SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 GSA Data Repository 080 Schorn et al., 08, Thermal buffering in the orogenic crust: Geology, SUPPLEMENTARY INFORMATION 3 PHASE DIAGRAM MODELING Phase diagrams are constructed in the eleven-component MnNCKFMASHTO (MnO Na O CaO K O FeO MgO Al O 3 SiO H O TiO O) model system using THERMOCALC v3.45e (Powell and Holland, 988) and an updated version of the dataset ds6 (file tc-ds63.txt, created 05/0/05; Holland and Powell, 0). The activity composition relationships for garnet, orthopyroxene and biotite are those of White et al. (04b), ilmenite hematite is from White et al. (000), C plagioclase and K-feldspar are from Holland and Powell (003) and muscovite is from White et al. (04), but with a reduced G mod value (see notation in Green et al., 06) for the margarite end-member of 5 kj mol from 6.5 kj mol (Palin et al., 06). Augitic clinopyroxene and tonalitic melt are from Green et al. (06). The aluminosilicates, quartz and aqueous fluid (H O) are taken as pure end-member phases. The utilised bulk compositions are listed in Tables DR and DR Enthalpy depends on the amount of material and the absolute values calculated are a function of the bulk composition considered. An arbitrary temperature of 600 ºC has been chosen as common reference point. The subsolidus part of Fig. D F and DR3B has been calculated assuming fluid-saturated conditions; the extensive property of enthalpy implies that the slope of the isotherms is slightly different to the suprasolidus part. It should be noted that the relative spacing between the isotherms remains unvaried compared to the suprasolidus conditions. This indicates that in both the sub- and suprasolidus parts of the diagrams the same increase in enthalpy generally produces the same increment in temperature. Figure DR3 shows the pressure-enthalpy diagrams contoured for temperature for the refractory granite (Fig. DR3A) and the fertile metapelite (Fig. DR3B). Figure DR4 illustrates the relationship between temperature and heating rate in function of variable heat production (S).

2 6 THERMAL MODEL 7 8 The model is based on the formulation that describes the rate of temperature change due to heat input (Stüwe, 007) where S is the volumetric rate of heat production (W m -3 ). Prograde metamorphic reactions consume energy in order to advance (i.e. endothermic). We therefore discriminate between heat that is added (S) from heat that is consumed by the advancing reactions. S is the heat production for which we assume a range of values between 0 µw m -3 (Andreoli et al., 006; Stüwe, 007). ρ is the density (kg m 3 ) and C p is the heat capacity at constant pressure. The values for ρ are calculated along an isobaric heating path at 0.6 GPa assuming a closed system with full melt retention. In this simplest of cases the effect of thermal buffering is likely underestimated as melt retention neglects advective cooling via melt extraction occurring in natural systems. The values for the heat capacity C p are calculated via for a given enthalpy ( H) and temperature interval ( T) on Fig. E, as calculated by THERMOCALC. The modelling yields the enthalpy of reaction at any point in PT space for the given bulk composition. Contrary to the latent heat of fusion (~400 kj kg of granite; Bea, 0) the enthalpy of reaction also considers energy released by the crystallisation of peritectic phases (e.g. feldspars and alumosilicates for the muscovite-breakdown) and represents a more realistic estimate for the energetics involved in the investigated reactions. The values for C p are normalised to the molar weight of the bulk composition of Ague (99), calculated as kg mol -. From () the time parameter dt of thermal buffering is calculated for a given temperature interval via 3 45 From the characteristic time scale of thermal equilibration, given by the relationship

3 ~ (e.g. Stüwe, 007) the critical length scale of thermal equilibration L is estimated using Delta t calculated from (3) and taken as the time scale of thermal equilibration (t eq ). We reformulate (4) to ~ 5 48 where κ is the thermal diffusivity (m s - ) calculated from assuming a constant thermal conductivity k of.5 J s - m - K -. Values for typical crystalline rocks range between J s - m - K - (e.g. Stüwe, 007); this range of values affects our results by ± 5 %, therefore less than an order of magnitude. Homogenous thermal conductivity is assumed for our schematic model. Density and heat capacity are calculated from the modelling The calculated values for the critical length scale (equation 5) for a variable heat production are plotted against temperature (Fig. 3). Fig. 4 illustrates the calculated critical length scale (equation 5, Fig. 4A) and buffering time (equation 4, Fig. 4B) for the investigated reactions as a function of heat production. Supplementary figure DR4 shows the relationship of temperature and rate of temperature increment for the investigated reactions, calculated from equation () REFERENCES CITED Bea, F., 0, The sources of energy for crustal melting and the geochemistry of heat-producing elements: Lithos, v. 53, p Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B. and Palin, R. M., 06, Activity composition relations for the calculation of partial melting equilibria in metabasic rocks: Journal of Metamorphic Geology, v. 34, p

4 Holland, T. J. B. and Powell, R., 003, Activity composition relations for phases in petrological calculations: an asymmetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 45, p Holland, T. J. B. and Powell, R., 0, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: Journal of Metamorphic Geology, v. 9, p Powell, R. and Holland, T. J. B., 988, An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Application, methods, worked examples and a computer program: Journal of Metamorphic Geology, v. 6, p Stüwe, K., 007, Geodynamics of the Lithosphere, Springer Verlag, Berlin, Germany. White, R. W., Powell, R. and Johnson, T. E., 04, The effect of Mn on mineral stability in metapelites revisited: new a x relations for manganese-bearing minerals: Journal of Metamorphic Geology, v. 3, p White, R. W., Powell, R., Holland, T. J. B. and Worley, B. A., 000, The effect of TiO and Fe O 3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K O FeO MgO Al O 3 SiO H O TiO Fe O 3 : Journal of Metamorphic Geology, v. 8, p White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E. and Green, E. C. R., 04b, New mineral activity composition relations for thermodynamic calculations in metapelitic systems: Journal of Metamorphic Geology, v. 3, p

5 FIGURE CAPTIONS Figure DR. Results of modelling calculations, pressure enthalpy phase equilibrium diagrams contoured for temperature. A: Average granite. B: Average metapelite. A and D: Enthalpy depends on the amount of material and the absolute values calculated are a function of the bulk composition considered. An arbitrary temperature of 600 ºC has been chosen as common reference point (see text). Mineral abbreviations: bi biotite, cd cordierite, cpx clinopyroxene, g garnet, melt granitic melt, Melt tonalitic melt, ilm ilmenite, ksp K-feldspar, ky kyanite, mt magnetite, mu muscovite, opx orthopyroxene, pl plagioclase, q quartz, ru rutile, sill sillimanite, sp spinel Figure DR. Relationship between temperature and rate of temperature increment during thermal buffering in function of external heat production (S) at 0.6 GPa. The colored shading indicates the location of reaction () and (), respectively. 00 5

6 (A) granite g cpx bi solidus + q + ksp + ilm + mt g cpx opx Melt Fig. DR C 700 C Pressure (GPa) g cpx opx bi 800 C cpx opx Melt 900 C 000 C 0.4 cpx Melt 0.3 cpx opx bi opx Melt Melt Pressure (GPa) Enthalpy (kj.mol - ) (B) metapelite C + q + pl + ilm + melt g bi cd ksp mt 8 cd mt [q] Enthalpy (kj.mol - ) 700 C wet solidus 750 C g bi sill mu pl ilm q melt g bi sill mu pl ilm mt q melt 3 bi sill ksp pl ilm mt q melt 4 bi cd ksp pl ilm mt q melt H O 5 bi cd ksp pl ilm mt q melt 6 bi cd ksp pl ilm mt melt 7 g opx bi cd ksp pl ilm mt melt 8 g opx cd ksp pl ilm mt melt g bi ky mu 800 C 850 C g bi sill ksp mt g bi sill mu ksp mt ky sill g bi cd sill ksp mt g bi sill ksp g cd sill ksp mt g cd ksp mt 900 C 6 g cd ksp mt [q] 950 C g sill ksp C 9 opx cd ksp pl ilm mt melt 0 opx cd pl ilm mt melt cd pl ilm mt melt g cd pl ilm mt melt 3 g cd sp pl ilm mt melt 4 g cd sp ksp pl ilm mt melt 5 g cd sill ksp pl ilm mt melt 6 g cd sill ksp pl ilm q melt

7 Temperature ( C) S (µw.m -3 ) Fig. DR Rate of temperature increment (K.my - )

8 TABLE DR. BULK-ROCK COMPOSITIONS (WT% OXIDES) Lithology SiO TiO Al O 3 Fe O 3 FeO MnO MgO CaO Na O K O P O 5 Fe 3+ /Fe + avg. A-type granite* avg. amphibolite-facies metapelite *Whalen et al Ague, 99. TABLE DR. BULK-ROCK COMPOSITIONS EMPLOYED IN PHASE EQUILIBRIA MODELLING (MOL% OXIDES). SEE TABLE DR FOR ORIGINAL DATA Lithology H O SiO Al O 3 CaO* MgO FeO K O Na O TiO MnO O avg. A-type granite avg. amphibolite-facies metapelite *corrected in proportion to the P O 5 -content to account for CaO accomodated in apatite. Whalen et al Ague, 99.

GSA Data Repository

GSA Data Repository GSA Data Repository 2019057 1 METHODS Grain Boundary Imaging and Orientation Analysis Backscatter electron (BSE) maps of thin sections were acquired using the FEI Verios XHR scanning electron microscope

More information

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams Metamorphic Petrology GLY 262 P-T and T-X phase diagrams How do we estimate P-T conditions? Inverse modelling: (1) Look at our rock, identify the mineral assemblage and determine the compositions of the

More information

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2016 GEOLOGY 285: INTRO. PETROLOGY Metamorphic Mineralogy depends on Temperature, Pressure and Rock Composition but Metamorphic

More information

The microstructural and metamorphic history. preserved within garnet porphyroblasts

The microstructural and metamorphic history. preserved within garnet porphyroblasts The microstructural and metamorphic history preserved within garnet porphyroblasts from southern Vermont and northwestern Massachusetts VOLUME II Thesis submitted by Bronwyn Patricia GAVIN BSc (Hons) Canterbury,

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL GSA DATA REPOSITORY 2014105 Earth s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia Jonathan M. Pownall 1, Robert Hall 1, Richard A. Armstrong 2, and Marnie A. Forster

More information

Activity-composition relationships

Activity-composition relationships Activity-composition relationships back In the application of equilibrium thermodynamics, the starting point is the equilibrium relationship : the relationship for a balanced chemical reaction between

More information

Metamorphic Petrology GLY 712 Geothermo-barometry

Metamorphic Petrology GLY 712 Geothermo-barometry Metamorphic Petrology GLY 712 Geothermo-barometry What is thermobarometry? Thermobarometry is concerned with estimating or inferring the temperatures and pressures at which a rock formed and/or subsequently

More information

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure Melting of crustal materials at high pressure Melting in the crust: the traditional low pressure view to be applied to HP CaO P 2 O 5 Zircon from a HP granite HP-HT garnets from Massif Central (Vielzeuf

More information

Metamorphic Petrology GLY 262 P-T-t paths

Metamorphic Petrology GLY 262 P-T-t paths Metamorphic Petrology GLY 262 P-T-t paths Pressure-Temperature-Time (P-T-t) Paths The complete set of T-P conditions that a rock may experience during a metamorphic cycle from burial to metamorphism (and

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

Lecture 14: A brief review

Lecture 14: A brief review Lecture 14: A brief review A few updates for the remainder of the course Report for the lab on pelite metamorphism - Lab 3 Needs to be handed in before Tuesday the 14 th of March at 17:00. My most important

More information

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology GLY 262 Metamorphic fluids Metamorphic Petrology GLY 262 Metamorphic fluids The metamorphic fluid is arguably the most geologically important phase Spear (1993) The great volumetric abundance of hydrate-rich and carbonate-rich minerals

More information

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 Homework Assignment 3 Calculation of CIPW Norm Due in Class February 13, 2008 Problem

More information

Grimmer et al. GSA DATA REPOSITORY

Grimmer et al. GSA DATA REPOSITORY GSA DATA REPOSITORY 2015126 Grimmer et al. Additional methodological details P-T pseudosection calculation To constrain detailed P-T paths of the garnet-micaschists and the garnet-kyanite-micaschists,

More information

In this practical we study the AKF and the Thompson AFM diagrams for pelites.

In this practical we study the AKF and the Thompson AFM diagrams for pelites. LIVERPOOL UNIVERSITY EARTH SCIENCE ENVS212 page 1 of 10 ENVS212 Practical 6: Triangular compatibility diagrams for pelites In this practical we study the AKF and the Thompson AFM diagrams for pelites.

More information

Melt loss and the preservation of granulite facies mineral assemblages

Melt loss and the preservation of granulite facies mineral assemblages J. metamorphic Geol., 2002, 20, 621 632 Melt loss and the preservation of granulite facies mineral assemblages R. W. WHITE AND R. POWELL School of Earth Sciences, University of Melbourne, Parkville, Victoria

More information

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome 6.1 Introduction The capacity of a rock to attain equilibrium is governed by complex interdependent

More information

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf]

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf] TABLE DR1. LOWER CRUSTAL GRANULITE XENOLITH DERIVATION AND MINERALOGY Sample Kimberlite Type Mineralogy KX1-1 Lace s gt + qz + sa + rt (sil, ky, gr, su, cor, zr, mz) KX1-2 Lace s gt + sa + qz + rt (sil,

More information

This file is part of the following reference: Access to this file is available from:

This file is part of the following reference: Access to this file is available from: ResearchOnline@JCU This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD

More information

Supplementary Table 1.

Supplementary Table 1. Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades. Metamorphic

More information

Metastable presence of Andalusite to partial melting conditions in migmatites of the Simin area, Hamadan, Iran

Metastable presence of Andalusite to partial melting conditions in migmatites of the Simin area, Hamadan, Iran Metastable presence of Andalusite to partial melting conditions in migmatites of the Simin area, Hamadan, Iran Seyedeh R. Jafari 1,2, Ali A. Sepahi 2 1- The Young Researchers Club of Hamadan (Islamic Azad

More information

MET LABS 3 and 4: METABASITES

MET LABS 3 and 4: METABASITES GEOLOGY 13.53: Igneous and Metamorphic Petrology MET LABS 3 and 4: METABASITES Learning Objectives: Students will improve their ability to describe a metamorphic rock Students will be able to assign metamorphic

More information

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET-

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET- SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET- BEARING SCHIST: IMPLICATIONS FOR ISOPLETH THERMOBAROMETRY 7 ABSTRACT Quantitative P-T

More information

TRUTH AND BEAUTY IN METAMORPHIC PHASE-EQUILIBRIA: CONJUGATE VARIABLES AND PHASE DIAGRAMS

TRUTH AND BEAUTY IN METAMORPHIC PHASE-EQUILIBRIA: CONJUGATE VARIABLES AND PHASE DIAGRAMS 21 The Canadian Mineralogist Vol. 43, pp. 21-33 (2005) TRUTH AND BEAUTY IN METAMORPHIC PHASE-EQUILIBRIA: CONJUGATE VARIABLES AND PHASE DIAGRAMS ROGER POWELL School of Earth Sciences, University of Melbourne,

More information

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition Metamorphic Energy Flow Categories of Metamorphism Best, Chapter 10 Metamorphic processes are endothermic They absorb heat and mechanical energy Absorption of heat in orogenic belts Causes growth of mineral

More information

Chapter IV MINERAL CHEMISTRY

Chapter IV MINERAL CHEMISTRY Chapter IV MINERAL CHEMISTRY Chapter-IV MINERAL CHEMISTRY 4.1 INTRODUCTION In this chapter, chemical analyses of different minerals present in various rocks of Mashhad granitoid plutons have been presented.

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

Lithos. A year in the life of an aluminous metapelite xenolith The role of heating rates, reaction overstep, H 2 O retention and melt loss

Lithos. A year in the life of an aluminous metapelite xenolith The role of heating rates, reaction overstep, H 2 O retention and melt loss Lithos 124 (2011) 132 143 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos A year in the life of an aluminous metapelite xenolith The role of heating rates,

More information

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Mark Brandriss, Smith College Mineral assemblages preserved in metamorphic rocks record information

More information

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Chapter 5 Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Andrew Putnis & Håkon Austrheim Equilibration

More information

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY Brandon E. Schwab Department of Geology Humboldt State University

More information

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites Marbles and Metaperidotites; GEOL 13.53 Metamorphic Lecture 5 Metaperidotites and Marbles Typical Composition of Peridotites and Carbonate Rocks Peridotite Limestone Dolostone SiO 2 42.26 3.64 0.41 Al

More information

RECEIVED MARCH 25, 2000; REVISED TYPESCRIPT ACCEPTED AUGUST 16, 2001

RECEIVED MARCH 25, 2000; REVISED TYPESCRIPT ACCEPTED AUGUST 16, 2001 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 2 PAGES 291 314 2002 The Fluid-absent Partial Melting of a Zoisite-bearing Quartz Eclogite from 1 0 to 3 2 GPa; Implications for Melting in Thickened Continental Crust

More information

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area Breeding, Ague, and Brocker 1 Figure DR1 21 o 24 Greece o A 38 o Athens Tinos 37 o Syros Attic-Cycladic Blueschist Belt Syros Kampos B Study Area Ermoupoli N Vari Unit Cycladic HP-LT Unit Marble horizons

More information

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks NOTES- NOTISER A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks WILLIAM L. GRIFFIN & MICHAEL T. STYLES Griffin, W. L. & Styles, M. T.: A projection for analysis of mineral

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2019 Delamination and recycling of Archaean crust caused by gravitational instabilities Tim E. Johnson 1, Michael Brown 2, Boris Kaus 1,3 & Jill A. VanTongeren

More information

Metal saturation in the upper mantle

Metal saturation in the upper mantle Vol 449 27 September 2007 Metal saturation in the upper mantle A. Rohrbach, C. Ballhaus, U. Golla Schindler, P. Ulmer,V.S. Kamenetsky, D.V. Kuzmin NS seminar 2007.10.25 The uppermost mantle is oxidized.

More information

CHAPTER VI CONCLUSIONS

CHAPTER VI CONCLUSIONS CHAPTER VI CONCLUSIONS In this Chapter, salient observations made in understanding the various tectonothermal events, including U-Pb in-situ monazite geochronology of Sargur schists and granulites exposed

More information

Lecture part 60% Tests: 1st: Topic 1-3 (20%) 2nd: Topic 4-9 (20%) 3rd: Topic (20%) Final: all

Lecture part 60% Tests: 1st: Topic 1-3 (20%) 2nd: Topic 4-9 (20%) 3rd: Topic (20%) Final: all Igneous and metamorphic petrology 1. Fundamentals 2. Classification 3. Thermodynamics and kinetics Igneous 4. Silicate melts and fluids 5. Crystal melt equilibria 6. Chemical dynamics of melts and crystals

More information

Geology 222b Problem Geothermometry

Geology 222b Problem Geothermometry Geology 222b Problem Geothermometry 1. Show the following on a single plot of Temperature (horizontal axis -- increasing to the right) versus Depth (vertical axis -- increasing downward from the surface

More information

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia. Cumulate-rich xenolith suite in Late Cenozoic basaltic eruptives, Hepburn Lagoon, Newlyn, in relation to western Victorian lithosphere F. L. SUTHERLAND 1, J. D. HOLLIS 2, W. D. BIRCH 3, R. E. POGSON 1

More information

LETTER. Earth s first stable continents did not form by subduction

LETTER. Earth s first stable continents did not form by subduction doi:10.1038/nature21383 Earth s first stable continents did not form by subduction Tim E. Johnson 1, Michael Brown 2, Nicholas J. Gardiner 1, Christopher L. Kirkland 1 & R. Hugh Smithies 3 The geodynamic

More information

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in Chapter - IV PETROGRAPHY 4.1. Introduction Petrographic studies are an integral part of any structural or petrological studies in identifying the mineral assemblages, assigning nomenclature and identifying

More information

Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa J. metamorphic Geol., 2010, 28, 269 291 doi:10.1111/j.1525-1314.2010.00868.x Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

More information

T6 soil base cation weathering rates

T6 soil base cation weathering rates T6 soil base cation weathering rates julian aherne :: trent university FORFLUX :: biogeochemistry of irish forests [RSF 07510] Advisory Group Meeting [5 6 December 2011] objective (a) to determine the

More information

Metamorphic Facies. Fig Temperaturepressure

Metamorphic Facies. Fig Temperaturepressure Metamorphic Facies Fig. 25.2. Temperaturepressure diagram showing the generally accepted limits of the various facies used in this text. Boundaries are approximate and gradational. The typical or average

More information

Feldspar in felsic orthogneiss as indicator for UHT crustal processes

Feldspar in felsic orthogneiss as indicator for UHT crustal processes 260 Journal of Mineralogical and Petrological T. Hokada and Sciences, S. Suzuki Volume 101, page 260 264, 2006 LETTER Feldspar in felsic orthogneiss as indicator for UHT crustal processes Tomokazu HOKADA

More information

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic processes Metamorphism is very complex and involves a large number of chemical and physical processes occurring

More information

The field area is in northeastern Connecticut. It is located at the southern tip of the

The field area is in northeastern Connecticut. It is located at the southern tip of the DATA REPOSITORY ITEM 013067 Ague et al. FIELD AREA The field area is in northeastern Connecticut. It is located at the southern tip of the Acadian thermal high in New England. The rock samples are from

More information

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases Geology 633 Metamorphism and Lithosphere Evolution Thermodynamic calculation of mineral reactions I: Reactions involving pure phases The formulation for the free energy change of any reaction involving

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models Numerical Modelling in Predictive Mineral Discovery: Geochemical Models F1-2 pmd Team Thursday 4 th September 2003 Key F1/2 Workflow Modelling mineral deposit geology and fluid processes using equilibrium

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks

Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks 4 Michael Brown and Fawna J Korhonen Abstract: Typically melting occurs during decompression in ultra-high-pressure terranes, along the

More information

Gondwana Research 20 (2011) Contents lists available at ScienceDirect. Gondwana Research. journal homepage:

Gondwana Research 20 (2011) Contents lists available at ScienceDirect. Gondwana Research. journal homepage: Gondwana Research 0 (0) 4 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr New constraints on UHT metamorphism in the Eastern Ghats Province through

More information

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA JESSICA A. MATTHEWS Amherst College Sponsor: John T. Cheney INTRODUCTION A diverse Precambrian sequence of garnetrich

More information

drawpd basic operation

drawpd basic operation drawpd basic operation drawpd basic operation connect interpolation in Tx and Px (see below) scripts changing starting guessses printxyz and xyzguess (was readxyz) see in context in a minute scripts changing

More information

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS Allanite Plagioclase C17-3 C17-3 C17-3 C17-3 Mean C17-3 C17-3 C17-3 C17-3 Mean E1C E1R

More information

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES Geology 316 (Petrology) (03/26/2012) Name LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES INTRODUCTION Ultramafic rocks are igneous rocks containing less than 10% felsic minerals (quartz + feldspars

More information

Phase Equilibrium Modeling of MT UHP Eclogite: a Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China

Phase Equilibrium Modeling of MT UHP Eclogite: a Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China J OURNAL OF P ETROLOGY Journal of Petrology, 2018, Vol. 59, No. 7, 1253 1280 doi: 10.1093/petrology/egy060 Advance Access Publication Date: 11 June 2018 Original Article Phase Equilibrium Modeling of MT

More information

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones cosmic rays Fluids, s, and supercriticality in the MSH system and element transport in subduction zones 10 Be volcanic front N, O 10 Be ocean water + CO 2 tracing petrologic and geotectonic processes (trace)

More information

A. One component system (c = 1)

A. One component system (c = 1) A. One component system (c = 1) Example: SiO 2 system. Since all phases in this system have the same composition, there are no compositional variables to consider. Phase equilibria can be shown completely

More information

Modeling prograde TiO 2 activity and its significance for Ti in quartz thermobarometry of pelitic metamorphic rocks

Modeling prograde TiO 2 activity and its significance for Ti in quartz thermobarometry of pelitic metamorphic rocks DOI 10.1007/s00410-015-1118-7 ORIGINAL PAPER Modeling prograde TiO 2 activity and its significance for Ti in quartz thermobarometry of pelitic metamorphic rocks Kyle T. Ashley Richard D. Law Received:

More information

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart CHAPTER 9: INTRODUCTION TO THERMODYNAMICS Sarah Lambart RECAP CHAP. 8: SILICATE MINERALOGY Orthosilicate: islands olivine: solid solution, ie physical properties vary between 2 endmembers: Forsterite (Mg

More information

Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach

Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach T. N. Jowhar Wadia Institute of Himalyan Geology, Dehradun 248001, India ABSTRACT In this paper computer program THERMOCALC,

More information

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith Ultramafic rocks Definition: Color Index > 90, i.e., less than 10% felsic minerals. Not to be confused with Ultrabasic Rocks which are rocks with

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Dynamic weakening of ring faults and catastrophic caldera collapse

Dynamic weakening of ring faults and catastrophic caldera collapse GSA Data Repository 019045 Dynamic weakening of ring faults and catastrophic caldera collapse Raehee Han*, Jong Sun Kim, Chang Min Kim, Takehiro Hirose, Jong Ok Jeong, Gi Young Jeong *E mail: raeheehan@gnu.ac.kr

More information

The Composition of the Continental Crust

The Composition of the Continental Crust The Composition of the Continental Crust Roberta L. Rudnick Geochemistry Laboratory Department of Geology University of Maryland Apollo 17 view of Earth Rationale: Why is studying crust composition important?

More information

Lithos 116 (2010) Contents lists available at ScienceDirect. Lithos. journal homepage:

Lithos 116 (2010) Contents lists available at ScienceDirect. Lithos. journal homepage: Lithos 116 (2010) 230 248 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Modeling multiple melt loss events in the evolution of an active continental

More information

Petrogenesis of Metamorphic Rocks

Petrogenesis of Metamorphic Rocks Petrogenesis of Metamorphic Rocks Springer-Verlag Berlin Heidelberg GmbH Kurt Bucher Martin Frey ( t) Petrogenesis of Metamorphic Rocks 7th Completely Revised and Updated Edition With 99 Figures and 25

More information

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information

THERMOCALC Course 2009: Day 3. Chemical systems, phase diagrams, tips & tricks. Richard White. Institute for Geosciences University of Mainz

THERMOCALC Course 2009: Day 3. Chemical systems, phase diagrams, tips & tricks. Richard White. Institute for Geosciences University of Mainz THERMOCALC Course 2009: Day 3 Chemical systems, phase diagrams, tips & tricks Richard White Institute for Geosciences University of Mainz Outline What chemical system to use differences between systems

More information

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program Vol. 12, No. 2, 1383/2004 Fall & Winter Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program A. Saki, M. Moazzen, M. Moayyed Department of Geology,

More information

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque GSA Data Repository 2017365 Marshall et al., 2017, The role of serpentinite derived fluids in metasomatism of the Colorado Plateau (USA) lithospheric mantle: Geology, https://doi.org/10.1130/g39444.1 Appendix

More information

Common non-silicate planetary minerals

Common non-silicate planetary minerals Common non-silicate planetary minerals Many of the non-silicate minerals are simple oxides. Corundum Al2O3 Al2+3 O3-2 Rutile Ti2O3 Ti2+3 O3-2 Ilmenite FeTiO3 Fe+3Ti+3O3-2 Hematite Fe2O3 Fe2+3 O3-2 Families

More information

Introductory Statement:

Introductory Statement: The use of visualization and sketches of thin sections to encourage a better understanding of phase diagrams: Binary and ternary phase diagram exercises Jennifer M. Wenner Drew S. Coleman Introductory

More information

Introduction to Geology Spring 2008

Introduction to Geology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.001 Introduction to Geology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Regional metamorphism

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Description of Supplementary Files

Description of Supplementary Files Description of Supplementary Files File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References File Name: Peer Review File Supplementary figure

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2013019 Supplemental information for The Solidus of Alkaline Carbonatite in the Deep Mantle Konstantin D. Litasov, Anton Shatskiy, Eiji Ohtani, and Gregory M. Yaxley EXPERIMENTAL METHODS

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

Metamorphic Petrology

Metamorphic Petrology Metamorphic Petrology Lecture 1: Metamorphic phenomena and their characterization: An introduction by Stephan K Matthäi MP-SKM, slide 1 I will try to teach you: Course Objectives To identify common metamorphic

More information

Multistage metamorphism of garnet orthopyroxenites from the Maowu mafic ultramafic complex, Dabieshan UHP terrane, eastern China

Multistage metamorphism of garnet orthopyroxenites from the Maowu mafic ultramafic complex, Dabieshan UHP terrane, eastern China This article was downloaded by: [Institute of Geology and Geophysics ] On: 17 September 2013, At: 19:39 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

Reactions take place in a direction that lowers Gibbs free energy

Reactions take place in a direction that lowers Gibbs free energy Metamorphic Rocks Reminder notes: Metamorphism Metasomatism Regional metamorphism Contact metamorphism Protolith Prograde Retrograde Fluids dewatering and decarbonation volatile flux Chemical change vs

More information

Calculating pressures and temperatures of petrologic events: geothermobarometry

Calculating pressures and temperatures of petrologic events: geothermobarometry Calculating pressures and temperatures of petrologic events: geothermobarometry Donna L. Whitney University of Minnesota Minneapolis, Minnesota 55455 The goal of this exercise is to calculate the pressure

More information

The Effect of Cr 2 O 3 on the Partial Melting of Spinel Lherzolite in the System CaO MgO Al 2 O 3 SiO 2 Cr 2 O 3 at 11 GPa

The Effect of Cr 2 O 3 on the Partial Melting of Spinel Lherzolite in the System CaO MgO Al 2 O 3 SiO 2 Cr 2 O 3 at 11 GPa JOURNAL OF PETROLOGY VOLUME 45 NUMBER 11 PAGES 2261 2286 2004 doi:10.1093/petrology/egh055 The Effect of Cr 2 O 3 on the Partial Melting of Spinel Lherzolite in the System CaO MgO Al 2 O 3 SiO 2 Cr 2 O

More information

ERSC 3P21. Metamorphic Petrology

ERSC 3P21. Metamorphic Petrology ERSC 3P21 Metamorphic Petrology, and adjustments in solid rocks in response to and conditions which have been imposed due to changes in (_) and (_) The conditions of metamorphism differ from the conditions

More information

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at   China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS GEOSCIENCE FRONTIERS 3(5) (2012) 603e611 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf RESEARCH PAPER Spinel

More information

Geology 222 Problem Geotherm

Geology 222 Problem Geotherm Geology 222 Problem Geotherm 1. Show the following on a single plot of Temperature (horizontal axis -- increasing to the right) versus Depth (vertical axis -- increasing downward from the surface of the

More information

Progressive Metamorphism. Progressive Metamorphism. P-T-t t Path. Prograde Reactions. Progressive Metamorphism. Types of Protolith

Progressive Metamorphism. Progressive Metamorphism. P-T-t t Path. Prograde Reactions. Progressive Metamorphism. Types of Protolith Progressive Metamorphism Reading: Winter, Chapter 21 Progressive Metamorphism Prograde: increase in metamorphic grade with time as a rock is subjected to gradually more severe conditions Prograde metamorphism:

More information

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds Metamorphic Petrology GLY 262 Metamorphic reactions and isograds What do we mean by reaction? Reaction: change in the nature or types of phases in a system=> formation of new mineral(s) ) which are stable

More information

Shortcuts to mineral formulae

Shortcuts to mineral formulae Silicates JD Price Silicate Structure Silicate Structure (SiO2) Shortcuts to mineral formulae W cations with 8- (Ca 2+, Fe 2+, Mn 2+, Na + ) to 12-fold coordination (K +, Ba 2+ ) X divalent cations in

More information

Constraining the Water Activity during Peak Metamorphism in a Thermal Aureole; a Mineral Equilibria Approach

Constraining the Water Activity during Peak Metamorphism in a Thermal Aureole; a Mineral Equilibria Approach Journal of Sciences, Islamic Republic of Iran 26(2): 153-161 (2015) University of Tehran, ISSN 1016-1104 http://jsciences.ut.ac.ir Constraining the Water Activity during Peak Metamorphism in a Thermal

More information

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Problem 24-1: Given the following mineral compositions (Fe is Fe +2 unless indicated): Staurolite (St) (Fe,Mg)

More information

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below).

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below). 1 Reaction Types & Curves Handout Dexter Perkins, Dept. of Geology, University of North Dakota.. (Based heavily on material provided by Dave Hirsch, Western Washington University) Reactions among solid

More information

A sequence of partial melting reactions at Mt Stafford, central Australia

A sequence of partial melting reactions at Mt Stafford, central Australia J. metamorphic Geol., 1998, 16, 363 378 A sequence of partial melting reactions at Mt Stafford, central Australia J. E. GREENFIELD,1 G. L. CLARKE1 AND R. W. WHITE2 1Department of Geology and Geophysics,

More information

Rcrust: a tool for calculating path-dependent open system. processes and application to melt loss

Rcrust: a tool for calculating path-dependent open system. processes and application to melt loss Rcrust: a tool for calculating path-dependent open system processes and application to melt loss by Matthew Jason Mayne Thesis presented in fulfilment of the requirements for the degree of Master of Science

More information