Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

Size: px
Start display at page:

Download "Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference"

Transcription

1 NASA / CPm Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference ; L 2Z Proceedings of a conference sponsored by the NASA Glenn Research Center and held at the Sheraton City Centre, Cleveland, Ohio August 9-11, 2000 National Aeronautics and Space Administration Glenn Research Center December 2000

2 STABILITY AND HEAT TRANSFER CHARACTERISITCS OF CONDENSATE FLUID LAYERS IN REDUCED GRAVITY James C. Hermanson, Andreas N. Alexandrou and William W. Durgin Mechanical Engineering Depm'tment Worcester Polytechnic Institute, Worcester, MA Peder C. Pedersen Electrical and Computer Engineering Department Worcester Polytechnic Institute, Worcester, MA Jeffrey S. Allen National Center for Microgravity Research Cleveland, OH ABSTRACT The focus of this ground-based program is the study of film condensation phenomena under variable, reduced-gravity conditions. Experimental tests, combined with numerical modeling, are employed to gain an improved understanding of the fundamental fluid physics responsible for condensate film growth, film instability and the resulting interracial motion under variable gravity, and the conesponding implications for heat transfer. There has been relatively little research on the mechanisms operative at the film interface between condensed liquid and its vapor under reduced gravity conditions. Of particular interest are the stability characteristics of the condensate layer, and how they differ from those of films of comparable scale in the absence of condensation. A schematic diagram of the principal fluid phenomena expected to be operative during a typical condensation experiment when the acceleration (at a normal or reduced gravity level) is directed away from the condensing surface is shown in the figure below. In the presence of a body force Variable Gravity Vector _ I Cold Surface Saturated sation Condensation \ Surface Rate \ Tension Force (Stabilizing) Vapor e directed away from the plate, the condensate fluid layer will be unstable. This density-driven motion will be opposed by the surface tension, which will attempt to stabilize the fluid interface. In addition, the relatively higher thermal resistance associated with the thick fluid film at the crest will lead to a locally retarded condensation rate compared with that in the thin film regions in the fluid troughs. The opposite sign of the temperature gradient across a condensing film versus that in the more commonly studied heated fluid layer will likely have significant implications for thermocapillary effects. In the case of a condensing layer, thermocapillary forces are expected to have a stabilizing influence on the film surface. Consideration of the combined effects of body NASA/CP

3 force and thermocapillary forces also suggests that unique convective patterns may arise in the presence of condensation under low-gravity conditions. The experimental effort will involve three distinct experimental arrangements using identical test cells. First, lalx)ratory tests will be conducted with a steady, stable condensing film on an upwards-facing, cooled surface to validate the experimental hardware and diagnostics. In the second series of experiments, the test cell will be inverted, using the resulting body force to generate fluid instabilities in the presence of condensation. Finally, in a third series of tests, the test cell will be mounted on a rotating platform to be flown on board a parabolic-trajectory aircraft to yield levels of de-stabilizing artificial gravity ranging fi'om residual levels to approximately 0.1 g. This will allow the study of fluid phenomena in fihn condensation, such as thermocapillary effects, that are not detectable under normal gravity conditions. The dynamic response of the film layer a mechanical perturbation will also be examined. For these experiments, three distinct fluid environments will be created to reveal particular features of the fluid physics associated with condensation in reduced gravity conditions. The fil'st fluid condition is a condensing film in the presence of saturated vapor. Second, a non-condensing, cooled film sun'ounded by a non-condensing gas will be studied. In this case, thermocapillary effects will potentially be present owing to the cooling of the film, but there will be no effects of mass addition and film growth. Third, an isothermal, non-condensing film with mass addition will allow the study of the effects of film growth on layer stability in the absence of thermocapillary effects. The thermal instrumentation Will consist of standard thermocouples and heat transfer gauges. Direct photography and shadowgraph imaging will be employed to determine the features of the resulting instabilities, such as the wavelengths, surface deformation, and droplet formation and departure rates. Laser particle tracking will be employed to reveal the convective motion of the liquid film. Finally, the film thickness and growth rate (hence the condensation rate) will be determined using ultrasound gauging. The applicability of this technique has been recently demonstrated at WPI [1]. The technique can measure fluid film thicknesses as small as 50 #m, using a single transducer at a fi'equency of 10 MHz, with a lateral resolution of as little as 1 nma. Through multiplexing, multiple sites will =be monitored sequentially to provide information on the spatial uniforn-fity of the condensate film and the wavelength and amplitude of surface disturbances. Detailed numerical calculations will be performed for each configuration to model the fi!m layer growth due to condensation, the deveiopment of interfaciai disturbances, and to predict the heat transfer rate. The numerical modeling will be an extension of previous work at WPI on solidification and droplet dynamics [2]. The liquid-vapor interface will be followed exactly using the Inverse Finite Element Method, which has been shown to have the advantages and accuracy in both two-dimensional and three dimensional problems [2]. According to this approach; flae d[scretization is based on an inverse approach where the isotherms are a priori fixed and the non-linear problem is solved for the location of the discrete nodes. This method allows a "complete" solution to this free-and-moving type of problem. [1] Pedersen, P.C., Cakareski, Z., and Hermanson, J.C., "Ultrasonic Monitoring of Film Condensation," Ultrasonics VoI. 38, , [2] Alexandrou, A., "An Inverse Finite Element Method for Directly Formulated Free and Moving Boundary Problems", International Journal of Numerical Methods in Engineering Vol 28, , NASA/CP_

4 NASA/CP

5 NASA/CP_

6 ! NASA/CP

7 NASA/CP )

8 NASA/CP

9 ,,=, mz.m z z NASA/CP_

10 ROLE OF THERMOCAPILLARY FORCES IN CONDENSING (COOLED) VS. HEATED FILMS Cold Ambient Warm - Low Cool- High Surface Tension Surface Tension HEATED SURFACE Thermocapillary forces for the (commonly studied) fluid layer heated from below can serve to drive convective motion. Warm Ambient Cold- Surface High Tension Warmer Surface - Low Tension V COOLED SURFACE Thermocapillary forces for a fluid layer COoled from below (current investigation) oppose fluid motion and are a stabilizing influence on the film. NASA/CP

11

12

13 MEASURED THICKNESS OF CONDENSING FLUID FILMS Downward facing surface (-1 g) t15 r " "-...! "- "" --_;... [ : _' ',." : /_.,_ i 1 i i,, = 105 ' q ' ' "t 1" r''... "'''''... "''''''1 =L= "... " =''''iv t 4. q = i I t00... :-... I... :... f..., " - " :- I q _. i b 4 - i J e _lo... r... J... J... -p-..'l.2 J i!. T- II IIf,.! I "_- I I, l bo 0tJ TIrl_ 1$} Film thickness growth water vapor in air, Water bath temperature 75 C; cooled surface temperature 25 C. 160 ]40, E "=L -_ ]00 :,,': I I I I I I,,,, *...IFI...i...:..._ -:...!... r--')i... i... t... i...! '--:- L t3 E :... ":... o % i lo _ so Time Changes in film thickness for Water bath temperature 85 (s)! : ; i. 40 5(3 60 water vapor in air. C; cooled surface temperature 20 C. The periodic peaks were due to a fluid instability, such as droplet release or droplet motion across the measurement location. NASA/CP_

14 NASA/CP

Module 3: "Thin Film Hydrodynamics" Lecture 12: "" The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template

Module 3: Thin Film Hydrodynamics Lecture 12:  The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template The Lecture Contains: Linear Stability Analysis Some well known instabilities file:///e /courses/colloid_interface_science/lecture12/12_1.htm[6/16/2012 1:39:16 PM] Linear Stability Analysis This analysis

More information

Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions

Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions D. QIU, a G. SON, b V.K. DHIR, a D. CHAO, c AND K. LOGSDON c a Department of Mechanical

More information

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl ChE 385M Surface Phenomena University of Texas at Austin Marangoni-Driven Finger Formation at a Two Fluid Interface James Stiehl Introduction Marangoni phenomena are driven by gradients in surface tension

More information

Thermocapillary Migration of a Drop

Thermocapillary Migration of a Drop Thermocapillary Migration of a Drop An Exact Solution with Newtonian Interfacial Rheology and Stretching/Shrinkage of Interfacial Area Elements for Small Marangoni Numbers R. BALASUBRAMANIAM a AND R. SHANKAR

More information

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Abstract Mutuguta John Wanau 1* 1. School of Pure and Applied Sciences, Murang a University of Technology, P.O box 75-10200,

More information

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection International Journal of Fluid Mechanics & Thermal Sciences 17; 3(4): 41-45 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.1734.1 ISSN: 469-815 (Print); ISSN: 469-8113 (Online) ombined

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/m-K) of 100 mm outside diameter and 8 mm wall thickness. During winter,

More information

Measurement of the performances of a transparent closed loop two-phase thermosyphon

Measurement of the performances of a transparent closed loop two-phase thermosyphon Advanced Computational Methods and Experiments in Heat Transfer XI 227 Measurement of the performances of a transparent closed loop two-phase thermosyphon B. Agostini & M. Habert ABB Switzerland Ltd.,

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

Density Field Measurement by Digital Laser Speckle Photography

Density Field Measurement by Digital Laser Speckle Photography Density Field Measurement by Digital Laser Speckle Photography by M. Kawahashi and H. Hirahara Saitama University Department of Mechanical Engineering Shimo-Okubo 255, Urawa, Saitama, 338-8570, Japan ABSTRACT

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET N. Vetcha S. Smolentsev and M. Abdou Fusion Science and Technology Center at University of California Los Angeles CA

More information

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities:

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities: CHAPTER 19 Fluid Instabilities In this Chapter we discuss the following instabilities: convective instability (Schwarzschild criterion) interface instabilities (Rayleight Taylor & Kelvin-Helmholtz) gravitational

More information

Space experiments of thermocapillary convection in two-liquid layers

Space experiments of thermocapillary convection in two-liquid layers Vol. 45 No. 5 SCIENCE IN CHINA (Series E) October 00 Space experiments of thermocapillary convection in two-liquid layers ZHOU Binghong (q ), LIU Qiushen ( ), HU Liang ( YAO Yonglong ( d ) & HU Wenrui

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

CE MECHANICS OF FLUIDS UNIT I

CE MECHANICS OF FLUIDS UNIT I CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Yoshiyuki Bando 1, Keiji Yasuda 1, Akira Matsuoka 1 and Yasuhito Kawase 2 1. Department of Chemical Engineering,

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

INFLUENCE OF GEOMETRICAL ASPECT RATIO ON THE OSCILLATORY MARANGONI CONVECTION IN LIQUID BRIDGES R. MONTI, R. SAVINO, M. LAPPA *

INFLUENCE OF GEOMETRICAL ASPECT RATIO ON THE OSCILLATORY MARANGONI CONVECTION IN LIQUID BRIDGES R. MONTI, R. SAVINO, M. LAPPA * AUTHOR S POST PRINT (Romeo Colour: Green) Acta Astronautica (ISSN: 94-5765) Vol. 47, No., pp. 753-76, 2. DOI.6/S94-5765()26- Publisher version available at http://www.sciencedirect.com/science/article/pii/s94576526

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

8800 Greenbelt Rd Greenbelt, MD 20771, USA

8800 Greenbelt Rd Greenbelt, MD 20771, USA Terrestrial and Micro-gravity Experimental Study of Micro-scale Heat Transport Device Driven by Electrohydrodynamic Conduction Pumping Franklin Robinson 1, Viral K. Patel 2, Jamal Seyed-Yagoobi 2 and Jeffrey

More information

Linear Transport Relations (LTR)

Linear Transport Relations (LTR) Linear Transport Relations (LTR) Much of Transport Phenomena deals with the exchange of momentum, mass, or heat between two (or many) objects. Often, the most mathematically simple way to consider how

More information

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger Journal of Physics: Conference Series PAPER OPEN ACCESS An eperimental investigation on condensation of R134a refrigerant in microchannel heat echanger To cite this article: A S Shamirzaev 218 J. Phys.:

More information

Chapter 3 Convective Dynamics

Chapter 3 Convective Dynamics Chapter 3 Convective Dynamics Photographs Todd Lindley 3.2 Ordinary or "air-mass storm 3.2.1. Main Characteristics Consists of a single cell (updraft/downdraft pair) Forms in environment characterized

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Technological Evaluation of the MIM (TEM & TEM-2) Final Research Report

Technological Evaluation of the MIM (TEM & TEM-2) Final Research Report INTRODUCTION Technological Evaluation of the MIM (TEM & TEM-2) Final Research Report Jeff Allen 1, University of Dayton September 6, 2000 Low-gravity fluid physics experiments are generally designed to

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

Solids, Liquids, and Gases

Solids, Liquids, and Gases Date Class _ Solids, Liquids, and Gases Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. _ 1. The surface of water can act like a sort of skin due to a property

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

Boiling and Condensation (ME742)

Boiling and Condensation (ME742) Indian Institute of Technology Kanpur Department of Mechanical Engineering Boiling and Condensation (ME742) PG/Open Elective Credits: 3-0-0-9 Updated Syllabus: Introduction: Applications of boiling and

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass Matter Matter: anything that takes up space and has mass Can you think of anything that is not made of matter? Energy- which is a property of matter!! Matter is made up of moving particles! Instead of

More information

Electrically Induced Instabilities of Liquid Metal Free Surfaces

Electrically Induced Instabilities of Liquid Metal Free Surfaces International Scientific Colloquium Modelling for Material Processing Riga, June 8-9, 2006 Electrically Induced Instabilities of Liquid Metal Free Surfaces D. Schulze, Ch. Karcher, V. Kocourek, J.U. Mohring

More information

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE TE 75R RESEARCH RUBBER FRICTION TEST MACHINE Background: The Research Rubber Friction Test Machine offers the ability to investigate fully the frictional behaviour of rubbery materials both in dry and

More information

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction CALIFORNIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering ME 96 Free and Forced Convection Experiment Revised: 25 April 1994 1. Introduction The term forced convection refers to heat transport

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Geodynamics Lecture 10 The forces driving plate tectonics

Geodynamics Lecture 10 The forces driving plate tectonics Geodynamics Lecture 10 The forces driving plate tectonics Lecturer: David Whipp! david.whipp@helsinki.fi!! 2.10.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Describe how thermal convection

More information

Example Problems in FIDAP January, Compiled by Bruce A. Finlayson For use only by Students at the University of Washington

Example Problems in FIDAP January, Compiled by Bruce A. Finlayson For use only by Students at the University of Washington Example Problems in FIDAP January, 2000 Compiled by Bruce A. Finlayson For use only by Students at the University of Washington This document is a collection of lists and pictures showing the examples

More information

How do we understand weather?

How do we understand weather? How do we understand weather? Fluid: a substance that continually deforms under an applied shear stress. Fluids are a subset of the phases of matter which includes liquids, gases, plasmas, and plastic

More information

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

Numerical Studies of Droplet Deformation and Break-up

Numerical Studies of Droplet Deformation and Break-up ILASS Americas 14th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2001 Numerical Studies of Droplet Deformation and Break-up B. T. Helenbrook Department of Mechanical and

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410

More information

VIBRATIONS INDUCED FLOW IN A HORIZONTAL CENTRIFUGAL CASTING

VIBRATIONS INDUCED FLOW IN A HORIZONTAL CENTRIFUGAL CASTING CFD Modeling and Simulation in Materials Edited by: Laurentiu Nastac, Lifeng Zhang, Brian G. Thomas, Adrian Sabau, Nagy El-Kaddah, Adam C. Powell, and Hervé Combeau TMS (The Minerals, Metals & Materials

More information

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet , pp. 704 709 The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet Piljong LEE, Haewon CHOI 1) and Sunghong LEE 2) Technical Research Center, POSCO, Pohang

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Myeong Chan Jo for the degree of Master of Science in Mechanical Engineering presented on June 17, 2008. Title: Thermally Actuated Pumping of a Single-phase Fluid using Surface

More information

Surface Acoustic Wave Atomizer with Pumping Effect

Surface Acoustic Wave Atomizer with Pumping Effect Surface Acoustic Wave Atomizer with Pumping Effect Minoru KUROSAWA, Takayuki WATANABE and Toshiro HIGUCHI Dept. of Precision Machinery Engineering, Faculty of Engineering, University of Tokyo 7-3-1 Hongo,

More information

The Flow of Thin Liquid Layers on Circular Cylinders

The Flow of Thin Liquid Layers on Circular Cylinders The Flow of Thin Liquid Layers on Circular Cylinders Leonard W. Schwartz and Thomas A. Cender Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 ISCST-20180917PM-A-CF4 Presented

More information

Available online at ScienceDirect. Physics Procedia 67 (2015 ) Superfluid helium heat pipe. P.

Available online at   ScienceDirect. Physics Procedia 67 (2015 ) Superfluid helium heat pipe. P. Available online at www.sciencedirect.com ScienceDirect Physics Procedia 67 (2015 ) 625 630 25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014,

More information

Chapter 5: Weather. Only Section 1: What is Weather?

Chapter 5: Weather. Only Section 1: What is Weather? Chapter 5: Weather Only Section 1: What is Weather? Find the definitions of: Meteorology, meteorologist, weather, climate Not in book? Use the dictionaries **Meteorology - Meteorology is the study of the

More information

Dynamics of Transient Liquid Injection:

Dynamics of Transient Liquid Injection: Dynamics of Transient Liquid Injection: K-H instability, vorticity dynamics, R-T instability, capillary action, and cavitation William A. Sirignano University of California, Irvine -- Round liquid columns

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

Observations of Thermo-Electric MHD Driven Flows in the SLiDE Apparatus

Observations of Thermo-Electric MHD Driven Flows in the SLiDE Apparatus Observations of Thermo-Electric MHD Driven Flows in the SLiDE Apparatus M.A. Jaworski, Wenyu Xu, M. Antonelli, J.J. Kim, M.B. Lee, V. Surla and D.N. Ruzic Department of Nuclear, Plasma and Radiological

More information

THERMOCAPILLARY CONVECTION IN A LIQUID BRIDGE SUBJECTED TO INTERFACIAL COOLING

THERMOCAPILLARY CONVECTION IN A LIQUID BRIDGE SUBJECTED TO INTERFACIAL COOLING THERMOCAPILLARY CONVECTION IN A LIQUID BRIDGE SUBJECTED TO INTERFACIAL COOLING Melnikov D. E. and Shevtsova V. M. Abstract Influence of heat loss through interface on a supercritical three-dimensional

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Evaporation/condensation in a microscale

Evaporation/condensation in a microscale Evaporation/condensation in a microscale Robert Hołyst Institute of Physical Chemistry PAS, Poland kornienko Vova Babin Maxwell (1877) microscopically evaporation is driven by particles diffusion in the

More information

SUMMER 17 EXAMINATION

SUMMER 17 EXAMINATION (ISO/IEC - 700-005 Certified) SUMMER 7 EXAMINATION 70 Model ject Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

Photographic study of high-flux subcooled flow boiling and critical heat flux

Photographic study of high-flux subcooled flow boiling and critical heat flux International Communications in Heat and Mass Transfer 34 (2007) 653 660 www.elsevier.com/locate/ichmt Photographic study of high-flux subcooled flow boiling and critical heat flux Hui Zhang a, Issam Mudawar

More information

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids Flow Control Large scale test sections with water/koh working liquid Penetrations (e.g. modified

More information

Lecture 2 - Thursday, May 11 th, 3pm-6pm

Lecture 2 - Thursday, May 11 th, 3pm-6pm PHYSICS 8A Final Exam Spring 2017 - C. Bordel Lecture 2 - Thursday, May 11 th, 3pm-6pm Student name: Student ID #: Discussion section #: Name of your GSI: Day/time of your DS: Physics Instructions In the

More information

Lecture 3: Convective Heat Transfer I

Lecture 3: Convective Heat Transfer I Lecture 3: Convective Heat Transfer I Kerry Emanuel; notes by Paige Martin and Daniel Mukiibi June 18 1 Introduction In the first lecture, we discussed radiative transfer in the climate system. Here, we

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Applied Thermodynamics HEAT TRANSFER. Introduction What and How? LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: ENGR. ALIYU, S.J Course code: MCE 311 Course title: Applied Thermodynamics

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

Minhhung Doan, Thanhtrung Dang

Minhhung Doan, Thanhtrung Dang An Experimental Investigation on Condensation in Horizontal Microchannels Minhhung Doan, Thanhtrung Dang Department of Thermal Engineering, Hochiminh City University of Technology and Education, Vietnam

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 5 NATURAL CONVECTION HEAT TRANSFER BASIC CONCEPTS MECHANISM OF NATURAL

More information

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns The International Journal of Engineering and Science (IJES) Volume 6 Issue 7 Pages PP 01-12 2017 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Comparison of Heat Transfer rate of closed loop micro pulsating

More information

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 8 July 2016 ISSN: 2455-5703 Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya 14.03.15 In this paper Evaporation-driven particle self-assembly can be used to generate three-dimensional

More information

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006 ATS 351 Lab 7 Precipitation March 7, 2006 Droplet Growth by Collision and Coalescence Growth by condensation alone takes too long ( 15 C -) Occurs in clouds with tops warmer than 5 F Greater the speed

More information

FOAM DRAINAGE part 3

FOAM DRAINAGE part 3 FOAM DRAINAGE part 3 gas effect : coupling coarsening and drainage () C 2 F 6 :almost «insoluble», so no coarsening N 2 : much more soluble, significantly faster coarsening Free-drainage, liquid fraction

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Atwood number effects in buoyancy driven flows

Atwood number effects in buoyancy driven flows Advanced Computational Methods in Heat Transfer IX 259 Atwood number effects in buoyancy driven flows M. J. Andrews & F. F. Jebrail Los Alamos National Laboratory, USA Abstract Consideration is given to

More information

Opposed Flow Impact on Flame Spread Above Liquid Fuel Pools

Opposed Flow Impact on Flame Spread Above Liquid Fuel Pools Opposed Flow Impact on Flame Spread Above Liquid s Jinsheng Cai, Feng Liu, and William A. Sirignano Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975 Abstract

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

ATMO 551a Fall The Carnot Cycle

ATMO 551a Fall The Carnot Cycle What is a arnot ycle and Why do we care The arnot ycle arnot was a French engineer who was trying to understand how to extract usable mechanical work from a heat engine, that is an engine where a gas or

More information

EXPERIMENTAL STUDY OF MULTICELLULAR NATURAL CONVECTION IN A TALL AIR LAYER

EXPERIMENTAL STUDY OF MULTICELLULAR NATURAL CONVECTION IN A TALL AIR LAYER EXPERIMENTAL STUDY OF MULTICELLULAR NATURAL CONVECTION IN A TALL AIR LAYER R. SAGARA 1, Y. SHIMIZU 1, K. INOUE 1 and T. MASUOKA 2 1 Department of Mechanical Systems Engineering, The University of Kitakyushu

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Damping of Thermocapillary Destabilization of a Liquid Film in Zero Gravity Through the Use of an Isothermal Porous Substrate

Damping of Thermocapillary Destabilization of a Liquid Film in Zero Gravity Through the Use of an Isothermal Porous Substrate Research Article Damping of Thermocapillary Destabilization of a Liquid Film in Zero Gravity Through the Use of an Isothermal Porous Substrate Aneet D. Narendranath Department of Mechanical Engineering-Engineering

More information

Probability Distribution of a Pilot Wave Droplet

Probability Distribution of a Pilot Wave Droplet WJP, PHY382 (2015) Wabash Journal of Physics v3.3, p.1 Probability Distribution of a Pilot Wave Droplet Badger, Bradon, Caddick, Jacob, and J. Brown Department of Physics, Wabash College, Crawfordsville,

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Temperature fields in a liquid due to the thermocapillary motion of bubbles and drops

Temperature fields in a liquid due to the thermocapillary motion of bubbles and drops Temperature fields in a liquid due to the thermocapillary motion of bubbles and drops G. Wozniak, R. Balasubramaniam, P. H. Hadland, R. S. Subramanian Experiments in Fluids 31 2001) 84±89 Ó Springer-Verlag

More information

GCSE PHYSICS REVISION LIST

GCSE PHYSICS REVISION LIST GCSE PHYSICS REVISION LIST OCR Gateway Physics (J249) from 2016 Topic P1: Matter P1.1 Describe how and why the atomic model has changed over time Describe the structure of the atom and discuss the charges

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

11. Advanced Radiation

11. Advanced Radiation . Advanced adiation. Gray Surfaces The gray surface is a medium whose monochromatic emissivity ( λ does not vary with wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic

More information

Intermolecular Forces

Intermolecular Forces There are two kinds of forces involving molecules: a) Intramolecular forces b) Intermolecular forces The Intramolecular forces are the bonds between atoms in the molecule: Ionic, Polar covalent, covalent

More information

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING 1 INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING M. J. McCready, D. D. Uphold, K. A. Gifford Department of Chemical Engineering University of Notre Dame Notre

More information

A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing process

A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing process 8 th International Conference on Thermal Engineering: Theory and Applications May 8-2, 205, Amman-Jordan A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing

More information

Steady and Unsteady Computational Results of Full 2 Dimensional Governing Equations for Annular Internal Condensing Flows

Steady and Unsteady Computational Results of Full 2 Dimensional Governing Equations for Annular Internal Condensing Flows Steady and Unsteady Computational Results of Full 2 Dimensional Governing Equations for Annular Internal Condensing Flows Ranjeeth Naik, Soumya Mitra, Amitabh Narain, Nikhil Shankar Acknowledgments: NSF-CBET-1033591

More information