Hexagonal Boron Nitride Self-Launches Hyperbolic. Phonon Polaritons

Size: px
Start display at page:

Download "Hexagonal Boron Nitride Self-Launches Hyperbolic. Phonon Polaritons"

Transcription

1 Hexagonal Boron Nitride Self-Launches Hyperbolic Phonon Polaritons Leonid Gilburd, Kris S. Kim, Kevin Ho, Daniel Trajanoski, Aniket Maiti,, Duncan Halverson, Sissi de Beer,, and Gilbert C. Walker, * Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario M5S 3H6, Canada Department of Physics, Indian Institute of Technology, Kanpur, , India Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands * Corresponding author: gwalker@chem.utoronto.ca 1

2 SUPPLEMENTARY INFORMATION Dielectric functions of hbn. As described by S. Dai and co-authors 1, the dielectric functions of hbn can be approximated by a single-lorentzian function. LO TO 2 2 i TO 2 2 SI Figure 1 shows the relevant range of the calculated in-plane and out-of-plane complex dielectric functions based on the LRB and URB, which are found at cm -1 and cm -1, respectively. We use the same broadening values -1 4cm and 5cm 1. The macroscopic dielectric constants for both in- and out-of-plane components are found in this reference 2. SI Figure 1. The calculated in- and out-of-plane hbn dielectric functions. Blue and orange lines represent the real and the imaginary parts of the (b) in- and (a) out-of-plane dielectric functions. 2

3 The thickness of the SiO2 layer. The thickness of the silicon dioxide (SiO2) layer is calculated from XPS spectra using a standard technique 3 5. The thickness (t SiO2 ) is given by: exp t SiO2 = λ SiO2 sin(θ) ln[( 1 β ) (I SiO 2 exp ) + 1] where λ SiO2 is the attenuation length of the Si 2p photoelectrons in SiO2, θ is the angle between the sample surface plane and the detector, β = I SiO2 I (where I SiO2 and I Si are the Si 2p electron Si intensity from infinitely thick SiO2 and Si, respectively), and I exp SiO2 I Si and I exp Si are the experimentally measured Si 2p electron intensities from SiO2 and Si, respectively (data not shown). λ SiO2 = 2.7 nm θ = 20 o β = 0.83 t SiO2 = 0.6 nm Because the measured SiO2 layer is thin, it is neglected in our calculations; i.e. in the dispersion relation calculation we assume an infinite Si layer under hbn crystal with the dielectric constant of e Si =

4 Calculation of the dispersion relation of hbn. We follow the phenomenological model proposed by S. Dai and co-authors 1, which is derived from the Fresnel equations for a three-layer (air-hbn-si) structure. A more detailed derivation is found in the Supplementary Information of Ref. 1 The black dashed lines in Figure 2 of the main text show the polariton branches, given by the large momentum approximation from the same reference 1. As mentioned above, the main difference in our calculation compared with that in Ref. 1 is that the silicon oxide layer is not included. 4

5 The topography of the fold from the main text. To characterize the topography at the fold (from Figure 1 in the main text) and to avoid scan artifacts due to convolution with the AFM probe, scans at different angles relative to the fold were collected and are shown in SI Figure 2. These data show that the fold is asymmetric, which, as mentioned in the main text, causes a small optical phase shift in the IR profiles in the immediate vicinity of the fold feature. SI Figure 2. Asymmetry of the fold. AFM topography images (a-c) of the fold at different probesample orientations collected after physically rotating the underlying sample relative to the AFM probe. (d) The corresponding height profiles show different material slopes on either side of the fold. 5

6 Near-field IR microscope. The microscope (Inspire, Bruker) employs the homodyne s-snom detection technique 7 9. The microscope utilizes a quantum cascade IR laser (MirCat, Daylight Solutions) as a light source which is focused at the apex of a metallic AFM tip. The back-scattered IR field is interferometrically homodyned with a reference field. The detected field is demodulated at harmonics of the tip-oscillation frequency and the second, third and fourth harmonics are recorded. The Inspire software utilizes Bruker s interleave mode in which the AFM tip repeats the same line scan twice, allowing the interferometer to move the reflector distance equivalent to /4 of the applied excitation wavenumber. This allows one to semi-simultaneously obtain the back-scattered in- and out-of-phase IR signals from the tip, which carry the sample s reflection and absorption information, respectively. The Inspire microscope is equipped with a variety of different modes, allowing to simultaneously characterize the sample and obtain information about the nanoscale electrical, mechanical and chemical properties. In this work, only the Tapping IR mode was used. 6

7 Signatures of the asymmetry of the fold in the field phase. For the sake of the derivation, we define the obtained in- and out-of-phase demodulated (at either second or third harmonics of the AFM tapping frequency) signals, E in and E out, respectively. These are projections of the imaginary field vector on the real and imaginary (orthogonal) axes. To normalize the field, we use the following relationship: E i norm = E i E 2 2 in + E out i = in, out The phase of the normalized field is then given by: φ(x) = atan ( E out norm (x) E norm in (x) ) For the case in which the waves are self-launched at the fold we investigate the effect of the fold s asymmetry on the HPhPs propagating into the flake. By taking the phase difference of the field in each direction with respect to the topographical center of the fold we observe that the phase asymmetry does not extend beyond ~0.2 µm on either side of the fold (see SI Figure 3). The phase difference is calculated using the following equation: φ(x) = φ(x) φ( x) where x = 0 at the topographical center of the fold. The results show that the tip detects an additional field in the vicinity of the slopes of the fold. The localization of the field, whose decay length is smaller than the surface wavelength of HPhPs, suggests that a possible origin of this additional field is the near-field decay of the HPhPs at the slope. Since the metallic AFM tip is 7

8 sensitive to p-polarized fields, the amplitudes of the p-polarized components of the evanescent fields perpendicular to the sloped regions contribute to the detected signal near the fold. SI Figure 3. Difference in phases of hbn self-launched HPhPs. The difference in the phase of the fields ( (φ)) of the hbn self-launched HPhPs propagating away from the fold (topography shown in black) in either direction is shown at 1490 cm -1 (blue), 1510 cm -1 (orange), 1541 cm -1 (yellow) and 1581 cm -1 (purple). The asymmetry of the fold gives rise to a local asymmetry in the phase of the fields. The asymmetry disappears as the tip moves more than ~0.2 µm beyond the fold. This suggests that the local asymmetry of the phase of the fields arises from the asymmetry of the fold and provides additional contribution to the total field sensed by the tip in the vicinity of the fold. The IR responses are shifted up for clarity. 8

9 The simulations of the tip-launched and hbn self-launched HPhPs. The simulations are based on the proposed algorithm by S. Dai et al. 1, which assume that the tip is launching waves in hbn and the sum of the intensities reflected back to the tip is detected. In addition to the reflections, here we add another field, which represents the fold-launched wave. To reproduce the experimental in Figure 1b in the main text we use a 2D simulation (see Figure 1c). To reproduce the cross-sections shown in Figure 3 of the main text we use a simplified 1D simulation, which calculates the IR signal in cross-sections perpendicular to the fold. In the 1D simulation we neglect the contribution of the reflected wave from the upper edge of the crystal. Both, the tip- and the fold-launched waves have the same loss factor, which is found to be in the range of at 1510cm -1. To match the standing wave at the edge (of the upper flat crystal surface), the reflection coefficient is found to be r i. No reflection coefficient has been implemented at the fold because no reflection is detected there. The fold is modelled as a narrow strip, wave launching source.. The amplitude of the fold-launched waves in the simulation is Afold 0.25, which is one quarter of the amplitude of the tip-launched waves. The simulated IR profile is shown in SI Figure 4. Note, due to the comparison to the out-of-phase experimental results, the imaginary part of the simulated fields are shown. 9

10 SI Figure 4. Simulation of the hbn HPhPs. A line profile of the simulated result (orange) and the corresponding experimental result (blue) obtained at 1510 cm -1 are compared. A topography profile is shown in black. 10

11 How hbn self-launches HPhPs. To further illustrate the experimentally observed fringes around the fold, we introduce another simulation. In this simulation we included neither the tip-launched HPhPs nor the reflections from the edges. This simulation shows the effect of the material self-launching HPhPs at all points across the surface. Due to the slopes of the fold, the overall fold has more IR-active material per lateral displacement than do the adjacent, flat regions of the sample. For this reason, waves launched at the fold are injected into the crystal with an extra phase relative to any other point on the crystal. This is supported by the experimental results (see Figure 3 in the main text), which show an increased out-of-phase signal on top of the fold that can be caused by a larger volume of the absorptive material at the fold. In addition, the sub-wavelength dimensions of the fold scatter the incoming field differently than any other point on the crystal. A simulation was conducted in which energy injection from all points along the surface of the crystal was considered. The energy in the thin crystal propagates in a 3D cone-like shape. A 2D depiction of these propagating waves on the surface is illustrated in the inset of SI Figure 5a. Thus, the injection of the waves from the fold into the crystal is simulated with a different amplitude and phase. The sum of the injected fields are then calculated at any point across the surface. The calculated field has a generic form of: r 2 r E Aexp cos where r is the distance between any two points, is the corresponding wavelength of the HPhP, and A and are the relative injection amplitude and phase. In the representative example shown in SI Figure 5a any point at the fold injects 10% less field and has 0.04π radian shift compared to 11

12 any other point on the crystal. The average amplitude of the field in the simulation was normalized to match the experimental DC background. SI Figure 5b shows a comparison of the line profiles of the simulation with the experimental data. SI Figure 5. Simulation of the self-launched HPhPs. (a) A 2D simulation reproducing oscillations similar to the experimentally observed pattern. In the simulation, 2D waves similar to those shown in the inset are launched from each point in space. (b) A line profile of the simulated result (orange) and the corresponding experimental result (blue) obtained at 1510 cm -1 are compared. A topography profile is shown in black. 12

13 Fragments of hbn on flat hbn crystals. Examples of hbn fragments on a flat surface of an hbn crystal are shown in SI Figure 6. There is discontinuity between the layered structure of the crystal and the disordered structure of hbn fragments. These hbn fragments are highly IR active in the range of excitation and thus can act as a scattering center for the HPhPs inside the crystal. Auger Electron Spectroscopy (AES) results confirm that the chemical composition of the fragments is similar to the underlying crystal (see SI Table 1). The simulated damping coefficients (SI Figure 6a) show that the highest sensitivity is expected around 1500 cm -1. The IR out-of-phase responses, shown in the middle section of SI Figure 6c-e, were collected at 1500 cm -1. As seen, the detected fringe spacing is of the standing wave. For visual confirmation, the standing wave pattern occurring at the edge of the underlying crystal is shown in the middle section of SI Figure 6e. Tip-launched waves can scatter from these fragments and travel within the crystal in a cone-like pattern, which are then detected by the tip. Not all fragments detectably scatter the HPhPs, as seen from the comparison of fragments in SI Figure 6c-e, leading us to infer that closeness between the lattices of the fragment and underlying hbn is relevant. 13

14 SI Figure 6. Fragments of hbn on a flat hbn crystal. (a) Simulated damping coefficient of HPhPs, calculated from the dispersion relation. b, An AFM topography image of a flat hbn crystal with fragments of hbn on top (indicated by yellow, pink and blue squares). (c-e) The corresponding AFM topography, IR out-of-phase signal and SEM side profiles of the color-coded hbn fragments in (b). Scale bar in (b) is 5 µm and in (c-e) are 500 nm. 14

15 SI Table 1. Elemental composition of hbn fragments. The relative elemental composition (on / off the fragments in %) as measured by AES reveals similar BN composition on- and off- the fragments, indicative of the same material. The colors in the table correspond to the color-labels of the fragments in SI Figure 6. A uniform presence of carbon is also observed. Carbon functionalities are not IR active in the range of URB of hbn and thus do not have a significant effect on the visibility of HPhPs. Boron Nitride Carbon Yellow / / / Pink 9.07 / / / Blue / / /

16 Other hbn folds and their IR response. We have studied many different hbn crystals that exhibit folds. In addition to the one in the main text, here we show more crystals and the corresponding IR responses (see SI Figure 7). As one can see, on each of those crystals there are oscillations parallel to the folds (self-launched waves), as well as double-frequency oscillations (standing waves) close to edges. SI Figure 7. Different hbn crystals with folds and their IR responses. Topography maps are on the left (a,c,e,g) and their corresponding IR responses are on the right (b,d,f,h). Excitation wavenumbers are noted. 16

17 Closer investigation of another hbn fold SEM image. SI Figure 8 shows the fold indicated in SI Fig 7d, accompanied by an SEM image. SI Figure 8. The fold of hbn that generates the signal in SI Figure 7d, above. (a) AFM topography image and (b) SEM side view of the fold. 17

18 REFERENCES (1) Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K.; et al. Tunable Phonon Polaritons in Atomically Thin van Der Waals Crystals of Boron Nitride. Science 2014, 343 (6175), (2) Cai, Y.; Zhang, L.; Zeng, Q.; Cheng, L.; Xu, Y. Infrared Reflectance Spectrum of BN Calculated from First Principles. Solid State Commun. 2007, 141 (5), (3) Cole, D. A.; Shallenberger, J. R.; Novak, S. W.; Moore, R. L.; Edgell, M. J.; Smith, S. P.; Hitzman, C. J.; Kirchhoff, J. F.; Principe, E.; Nieveen, W.; et al. SiO2 Thickness Determination by X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, Secondary Ion Mass Spectrometry, Rutherford Backscattering, Transmission Electron Microscopy, and Ellipsometry. J Vac Sci Technol 2000, 18 (1), 440. (4) Geng, S.; Zhang, S.; Onishi, H. Precision Thickness Maesurment of Ultra-Thin Films via XPS. Materials Science Forum. 2003, pp (5) Lu, Z. H.; McCaffrey, J. P.; Brar, B.; Wilk, G. D.; Wallace, R. M.; Feldman, L. C.; Tay, S. P. SiO[sub 2] Film Thickness Metrology by X-Ray Photoelectron Spectroscopy. Appl. Phys. Lett. 1997, 71 (19), (6) Zhang, L. M.; Andreev, G. O.; Fei, Z.; McLeod, A. S.; Dominguez, G.; Thiemens, M.; Castro-Neto, A. H.; Basov, D. N.; Fogler, M. M. Near-Field Spectroscopy of Silicon Dioxide Thin Films. Phys. Rev. B 2012, 85 (7), (7) Xu, X. G.; Tanur, A. E.; Walker, G. C. Phase Controlled Homodyne Infrared Near-Field Microscopy and Spectroscopy Reveal Inhomogeneity within and among Individual Boron Nitride Nanotubes. J. Phys. Chem. A 2013, 117 (16), (8) Xu, X. G.; Ghamsari, B. G.; Jiang, J.-H.; Gilburd, L.; Andreev, G. O.; Zhi, C.; Bando, Y.; Golberg, D.; Berini, P.; Walker, G. C. One-Dimensional Surface Phonon Polaritons in Boron Nitride Nanotubes. Nat. Commun. 2014, 5, (9) Wagner, M.; Mueller, T. High-Resolution Nanochemical Mapping of Soft Materials. Microsc. Today 2016, 24 (03),

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.017.65 Imaging exciton-polariton transport in MoSe waveguides F. Hu 1,, Y. Luan 1,, M. E. Scott 3, J.

More information

Launching and control of graphene plasmon by nanoridge structures

Launching and control of graphene plasmon by nanoridge structures Supporting Information Launching and control of graphene plasmon by nanoridge structures Sanpon Vantasin, Yoshito Tanaka,* Tsutomu Shimura 1. Launching and stationary modes of single nanoridge structure

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hbn gratings

Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hbn gratings Vol. 25, No. 7 3 Apr 2017 OPTICS EXPRESS 7791 Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hbn gratings BO ZHAO1,2,3 AND ZHUOMIN M. ZHANG1,4 1 G.W. Woodruff School of Mechanical

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

Supplementary Information. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit

Supplementary Information. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit Supplementary Information Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit Marta Autore 1, Peining Li 1, Irene Dolado 1, Francisco J. Alfaro-Mozaz

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11253 I. ORIGIN OF THE OBSERVED SPATIAL MODULATIONS The qualitative explanation of the observed interference patterns is as follows. The tip of the near-field nanoscope excites a circular

More information

Advanced techniques Local probes, SNOM

Advanced techniques Local probes, SNOM Advanced techniques Local probes, SNOM Principle Probe the near field electromagnetic field with a local probe near field probe propagating field evanescent Advanced techniques Local probes, SNOM Principle

More information

WLP. Si PMMA. Norm.Intensity 0.1 FID. [a.u.] Apodization Mirror position d [µm] c) d) E inc E sca. Nano-FTIR phase ϕ [º] PMMA

WLP. Si PMMA. Norm.Intensity 0.1 FID. [a.u.] Apodization Mirror position d [µm] c) d) E inc E sca. Nano-FTIR phase ϕ [º] PMMA a) Norm.Intensity [a.u.]. -. Ref. pulse later than sample pulse Si PMMA FID ' WLP Ref. pulse earlier than sample pulse b).5-75 -5-25 25 5 75 Mirror position d [µm] Apodization c) d) E inc E sca E inc E

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 5 Tai-Chang Chen University of Washington MICROSCOPY AND VISUALIZATION Electron microscope, transmission electron microscope Resolution: atomic imaging Use: lattice spacing.

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

UC San Diego UC San Diego Electronic Theses and Dissertations

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Hyperbolic phonon polaritons in hexagonal boron nitride Permalink https://escholarship.org/uc/item/3kk8j51p Author Dai, Siyuan Publication

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Mikhail A. Kats Harvard University School of Engineering and Applied Sciences NanoLight [Benasque] March

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

b imaging by a double tip potential

b imaging by a double tip potential Supplementary Figure Measurement of the sheet conductance. Resistance as a function of probe spacing including D and 3D fits. The distance is plotted on a logarithmic scale. The inset shows corresponding

More information

Optical Vibration Modes in (Cd, Pb, Zn)S Quantum Dots in the Langmuir Blodgett Matrix

Optical Vibration Modes in (Cd, Pb, Zn)S Quantum Dots in the Langmuir Blodgett Matrix Physics of the Solid State, Vol. 44, No. 0, 2002, pp. 976 980. Translated from Fizika Tverdogo Tela, Vol. 44, No. 0, 2002, pp. 884 887. Original Russian Text Copyright 2002 by Milekhin, Sveshnikova, Repinskiœ,

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

The Tunable Hybrid Surface Phonon and Plasmon Polariton. Modes in Boron Nitride Nanotube and Graphene Monolayer. Heterostructures

The Tunable Hybrid Surface Phonon and Plasmon Polariton. Modes in Boron Nitride Nanotube and Graphene Monolayer. Heterostructures The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures Yu Sun 1,2,a), Zheng Zheng 2), Jiangtao Cheng 3), Jiansheng Liu 2) 1 School

More information

Application Note. Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference Contrast Microscopy

Application Note. Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference Contrast Microscopy Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference Contrast Microscopy Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Nanoscale Chemical Imaging with Photo-induced Force Microscopy

Nanoscale Chemical Imaging with Photo-induced Force Microscopy OG2 BCP39nm_0062 PiFM (LIA1R)Fwd 500 279.1 µv 375 250 nm 500 375 250 125 0 nm 125 219.0 µv Nanoscale Chemical Imaging with Photo-induced Force Microscopy 0 Thomas R. Albrecht, Derek Nowak, Will Morrison,

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Dru Morrish, Xiaosong Gan and Min Gu Centre for Micro-Photonics, School of Biophysical

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Optical imaging of metallic and semiconductor nanostructures at sub wavelength regime

Optical imaging of metallic and semiconductor nanostructures at sub wavelength regime Optical imaging of metallic and semiconductor nanostructures at sub wavelength regime A. K. Sivadasan 1, Kishore K. Madapu 1 and Prajit Dhara 2 1 Nanomaterials Characterization and Sensors Section, Surface

More information

Scanning Probe Microscopy. L. J. Heyderman

Scanning Probe Microscopy. L. J. Heyderman 1 Scanning Probe Microscopy 2 Scanning Probe Microscopy If an atom was as large as a ping-pong ball......the tip would have the size of the Matterhorn! 3 Magnetic Force Microscopy Stray field interaction

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of Supplementary Figures Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of bulk SrTiO 3. The normalized high-energy reflectivity (0.5 35 ev) of SrTiO 3 is compared to the

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature9829 Supplementary Information S1: Movie of the photo-induced phase transition: Figures 2b-e show four selected XUV ARPES snapshots illustrating the most pronounced changes in the course

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

Supplementary Information for. Effect of Ag nanoparticle concentration on the electrical and

Supplementary Information for. Effect of Ag nanoparticle concentration on the electrical and Supplementary Information for Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films Haemin Paik 1,2, Yoon-Young Choi 3, Seungbum Hong

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

Supplementary Information for. Fano resonance Rabi splitting of surfaces plasmons

Supplementary Information for. Fano resonance Rabi splitting of surfaces plasmons Supplementary Information for Fano resonance Rabi splitting of surfaces plasmons Zhiguang Liu, 1,4,# Jiafang Li, 1,#,* Zhe Liu, 1,# Wuxia Li, 1 Junjie Li, 1 Changzhi Gu, 1,2 and Zhi-Yuan Li 3,1,* 1 Institute

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

Lorentz Contact Resonance for viscoelastic measurements of polymer blends

Lorentz Contact Resonance for viscoelastic measurements of polymer blends The nanoscale spectroscopy company The world leader in nanoscale IR spectroscopy Lorentz Contact Resonance for viscoelastic measurements of polymer blends Lorentz Contact Resonance (LCR) reliably compares

More information

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Surface Plasmon Polariton

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Large scale growth and characterization of atomic hexagonal boron. nitride layers Supporting on-line material Large scale growth and characterization of atomic hexagonal boron nitride layers Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity Surfaces of Biomaterials Three lectures: 1.23.05 Surface Properties of Biomaterials 1.25.05 Surface Characterization 1.27.05 Surface and Protein Interactions Review Bulk Materials are described by: Chemical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide Supporting online material Konstantin V. Emtsev 1, Aaron Bostwick 2, Karsten Horn

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films A. Dixit 1,, J. S. Thakur 2, V. M. Naik 3, R. Naik 2 1 Center of Excellence in Energy & ICT, Indian Institute of Technology

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Modulation of Negative Index Metamaterials in the Near-IR Range

Modulation of Negative Index Metamaterials in the Near-IR Range Modulation of Negative Index Metamaterials in the Near-IR Range Evgenia Kim (1), Wei Wu ( 2) (2, Ekaterina Ponizovskaya ), Zhaoning Yu ( 2) ( 2, Alexander M. Bratkovsky ) (2), Shih-Yuang Wang, R. Stanley

More information

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and Supporting Information: Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 Albert F. Rigosi, Heather M. Hill, Yilei

More information

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information