U c U/U c U/U c D = η q = 1 d d ν=1 cosq ν

21 Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems p. 21/21 Stripes = Anomalous Phonon Softening Π Π Π 2 0 Π 2 Π Π Π 2 Π 2 qy 0 0 Π 2 Π 2 Π Π Π 2 0 Π 2 q x Π Π 4 2 UNIT CELL = FIRST REDUCED BRILLOUIN ZONE

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Metal-insulator transition with Gutzwiller-Jastrow wave functions Metal-insulator transition with Gutzwiller-Jastrow wave functions Odenwald, July 20, 2010 Andrea Di Ciolo Institut für Theoretische Physik, Goethe Universität Frankfurt Metal-insulator transition withgutzwiller-jastrow

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Role of Incommensuration in the charge density wave and superconducting states of 1T-TiSe 2

Role of Incommensuration in the charge density wave and superconducting states of 1T-TiSe 2 Role of Incommensuration in the charge density wave and superconducting states of 1T-TiSe 2 Astha Sethi May 10, 2017 Abstract A brief review of some of the most recent experiments on the charge density

More information

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems 1. Hubbard to Holstein 2. Peierls Picture of CDW Transition 3. Phonons with Dispersion 4. Holstein Model on Honeycomb Lattice 5. A New

More information

COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES

COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES Raymond Frésard Andrzej M. Oleś and Marcin Raczkowski Laboratoire Crismat UMR CNRS-ENSICAEN (ISMRA) 6508 Caen France Marian

More information

Recent new progress on variational approach for strongly correlated t-j model

Recent new progress on variational approach for strongly correlated t-j model Recent new progress on variational approach for strongly correlated t-j model Ting-Kuo Lee Institute of Physics, Academia Sinica, Taipei, Taiwan Chun- Pin Chou Brookhaven National Lab, Long Island Stat.

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

The Hubbard Model In Condensed Matter and AMO systems

The Hubbard Model In Condensed Matter and AMO systems The Hubbard Model In Condensed Matter and AMO systems Transition Metal Oxides The Fermion Hubbard Model Transition Metal Oxides - The Whole Story High Temperature Superconductors Monte Carlo and Quantum

More information

arxiv: v3 [cond-mat.str-el] 15 Mar 2018

arxiv: v3 [cond-mat.str-el] 15 Mar 2018 arxiv:1607.05399v3 [cond-mat.str-el] 15 Mar 2018 Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t J U model: role of intersite Coulomb interaction and a critical

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

Long range Coulomb interactions at low densities of polarons

Long range Coulomb interactions at low densities of polarons Long range Coulomb interactions at low densities of polarons S. Fratini - Grenoble Subtitle: on the role played by the long-range polarization (large polarons) in metal-insulator transitions P. Quémerais

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Individual molecule description of kappa-type organic charge transfer salts

Individual molecule description of kappa-type organic charge transfer salts Individual molecule description of kappa-type organic charge transfer salts Daniel Guterding Institut für Theoretische Physik Goethe-Universität Frankfurt am Main Germany June 21, 2016 SFB/TR 49 1 / 21

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 Sep 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 Sep 2001 Many-polaron states in the Holstein-Hubbard model Laurent Proville and Serge Aubry arxiv:cond-mat/010934v1 [cond-mat.str-el] 19 Sep 001 Groupe de Physique des Solides, UMR 7588-CNRS Universités Paris 7

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II)

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) S. Ciuchi Uni/INFM Aquila Collaborations M. Capone - ISC

More information

Spectral Density Functional Theory

Spectral Density Functional Theory Spectral Density Functional Theory Sergej Savrasov Financial support NSF US DOE LANL Collaborators and Content Constructing New Functionals to Access Energetics and Spectra of Correlated Solids Phonons

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Cuprate Superconductivity: Boulder Summer School Abstract

Cuprate Superconductivity: Boulder Summer School Abstract Cuprate Superconductivity: Boulder Summer School 2014 A. Paramekanti 1,2 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 and 2 Canadian Institute for Advanced Research,

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

MONTE CARLO STUDIES OF HUBBARD MODELS. Helen Craig

MONTE CARLO STUDIES OF HUBBARD MODELS. Helen Craig MONTE CARLO STUDIES OF HUBBARD MODELS Helen Craig ABSTRACT This summer, I studied two variations of the extended Hubbard model: the extended Hubbard Holstein model and the extended Hubbard model with staggered

More information

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory 1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Contents 1 Introduction 2 1.1 Modeling of correlated

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates. Abstract

The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates. Abstract The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates Nicola Poccia, Michela Fratini Department of Physics, Sapienza University of Rome, P. Aldo Moro 2, 00185 Roma, Italy E-mail: nicola.poccia@roma1.infn.it

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Collaborators: R. Torsten Clay Department of Physics & Astronomy HPC 2 Center for Computational Sciences

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank

More information

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson Quantum Monte Carlo Simulations of the Half-filled Hubbard Model Anders F. J. Gabrielsson June 2011 Abstract A Quantum Monte Carlo method of calculating operator expectation values for the ground state

More information

Complexity in Transition Metal Oxides

Complexity in Transition Metal Oxides Complexity in Transition Metal Oxides Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville, TN, USA. Supported by NSF grants DMR-0443144 and 0454504. Collaborators G. Alvarez (ORNL)

More information

Electron-phonon interaction in ultrasmall-radius carbon nanotubes

Electron-phonon interaction in ultrasmall-radius carbon nanotubes Electron-phonon interaction in ultrasmall-radius carbon nanotubes Ryan Barnett, Eugene Demler, and Efthimios Kaxiras Department of Physics, Harvard University, Cambridge, Massachusetts 2138, USA Received

More information

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik CDWs in ARPES A momentum space picture of Fermi surface instabilities in crystalline solids Physics 250, UC Davis Inna Vishik Goals of this lecture Review CDW concepts from previous lecture Practice interpreting

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

The Time-Dependent Gutzwiller Approximation. for Multi-Band Hubbard Models

The Time-Dependent Gutzwiller Approximation. for Multi-Band Hubbard Models The Time-Dependent Gutzwiller Approximation for Multi-Band Hubbard Models Von der Fakultät für Mathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen Universität Cottbus zur Erlangung

More information

Spontaneous currents in ferromagnet-superconductor heterostructures

Spontaneous currents in ferromagnet-superconductor heterostructures Institute of Physics and Nanotechnology Center UMCS Spontaneous currents in ferromagnet-superconductor heterostructures Mariusz Krawiec Collaboration: B. L. Györffy & J. F. Annett Bristol Kazimierz 2005

More information

High Temperature Cuprate Superconductors

High Temperature Cuprate Superconductors High Temperature Cuprate Superconductors Theoretical Physics Year 4 Project T. K. Kingsman School of Physics and Astronomy University of Birmingham March 1, 2015 Outline 1 Introduction Cuprate Structure

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Main collaborators: Sasha Itin Clément Dutreix Zhenya Stepanov Theory of Condensed Matter group http://www.ru.nl/tcm

More information

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Electron State and Lattice Effects in Cuprate High Temperature Superconductors Electron State and Lattice Effects in Cuprate High Temperature Superconductors - The True Story Revealed by Fermi Surface and Unconventional Lattice Effects- October 27-28, 2005 Headquarters and Information

More information

d Wave Pairing Driven by Bipolaric Modes Related to Giant Electron Phonon Anomalies in High T c Superconductors

d Wave Pairing Driven by Bipolaric Modes Related to Giant Electron Phonon Anomalies in High T c Superconductors d Wave Pairing Driven by Bipolaric Modes Related to Giant Electron Phonon Anomalies in High T c Superconductors J.-B. Bru, A. Delgado de Pasquale and W. de Siqueira Pedra September 9, 014 Abstract Taking

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor 1 Chapter 1 Introduction Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor La 2 x Ba x CuO 4 in 1986, and the intriguing physics of cuprate superconductors

More information

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Quasiparticle dynamics and interactions in non uniformly polarizable solids Quasiparticle dynamics and interactions in non uniformly polarizable solids Mona Berciu University of British Columbia à beautiful physics that George Sawatzky has been pursuing for a long time à today,

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Anisotropic Hubbard model on a triangular lattice spin dynamics in HoMnO 3

Anisotropic Hubbard model on a triangular lattice spin dynamics in HoMnO 3 PRAMAA c Indian Academy of Sciences Vol. 70, o. 1 journal of January 2008 physics pp. 163 171 Anisotropic Hubbard model on a triangular lattice spin dynamics in HoMnO 3 SAPTARSHI GHOSH and AVIASH SIGH

More information

Maria Elisabetta Pezzoli. PhD Thesis: Disorder and Interaction: ground state properties of the disordered Hubbard model

Maria Elisabetta Pezzoli. PhD Thesis: Disorder and Interaction: ground state properties of the disordered Hubbard model International School for Advanced Studies (SISSA/ISAS) Maria Elisabetta Pezzoli PhD Thesis: Disorder and Interaction: ground state properties of the disordered Hubbard model Supervisors: Prof.Michele Fabrizio

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Coulomb and Fröhlich interactions

Coulomb and Fröhlich interactions 1 Coulomb and Fröhlich interactions 1.1 Bare Hamiltonian Superconductivity is a many-particle quantum phenomenon involving Coulomb electron electron and electron ion interactions. When these interactions

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

arxiv: v1 [cond-mat.str-el] 17 Dec 2007

arxiv: v1 [cond-mat.str-el] 17 Dec 2007 Importance of on-site interaction in graphene. Hari P. Dahal,,2 Jean-Pierre Julien, 3,2 and A. V. Balatsky 2,4 Department of Physics, Boston College, Chestnut Hill, MA, 02467 2 Theoretical Division, Los

More information

Tuning the Quantum Phase Transition of Bosons in Optical Lattices

Tuning the Quantum Phase Transition of Bosons in Optical Lattices Tuning the Quantum Phase Transition of Bosons in Optical Lattices Axel Pelster 1. Introduction 2. Spinor Bose Gases 3. Periodically Modulated Interaction 4. Kagome Superlattice 1 1.1 Quantum Phase Transition

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures a b A B Supplementary Figure S1: No distortion observed in the graphite lattice. (a) Drift corrected and reorientated topographic STM image recorded at +300

More information

arxiv: v1 [cond-mat.str-el] 5 May 2008

arxiv: v1 [cond-mat.str-el] 5 May 2008 Orbital degeneracy, Hund s coupling, and band ferromagnetism: effective quantum parameter, suppression of quantum corrections, and enhanced stability arxiv:85.47v [cond-mat.str-el] 5 May 28 Bhaskar Kamble

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Peng Cai 1, Wei Ruan 1, Yingying Peng, Cun Ye 1, Xintong Li 1, Zhenqi Hao 1, Xingjiang Zhou,5,

More information

Isotropic Bipolaron-Fermion-Exchange Theory and Unconventional Pairing in Cuprate Superconductors

Isotropic Bipolaron-Fermion-Exchange Theory and Unconventional Pairing in Cuprate Superconductors Isotropic Bipolaron-Fermion-Exchange Theory and Unconventional Pairing in Cuprate Superconductors J -B Bru IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain W de Siqueira Pedra and A Delgado

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Polarons. University of Ljubljana Faculty of Mathematics and Physics. Seminar - Ib, 1. year II. cycle degrees

Polarons. University of Ljubljana Faculty of Mathematics and Physics. Seminar - Ib, 1. year II. cycle degrees University of Ljubljana Faculty of Mathematics and Physics Seminar - Ib, 1. year II. cycle degrees Polarons Author: Jaka Vodeb Advisor: prof. dr. Viktor Kabanov Kranj, 017 Abstract After the discovery

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

PII: S (98) CANONICAL TRANSFORMATION OF THE THREE-BAND HUBBARD MODEL AND HOLE PAIRING

PII: S (98) CANONICAL TRANSFORMATION OF THE THREE-BAND HUBBARD MODEL AND HOLE PAIRING Pergamon Solid State Communications, Vol. 109, No. 4, pp. 9 33, 1999 c 1998 Published by Elsevier Science Ltd 0038 1098/99 $ - see front matter PII: S0038 1098(98)00566-3 CANONICAL TRANSFORMATION OF THE

More information

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model Vol. 114 2008 ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model J.

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani Superconductor to insulator transition: a short overview on recent ideas C.Castellani Collaborations L.Benfatto and J.Lorenzana (Roma), G.Seibold (Cottbus) G.Lemarié (Toulouse),D.Bucheli(PhD,Roma) References

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Sep 1998

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Sep 1998 arxiv:cond-mat/9809383v1 [cond-mat.str-el] 29 Sep 1998 Quasi-Particle dynamics of a strongly correlated polaron metal J. Zhong and H.-B. Schüttler Center for Simulational Physics Department of Physics

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

Quantum critical point and superconducting dome in the pressure. phase diagram of o-tas 3

Quantum critical point and superconducting dome in the pressure. phase diagram of o-tas 3 Quantum critical point and superconducting dome in the pressure phase diagram of o-tas 3 M. Monteverde 1, J. Lorenzana 2, P. Monceau 1 and M. Núñez-Regueiro 1 1 Institut Néel, Université Grenoble Alpes

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin Department of Physics University of Illinois Collaborators Steven Kivelson (UCLA) Vadim Oganesyan (Princeton) In memory of Victor J.

More information

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN Outline Density-matrix

More information

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics,

More information

Insulator, Metal, or Superconductor: The Criteria

Insulator, Metal, or Superconductor: The Criteria Insulator, Metal, or Superconductor: The Criteria 1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators 2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory 3.

More information

Metal - Insulator transitions: overview, classification, descriptions

Metal - Insulator transitions: overview, classification, descriptions Metal - Insulator transitions: overview, classification, descriptions Krzysztof Byczuk Institute of Physics, Augsburg University http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html January 19th,

More information

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

arxiv: v1 [cond-mat.str-el] 18 Jul 2007 arxiv:0707.2704v1 [cond-mat.str-el] 18 Jul 2007 Determination of the Mott insulating transition by the multi-reference density functional theory 1. Introduction K. Kusakabe Graduate School of Engineering

More information