Angle Bisectors Bisect Arcs

Size: px
Start display at page:

Download "Angle Bisectors Bisect Arcs"

Transcription

1 Volume, Number prl 006 My 006 Olympd orer elow ws the Fd Roud of the 6th ustr Mth Olympd 005. gle sectors sect rcs K Y. L rt (My 0, 005) roblem. Show tht fte umber of multples of 005 exst, whch ech of the 0 dgts 0,,,,9 occurs the sme umber of tmes, ot coutg ledg zeros. roblem. For how my teger vlues of wth 005 does the system of equtos x = y +, y = x + hve teger solutos? roblem. We re gve rel umbers, b d c d defe s s the sum s = + b + c of ther -th powers for o-egtve tegers. t s kow tht s =, s = 6 d s = 4 hold. Show tht s s s+ holds for ll tegers >. = 8 roblem 4. We re gve two equlterl trgles d QR wth prllel sdes, oe potg up d oe potg dow. The commo re of the trgles teror s hexgo. Show tht the les jog opposte corers of ths hexgo re cocurret. (cotued o pge 4) Edtors: (HEUNG k-hog), Musg ollege, HK (KO Tsz-Me) (LEUNG Tt-Wg) (L K-Y), ept. of Mth., HKUST (NG Keg-o Roger), T, HKU rtst: (YEUNG Su-Yg mlle), MF, U ckowledgmet: Thks to El hu, Mth. ept., HKUST for geerl ssstce. O-le: The edtors welcome cotrbutos from ll techers d studets. Wth your submsso, plese clude your me, ddress, school, eml, telephoe d fx umbers (f vlble). Electroc submssos, especlly MS Word, re ecourged. The dedle for recevg mterl for the ext ssue s ugust 6, 006. For dvdul subscrpto for the ext fve ssues for the cdemc yer, sed us fve stmped self-ddressed evelopes. Sed ll correspodece to: r. K-Y L eprtmet of Mthemtcs The Hog Kog Uversty of Scece d Techology ler Wter y, Kowloo, Hog Kog Fx: (85) Eml: mkyl@ust.hk geerl, gle bsectors of trgle do ot bsect the sdes opposte the gles. However, gle bsectors lwys bsect the rcs opposte the gles o the crcumcrcle of the trgle! mth compettos, ths fct s very useful for problems cocerg gle bsectors or ceters of trgle volvg the crcumcrcle. Recll tht the ceter of trgle s the pot where the three gle bsectors cocur. Theorem. Suppose the gle bsector of tersect the crcumcrcle of t X. Let be pot o the le segmet X. The s the ceter of f d oly f X = X = X. roof. Note X = X = X. So X = X. The s the ceter of = X X = X X X = X X = X = X. Exmple. (98 ustrl Mth Olympd) Let be trgle, d let the terl bsector of the gle meet the crcumcrcle g t. efe Q d R smlrly. rove tht + Q + R > + +. R Q X Soluto. Let be the ceter of. y the theorem, we hve R = R + R > d smlrly >, Q >. lso + >, + > d + >. ddg ll these equltes together, we get ( + Q + R) > ( + + ). Exmple. (978 MO), =. crcle s tget terlly to the crcumcrcle of d lso to the sdes, t, Q, respectvely. rove tht the mdpot of segmet Q s the ceter of the crcle of. Soluto. Let be the mdpot of le segmet Q d X be the tersecto of the gle bsector of wth the rc ot cotg. y symmetry, X s dmeter of the crcumcrcle of d X s the mdpot of the rc XQ o the sde crcle, whch mples X bsects Q. Now X = 90 = X so tht X,,, re cocyclc. The X Q X = X = X = X. So X = X. y the theorem, s the ceter of. Exmple. (00 MO) Let be dmeter of the crcle Γ wth ceter O. Let be pot o Γ such tht 0 < O < 0. Let be the mdpot of the rc ot cotg. The le through O prllel to meets the le t J. The perpedculr bsector of O meets Γ t E d t F. rove tht J s the ceter of the trgle EF.

2 Mthemtcl Exclbur, Vol., No., pr My 06 ge E J O F Soluto. The codto O < 0 esures s sde EF (whe O creses to 0, wll cocde wth ). Now rdus O d chord EF re perpedculr d bsect ech other. So EOF s rhombus. Hece s the mdpot of rc EF. The bsects EF. Sce O = O, O = / O = O. The O s prllel to J. Hece OJ s prllelogrm. The J = O = EO = E. y the theorem, J s the ceter of EF. Exmple 4. (996 MO) Let be pot sde trgle such tht =. Let, E be the ceters of trgles, respectvely. Show tht, d E meet t pot. H J K F Soluto. Let les,, tersect the crcumcrcle of g t F, G, H respectvely. Now E G = FG G = FG. Smlrly, = FH. So F bsects HG. Let K be the ceter of HG. The K s o F d les HK, GK pss through the mdpots, J of mor rcs G, H respectvely. Note les, E lso pss through, J s they bsect, respectvely. pplyg scl s theorem (see vol.0, o. of Mth Exclbur) to, G, J,, H, o the crcumcrcle, we see tht =G H, K=GJ H d J= E re coller. Hece, E s o le K, whch s the sme s le. Exmple 5. (006 MO) Let, be two dstct pots o gve crcle O d let be the mdpot of le segmet. Let O be the crcle tget to the le t d tget to the crcle O. Let l be the tget le, dfferet from the le, to O pssg through. Let be the tersecto pot, dfferet from, of l d O. Let Q be the mdpot of the le segmet d O be the crcle tget to the le t Q d tget to the le segmet. rove tht the crcle O s tget to the crcle O. K L J M Soluto. Let the perpedculr to through tersect crcle O t N d M wth N d o the sme sde of le. y symmetry, segmet N s dmeter of the crcle of O d ts mdpot L s the ceter of O. Let le L tersect crcle O g t Z. Let le ZQ tersect le M t J d crcle O g t K. Sce d re tget to crcle O, L bsects so tht Z s the mdpot of rc. Sce Q s the mdpot of segmet, ZQ = 90 = L d JQ = 90 = M. Next ZQ = Z = Z = L. So ZQ, L re smlr. Sce M s the mdpot of rc M, JQ = M = M = M. N Q So JQ, M re smlr. y the tersectg chord theorem, = N M = L M. Usg the smlr trgles bove, we hve Z L M ZQ JQ = =. Q Q y the tersectg chord theorem, KQ ZQ = Q Q so tht KQ = (Q Q)/ZQ = JQ. Ths mples J s the mdpot of KQ. Hece the crcle wth ceter J d dmeter KQ s tget to crcle O t K d tget to t Q. Sce J s o the bsector of, ths crcle s lso tget to. So ths crcle s O. Exmple 6. (989 MO) cute-gled trgle the terl bsector of gle meets the crcumcrcle of the trgle g t. ots d re defed smlrly. Let 0 be the pot of tersecto of the le wth the exterl bsectors of gles d. ots 0 d 0 re defed smlrly. rove tht: () the re of the trgle s twce the re of the hexgo, () the re of the trgle s t lest four tmes the re of the trgle Soluto. () Let be the ceter of. Sce terl gle bsector d exterl gle bsector re perpedculr, we hve 0 0 = 90. y the theorem, =. So must be the mdpot of the hypoteuse 0 of rght trgle 0. So the re of 0 s twce the re of. uttg the hexgo to sx trgles wth commo vertex d pplyg smlr re fct lke the lst sttemet to ech of the sx trgles, we get the cocluso of (). () Usg (), we oly eed to show the re of hexgo s t lest twce the re of. H (cotued o pge 4)

3 Mthemtcl Exclbur, Vol., No., pr My 06 ge roblem orer We welcome reders to submt ther solutos to the problems posed below for publcto cosderto. The solutos should be preceded by the solver s me, home (or eml) ddress d school fflto. lese sed submssos to r. K Y. L, eprtmet of Mthemtcs, The Hog Kog Uversty of Scece & Techology, ler Wter y, Kowloo, Hog Kog. The dedle for submttg solutos s ugust 6, 006. roblem 5. eterme wth proof the lrgest umber x such tht cubcl gft of sde x c be wrpped completely by foldg ut squre of wrppg pper (wthout cuttg). roblem 5. Fd ll polyomls f(x) wth teger coeffcets such tht for every postve teger, s dvsble by f(). roblem 5. Suppose the bsector of tersect the rc opposte the gle o the crcumcrcle of t. Let d be defed smlrly. rove tht the re of s t lest the re of. roblem 54. rove tht f, b, c > 0, the bc ( + b + c) + ( + b + c) 4 bc ( + b + c). roblem 55. Twelve drm groups re to do seres of performces (wth some groups possbly mkg repeted performces) seve dys. Ech group s to see every other group s performce t lest oce oe of ts dy-offs. Fd wth proof the mmum totl umber of performces by these groups. ***************** Solutos **************** roblem 46. spy ple s flyg t the speed of 000 klometers per hour log crcle wth ceter d rdus 0 klometers. rocket s fred from t the sme speed s the spy ple such tht t s lwys o the rdus from to the spy ple. rove such pth for the rocket exsts d fd how log t tkes for the rocket to ht the spy ple. (Source: 965 Sovet Uo Mth Olympd) Soluto. Jeff HEN (Vrg, US), Koyrts G. HRYSSOSTOMOS (Lrss, Greece, techer), G.R.. 0 Mth roblem Group (Rom, tly) d lex O K-ht (STF heg Yu Tug Secodry School). O L Let the spy ple be t Q whe the rocket ws fred. Let L be the pot o the crcle obted by rottg Q by 90 the forwrd drecto of moto wth respect to the ceter. osder the semcrcle wth dmeter L o the sme sde of le L s Q. We wll show the pth from to L log the semcrcle stsfes the codtos. For y pot o the rc QL, let the rdus tersect the semcrcle t R. Let O be the mdpot of L. Sce R Q Q = RL = / RO d L = O, the legth of rc R s the sme s the legth of rc Q. So the codtos re stsfed. Flly, the rocket wll ht the spy ple t L fter 5π/000 hour t ws fred. ommets: Oe solver guessed the pth should be curve d decded to try crculr rc to strt the problem. The other solvers derved the equto of the pth by dfferetl equto s follows: usg polr coordtes, sce the spy ple hs costt gulr velocty of 000/0 = 00 rd/sec, so t tme t, the spy ple s t (0, 00t) d the rocket s t (r(t), θ(t)). Sce the rocket d the spy ple re o the sme rdus, so θ(t) = 00t. Now they hve the sme speed, so The 6 ( r'( t)) + ( r( t) θ '( t)) = 0. r'( t) 00 r( t) = 00. tegrtg both sdes from 0 to t, we get the equto r = 0 s(00t) = 0 s θ, whch descrbes the pth bove. roblem 47. () Fd ll possble postve tegers k such tht there re k postve tegers, every two of them re ot reltvely prme, but every three of them re reltvely prme. (b) eterme wth proof f there exsts fte sequece of postve tegers stsfyg the codtos () bove. (Source: 00 elruss Mth Olympd) Soluto. G.R.. 0 Mth roblem Group (Rom, tly) d YUNG F. () We shll prove by ducto tht the codtos re true for every postve teger k. For k =, the umbers 6, 0, 5 stsfy the codtos. ssume t s true for some k wth the umbers beg,,, k. Let p, p,, p k be dstct prme umbers such tht ech p s greter th k. For = to k, let b = p d let b k+ = p p p k. The gcd(b, b j )=gcd(, j ) > for < j k, gcd(b, b k+ ) = p > for k, gcd(b h, b, b j ) = gcd( h,, j ) = for h < j k d gcd(b, b j, b k+ ) = for < j k, completg the ducto. (b) ssume there re ftely my postve tegers,,, stsfyg the codtos (). Let hve exctly m prme dvsors. For = to m +, sce ech of the m + umbers gcd(, ) s dvsble by oe of these m prmes, by the pgeohole prcple, there re, j wth < j m + such tht gcd(, ) d gcd(, j ) re dvsble by the sme prme. The gcd(,, j ) >, cotrdcto. ommeded solvers: HN Ng Y (rmel ve Grce Foudto Secodry School, Form 6) d HN Yt Sg (rmel ve Grce Foudto Secodry School, Form 6). roblem 48. Let be covex qudrlterl such tht le s tget to the crcle wth sde s dmeter. rove tht le s tget to the crcle wth sde s dmeter f d oly f les d re prllel. Soluto. Jeff HEN (Vrg, US) d Koyrts G. HRYSSOSTOMOS (Lrss, Greece, techer).

4 Mthemtcl Exclbur, Vol., No., pr My 06 ge 4 E Let E be the mdpots of. Sce s tget to the crcle, the dstce from E to le s h = /. Let F be the mdpot of d let h be the dstce from F to le. Observe tht the res of EF d EF = /8. Now le s tget to the crcle wth sde s dmeter h =/ res of EF, EF, EF d EF re equl to /8 EF, EF. roblem 49. For postve teger, f,,, b,, b re [,] d tht F + L + = b + L + b, the 7 + L + ( + L+ ). b b 0 prove Soluto. Jeff HEN (Vrg, US). For x, y [,], we hve / x/y y/ x y (y/ x)(y x) 0 x + y 5xy/. Let x = d y = b, the + b 5 b /. Summg d mpultg, we get b 5 ( 4 + b ) = 5. Let x = ( /b ) / d y = ( b ) /. The x/y = /b [,]. So /b + b 5 /. Summg, we get b + 5 b ddg the two dsplyed equltes, we get 7 + L + ( + L+ ). b b 0. roblem 50. rove tht every rego wth covex polygo boudry cot be dssected to ftely my regos wth ocovex qudrlterl boudres. Soluto. YUNG F. ssume the cotrry tht there s dssecto of the rego to ocovex qudrlterl R, R,, R. For ocovex qudrlterl R, there s vertex where the gle s θ > 80, whch we refer to s the lrge vertex of the qudrlterl. The three other vertces, where the gles re less th 80 wll be referred to s smll vertces. Sce the boudry of the rego s covex polygo, ll the lrge vertces re the teror of the rego. t lrge vertex, oe gle s θ > 80, whle the remg gles re gles of smll vertces of some of the qudrlterls d dd up to 60 θ. Now o ( 60 θ ) ccouts for ll the gles ssocted wth ll the smll vertces. Ths s cotrdcto sce ths wll leve o more gles from the qudrlterls to form the gles of the rego. Olympd orer rt, y (Jue 8, 005) (cotued from pge ) roblem. eterme ll trples of postve tegers (,b,c), such tht + b +c s the lest commo multple of, b d c. roblem. Let, b, c, d be postve rel umbers. rove + b + c + d bcd b c d roblem. cute-gled trgle, crcle k wth dmeter d k wth dmeter re drw. Let E be the foot of o d F be the foot of o. Furthermore, let L d N be the pots whch the le E tersects wth k (wth L lyg o the segmet E) d K d M be the pots whch the le F tersects wth k (wth K o the segmet F). rove tht KLMN s cyclc qudrlterl. rt, y (Jue 9, 005) roblem 4. The fucto f s defed for ll tegers {0,,,, 005}, ssumg o-egtve teger vlues ech cse. Furthermore, the followg codtos re fulflled for ll vlues of x for whch the fucto s defed: f(x + ) = f(x), f(x + ) = f(x) d f(5x + ) = f(5x). How my dfferet vlues c the fucto ssume t most? roblem 5. eterme ll sextuples (,b,c,d,e,f) of rel umbers, such tht the followg system of equtos s fulflled: 4=(b+c+d+e) 4, 4b=(c+d+e+f) 4, 4c=(d+e+f+) 4, 4d=(e+f++b) 4, 4e=(f++b+c) 4, 4f=(+b+c+d) 4. roblem 6. Let Q be pot the teror of cube. rove tht fte umber of les pssg through Q exsts, such tht Q s the md-pot of the le-segmet jog the two pots d R whch the le d the cube tersect. gle sectors sect rcs (cotued from pge ) Let H be the orthoceter of. Let le H tersect t d the crcumcrcle of g t. Note = = = 90 = H. Smlrly, we hve = H. The H. Sce s the mdpot of rc, t s t lest s fr from chord s. So the re of s t lest the re of. The the re of qudrlterl H s t lest twce the re of H. uttg hexgo to three qudrlterls wth commo vertex H d comprg wth cuttg to three trgles wth commo vertex H terms of res, we get the cocluso of (). Remrks. the soluto of (), we sw the orthoceter H of hs the property tht H (hece, lso H = ). These re useful fcts for problems relted to the orthoceters volvg the crcumcrcles.

5 Soluto:, _ _ We frst ote tht 005 = Lettg M := ud Nk := M - (lo.(k- ) + Jo +) ) ) we see tht ech Nk eds 5 d s therefore dvsble by 5, d lso tht ech Nk s composed of the sme umber of ech of the te dgts 0,...,9. Sce we hve fte umber of such umbers Nk but oly fte umber of cogruece clsses modulo 40, some cogruece clss modulo 40 must cot fte umber of umbers Nb. Let N,,, be the smllest mog these umbers. Tkg ll vlues of Nb from ths cogruece clss, we obt u te umber.of umbers of the form Nk - V,,., 5: NL_,,,.!O *oh, ll of whch must be dvsble by 40.. Sce 0 d 40 re reltvely prme, ll resultg umbers Nk_,,, must be dvsble by 40, d sce ech of them eds the dgt 5, they must ll be dvsble by. 005, yeldg &rte umber pf umbers wth, the requred TheeerootsreOdl~f... Wthout loss of geerhty, settg = + $, b = - f d c = 0, we hve $ + $r = 6 d &= - d therefore.' "..., ",+ (f-l-+b~-~)(~"+'+~~+l),=~+b~+4"--~(.'+~~j %-lht whch yelds the requred result., Soluto: =, - '&?b" -(cd)."-'s =s-.(b) - 6.(b) = 8: -8.(-),. _ -. Soluto: f (z, y) s u teger soluto of the gve system of equtos, subtrctg the secod equto from the frst shows us tht. x-yz=.y-z w (z- y)(z+y)+(z--y)=o w (z-y)(z+y+l)=o must hold. We therefore cosder two cres. se:z-y=o ths c&r we hve z = y = m. Substtutg o=me- oe of the gve equtos yelds m=m(m-l), ud we see tht s the product of two cosecutve tegers. s such, must be o-egtve, d ll such umbers ot greter th 005 yeld solutos of ths type. Sce = 980 < 005 d = 070 > 005 there re 45 umbers we c substtute for 4, sce m c sssume y vlue 5 m 5 45, yeldg dfferet vlue of ech cse. (Note tht egtve vlues of m yeld the sme vlues for.) se:z+y+l=o _ ths cee we hve z = m d y = -(m + l), d substtutg ~=mgr+=m(mf)+. yelds ths cse, s oe greter th the product of two cosecutve tegers, d we see tht, every vlue of from se yelds secod possble vlue of 4 by ddg. Ths mes tht there re lso 45 vlues of ths type tht yeld teger solutos of,the system of equtos, mkg the totl umber of such vlues to be 90. ~-- Soluto: osderg symmetrc fuctos yelds the vlues for, 6 d c. Sce +b+c = s,=, b+&+c = +(s;- sg)=-l ud, 6 d c re the roots of the cubc equto ubc = -f * (8; -5 -s,(6+k+co))=0, v R : Numberg the vertces of the hexgo s show tlmfgure, we see tht sdes d 45 of the hexgo le o prke ler d RQ. Sce the lttudes d of the trkrglm ud 845 ech result by subtr&tg the dstce betwee the prllel les d RJ from the equl lttudes d V of tr&+ QR d respectvely, they re of equl legth. t therefore follows tht the sde of the equlterl trgles d 45 re lso of equl legth, d d 45 sre therefore ot oly prllel, but lso of equl legth. The qudrlterl 45 s therefore prllelogrm, d ts dgols tersect ther commo md-pot. t therefore follows tht the dgol 4 of the hexgo pssses through themd-pot of the dgol 5.. logously, the qudrlterl 56 must lso be prllelogrm, d the dgol 6 must therefore lso p& through the md-pot of 5, whch s therefore the commo pot of ll. three dgols of the hexgo. Soluto: We frst ote tht ll three umbers cot be equl, sce ths would mply lcm(, b, c) =, whch cotrdcts cm(, b, c) = + b + c. We ssume o 5 6 -< c wthout loss of geerlty. t follows tht + b < c must hold, ud we therefore hve c<+b+c<c, d therefore + b + c = c (sce kr(, 6, c) must be multple of c) d + b = c. Sce b dvdes cm(, b, c) = 4 + 6, we see tht b dvdes 4. From 5 b we coclude tht ether b = or 6 =. must hold. f b =, we hve c = + 6 = 4, ud therefore fcm(, 6, c) = cm(,, ) = 4, whch s certlyotequlto+b+c=++=4. s - - = 0. f;;f Y

6 .for postve tegers. Q(,b,c)=Zcm(;,0)~~~=++= +b+c We see tht.possble trples wth. the requred property re those of the form.(,+,4 wth >$. Soluto:,We rst ote tht the left bud sde c be wrtte s 0 f&+c+d 0 6.c d. =-&+~+-& d +--&=~+~+-J-p& - -bed f we ow cosder the sequece ( f, f, ;, t) tbree tmes, the rerrgemet &@mty mmedtely yelds _.. : 88 requred. Soluto: 0 k..--- Sce LE = 90 d s the dmeter of ke., E s como pot of d L. Smlrly, F s commo pot of d k. so, sce ZE F LF = 900, both E d F lb o the crcle wth dmeter, s show the fgure. t therefore follows tht E - = F. Sce L s rght trgle wth lttude Lh,.t follows tht E.k K we hve F - = cfl. We therefore hve = L!, d smlrly Furthermore, sce LN s perpedculr to the dmeter of kl, t lso follows, tht L = N must hold, dthe logous rgumet for KM d re, yelds K 5 M., _. e&q, we see tht 8 segmets K, L, M d N re of equl legth. The por& K, L, J4 d Nl therefore le o commo crcle wth md-pot, d KLMN s deed cyclc qudrter s requred. Soluto: For y E {6,,,... ; 005} d rv+ble. by 4, or 5 we hve f(v) = f($ + lj. The oly vhres for y such tht j (y) d f(y - ) c be dfferet re those retv&y. prme to 90. She ~(0) = 8, the fucto f c ssume t most 8 d&ret vhres for y {O;,,. : 9}, d smlrly for uy of the~folowug sets of thrtmmtw. tegers. ; _. Sce t e 0 * , f c ssume d dermf vlues ech of the 66 msecttve e& of 0 comtve tegers. For the lst 5 ;t = 6 elemets of the.& 0,,,...,005], t & sme moth& 8 vlues, sce the lrgest tegk e& th 9 d retvey prm& to 0 s, whch s tself less th 5. t folows tht the totl mxmum umber of vlues the fucto f cu ssume s 67-8 = 56. _. 0 6 Soluto: Frst of h, we ote tht ll vrbles re equ8 to 4. tmes fourth power, d c _ tberefore.ot be egtve. : We ote tht the system s cyclc. f y two successve vrbks re ot equl, wthout loss of geerty sy o : b, comprg the hst two equtos yekls _:L.- _.._ b+c+d+e<c+d6e+f.b< j ud <b<,f.. Sce <,~co&rg the frst d l&t equtos y&ds _ b+ +d&ek+b+c+d =+ :e< d e <.<b<f. *_ Sce e.< f, comprg the lst two,equtos &ds f+fbfc.<+b+c+d =+ f<d d e<<b<f<$. :._ Sce e <.d, 6orprg the fourth d ffth &rtos yelds _- - f++b+c<eff++b. & ccc d c<e<c.b<f<d. Flly,%~e c < d, comprg the thrd d four@ equtos yehls :.. d.+e+f+<e+j++b d<b md: c<e-z<b<f<d<,... whch s cotrdcto for b. t -follows tht sx vrbles must be equl, d sce we therefore hve. h.= (40) d o.0, t folks tht ether 4u = ld therefore = f or 0 = 0 must bold. The oly solutos.of the ~~,ofequtosretb~f?~.(!,,t,t,,) d(o,o,o,o,o,). Soluto: Let be thexf ll &t o the surfce of the cube d the set of ll ports obted by reflectg the pots of c Q. For the sk of,sm&ty,~ we & spek of the cube d the reflected cube c. - *... Sce Q s teror pot of ; t must &. be &or hve commo teror rego. pot of. The two cubes therefore v e cosder the set. Ths set must cot fte umber of pots. f ths were ot the cse, d would oly hve fte umber of pots commo (possbly oe t ). Let us ssume tht ths s the cse. The cubes d cmot tersect commo le sevety or hve ple sectos commo, but rthr oe of the cubes (sy c) must the be j the teso~ of the other (sy ), wth t most some orl of the wttce of beg pots of!. y resos of symmetry; 0 must the & be complete& the teror of, whch s oly possble X = (.e. f Q s the md-pout of ). the cs d hve fte umber of pots commo, cotrdctg the ssumpto tht oly cots. fte tber of pots. We see tht f must cot fte mm&r of pots. Tkg uy of these pots s pt o the surfce of the cube,. we see tht s leo pot o:, d the symmetrc pot to whh espect to Q.must therefore r&o.le o the cube, d c thus be chose s pot R Sde Q s certly the md-pot of y such le segmet R, t see: tht te umber of les wth the requred propertes exst. : _._ c

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS ITS-FT-II Pper-)-PCM-Sol-JEEdvced)/7 I JEE dvced 6, FIITJEE Studets bg 6 Top IR, 75 Top IR, 8 Top 5 IR. 5 Studets from Log Term Clssroom/ Itegrted School Progrm & Studets from ll Progrms hve qulfed JEE

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme The solvblty of egtve Pell equto Jq Wg, Lde C Metor: Xgxue J Bejg Ntol Dy School No66 Yuqu Rod Hd Dst Bejg Ch PC December 8, 013 1 / 4 Pge - 38 Abstrct Pell equto s mportt reserch object elemetry umber

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number. A umber of the form y, where & y are tegers ad s called a comple umber. Dfferet Forms )Cartesa Form y )Polar Form ( cos s ) r or r cs )Epoetal Form r e Demover s Theorem If s ay teger the cos s cos s If

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these Test Paer-II. If s θ + cos θ = m ad sec θ + cosec θ =, the = m ( ) m = (m ) = m (m ). If a ABC, cos A = s B, the t s C a osceles tragle a eulateral tragle a rght agled tragle. If cos B = cos ( A+ C), the

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS GENERLIZTIONS OF CEV S THEOREM ND PPLICTIONS Floret Smaradache Uversty of New Mexco 200 College Road Gallup, NM 87301, US E-mal: smarad@um.edu I these paragraphs oe presets three geeralzatos of the famous

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Evaluating Polynomials

Evaluating Polynomials Uverst of Nebraska - Lcol DgtalCommos@Uverst of Nebraska - Lcol MAT Exam Expostor Papers Math the Mddle Isttute Partershp 7-7 Evaluatg Polomals Thomas J. Harrgto Uverst of Nebraska-Lcol Follow ths ad addtoal

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY So L. BASIN, SYLVANIA ELECTRONIC SYSTEMS, MT. VIEW, CALIF. Sed all commucatos regardg Elemetary Problems Solutos to S e L 8 Bas, 946 Rose Ave., Redwood Cty,

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information