Seismic Analysis Without Seismic Data. The relevance of ground observation for seismic interpretation.

Size: px
Start display at page:

Download "Seismic Analysis Without Seismic Data. The relevance of ground observation for seismic interpretation."

Transcription

1 Seismic Analysis Without Seismic Data. The relevance of ground observation for seismic interpretation. Jarufe, Juan Andres Assistant Professor at Universidad de Santiago de Chile and Consultant at SRK Consulting Chile Soto, C. Senior Consultant, SRK Consulting Chile Verdugo, J. Geomechanics Principal, Aes-Gener Chile ABSTRACT: Underground mines and tunnels advance at a great pace. In many cases, the transition from stable to seismically active ground occurs faster than the ability of the organization to justify, design, install and implement a seismic monitoring frame, with seismicity occurring only to the eyes of the workers and not being documented in any way. In this paper, the relevance of ground observations is accounted as fundamental part in the understanding of the mechanism that generate seismicity. Empirical relations obtained from seismic data are applied to ground collected information and meaningful conclusions can be drawn about the geologic environment where tunneling is progressing. Key words: Rockburst; Seismicity; Tunnels; Ground Control; Energy Demand; Geology. 1 INTRODUCTION During the development of mines and tunnels in central Chile, ground experience has shown that at depths of 500 m. below surface, rock noises start to be heard by workers. From this point forward, and as result of the abrupt topography that exist in Chilean mountains and the high horizontal compressive stress regime, the effects from excavation induced seismicity increases rapidly with the tunnel advance, in many occasions too fast for mines that originally did not consider a seismic environment, thus the implementation of a system to manage those seismic effects can take up to several months to be fully applicable, and probably, delaying further excavations until a system to evaluate seismic hazard is implemented.

2 This paper describes a method to process ground instabilities observations and make them available as a number that can be used to achieve a better understanding of the failure process that affect the tunnel and relate seismic related instabilities with geological conditions. 2 ALTO MAIPO AND VA-1 TUNNEL. The Alto Maipo Hydropower Project correspond to the construction of two underground hydroelectric power plants along the Colorado River, southeast of Santiago, in central Chile. Together, the power stations will generate up to 531 MW of electricity, supplying the Central electrical grid with an average production of 2350GWh. VA-1 is the name of the adit tunnel that access to one of the power stations. It is a m tunnel starting with 5 meters of overburden but increasing up to 1050m at the end of it (Fig.1). Tunnel section has 42.6 m 2 into a 6.9x6.9 section advanced through drilling and blasting method (Russo and Saragoni 2016) 3 GEOTECHNICAL SETTINGS AT VA1 TUNNEL This project is located in central Chile mountains, specifically in the Cajon del Maipo glacier valley, marked by stratified volcanic rock part of the Abanico rock formation (Eocene-Oligocene), composed by lava, volcanic brechia and andesitic lapilli. The most relevant structural feature corresponds to the homosynclinal rock strata s dipping at NNW-SSE/15 (Figure 2) Fig. 1. Overburden above tunnel VA-1 and cross section specifications (Internal Report) Fig. 2 Regional geological setting at VA-1 tunnel (Armijo et al. 2010, modified by Rauld 2011). Tunnel is driven perpendicular to the stratification thus, several strata layers are expected to be crossed during tunnel. Geologic theory states that in each strata fold there are oblique and tension joints that define discontinuities that the tunnel will face during it advance.

3 Fig. 3 Joint systems associated with rock beddings (modified from Price 1966) Starting in PK 1+950, a decametric thick layer of andesite has been excavated. Intact rock is characterized by high strength and a very stiff rock (Table 1), with intact rock strength as high as 230 MPa. When this data is compared with published from seismically active mines, it is clear the rock material is prone to a relevant seismic response (Figure 4). Table 1. Intact rock properties for main water tunnel Geotechnical Unit Intact Rock Strength Stress orientation is estimated from borehole damage inspection, HI stress cells and Hydraulic Fracturing stress measurement. Based on this data, a stress model that corresponds well with the existing compressive regime controlled by the subduction of the Nazca plate below the American plate was developed. Sigma one is estimated to be horizontal, with a range as shown in Fig. 5. Due to the mountain topography, Sigma 2 and Sigma 3 have very similar magnitudes thus, the orientation of these stresses can be swapped between them. Considering this, the minimum stress calculations resulted in a horizontal orientation, perpendicular to the orientation of the maximim stress (Fig. 5), generating a high anisotropy on tunnels running south, like VA1- tunnel. σci mi Ei µi Andesite Fig. 5 Stress field orientation in tunnel under investigation. Note S2 and S3 orientations overlapping (Internal Report) Fig. 4 Intact rock classification proposed by Deere and Miller According to the stress model accepted on site, stresses magnitudes are governed by rock column heigh, thus by surface topography. The stress field along the tunnel axis is shown in Fig. 6, with values up to 60 MPa at the end of the tunnel.

4 Fig. 7 Expected severity of the brittle failure events based on the geomechanical data collected (Internal Report) Fig. 6 Stress field magnitude increase along tunnel axis 4 SEISMICALLY RELATED ROCKFALLS As the tunnel advanced deep underground, ground personnel started to hear noises and cracks inside the rock in the hours following blasting. As tunnel excavations progressed, these rock sounds were accompanied by rockfalls at unsupported walls, where gravitational fall of ground was the predominating mechanism nevertheless, rock ejection up to some distance from the face was steadily being introduced as an important instability. This ground experiences were supported by rockburst proneness engineering analysis (Fig.7), where the ratio between the maximum stress around excavation and UCS was related to high energy rockburst events with very severe overbreak (Diederichs, 2005, 2010; Hoek, 2010; modif.) Location and time of rockfall, in absolute terms and relative to the last blast. Dimensioning of the rockfall, size and volume. Distance travelled by the failed rock, from the tunnel wall to the ground where it was observed. Location of the rock failure in the tunnel, indicating crown, walls, roof, etc. Damaged rock support Any additional information, as rock noises reported before the fall of ground or some important lithologic change, etc. This information is continuously being documented each time rockfalls occur at VA-1 tunnel. Since STR increased as the tunnel advanced, the number of reports also did, currently forming a robust database of more than 200 actual rockfalls that happened as the tunnel progressed. As seismically triggered rockfalls (STR) were becoming more common with tunnel advance, a report system describing the rock failure was implemented, where important information about rockfalls was documented as:

5 20% 15% 10% 5% 0% 80% 60% 40% 20% 0% TIme of Day Distribution Ejected Weigth (ton) occurring in between blasts. The ejected distance is for most of the events less than one meter, corresponding to a gravitational fall induced by shaking (Kaiser et al. 1996), nevertheless there are rockfalls reported to have been ejected up to 7 meters from the tunnel wall. Supporting the previous chart, the weight of the detached rock in most of the cases is less than one ton (related to the ejection distance lower than 1 meter), but it can be seen also rockfalls up to 130 tons, when large volumes of rock were ejected from the face (Fig. 9) 80% 60% 40% 20% 0% Ejected Distance (m) % 40% 20% 0% Rockfall Heigth (m) Fig. 8 Description of the some of the parameters that describe seismically triggered rockfalls. As shown in Fig.8, the STR database can give some indications about the behavior of rockfalls. While there is some correlation with blast time, usually performed at 06:00 in the morning and 22:00 at night, there is still a great number of rockfalls Fig. 9 Example of two large rockfalls where more than half of the excavation face was ejected, with more than 100 tons of displaced rock. Tunnel section is 7 X 7 m aprox. Also, more than 80% of STR occur from the roof of the excavation, related to a horizontally compressive stress regime.

6 5 BACK ANALYSIS OF SEISMICALLY TRIGGERED ROCKFALL EVENTS The information about distance travelled and size of the ejected block certainly is useful, but the consolidation of these parameters into one single value is much more useful, since only one parameter describes the rock condition at the ejection time. Also, while weight and ejection distance are good parameters that describe the instability, the use of individual parameters does not give a complete picture of the mechanism involved, since high weight ejections not necessarily are ejected a large distance thus, both analysis will not lead to the same conclusion. A method to include all the previous data into one single parameter is the back analysis of the ejection velocity and the associated energy to remove the block from the stable position and eject it to the ground. This method presented by Tannant et al has been use in many individual analysis of rockburst around the world (Jarufe and Vasquez 2014). This method shown in equation 1 and schematically in Fig. 10, v e = d g 2h cos 2 θ+dsin 2θ (1) Based on the ejection velocity (ve) and the mass of the detached block (m), the kinetic energy (Ec) can be calculated according to equation 2 E c = 1 2 m v e 2 (2) In this work, this calculation was applied to each of the STR reported by the construction team, thus a large database covering 2 years of seismically related instabilities along 2 km of deep stressed tunneling was built. This database provides invaluable information about the real, observed behavior of the tunnel, useful to develop empirical relationships between damage and excavation parameters. All the energy results obtained in this analysis will be normalized by the ejected area to get kj/m 2 as the resulting unit, which has been used extensively in rockburst back analysis and support elements energy absorption capacity calculations, thus, reference values for comparison exist. Time History of Energy Release The spatial evolution of the rockfalls can be seen in Fig. 11, where the normalized energy (Total energy /ejected area) is accumulated through the development of the tunnel. It can be seen a clear change in the trend after the 1900 m chainage, where a substantial increase in the accumulative energy occurs. In Fig.11, the energy of each individual rockfall is plotted as a color circle, where the color represents the distance from the blast when the rockfall happened. Red circles correspond to rockfalls that happened more than 50 meters from the blast, while blue circles corresponds to rockfalls that happened at or near the blasted face. Fig. 10 Description of parameters to estimate energy associated to rock ejection (from Kaiser et al. 1986)

7 Fig. 11 History of energy associated to rockfalls during tunnel construction. Color indicate the distance to the blasted face. There are some zones where rockfalls persisted as the tunnel advance, i.e., zones with red circles indicating that the rockfall happened away from the blast are clustered around chainage 500, 1000 and with more occurrences in chainage This result is consistent with the rockfall timing after blast (Fig.12), where individual rockfall energies are plotted as colored diamonds where red correspond to rockfalls that happened more than 9 hours after blast. These red labeled rockfalls occur at chainage 500 and 1900, coincident with the zones with persistent rockfall, even when the blast were done more than 50 meters from damage location. After Blast STR attenuation Along with the energy, the time difference between the rockfall occurrence and the last blast was measured. When all this information is merged together, the rate of seismicity after blast and the distance of events to the blasted face can be plotted as in Fig.13. there high normalized energy (kj/m 2 ) rockfalls occur not only during blast, but up to several hours later. The case presented in Fig. 13 show two groups of large events; those that occur at the same time than the blast, induced by the stress change at the excavation face, and those large events that occur several hours after the blast, more related to a fault slip mechanism (Potvin & Hudyma 2012) triggered by the near blast (Woodward 2016). It can also be seen, as the color scale, that several rockfalls occur several meters (more than 50m) from the current excavation face, symptom also related to the existence of faults that accumulate and transfer stresses. Fig. 13 Relative energy accumulation after blast (dashed line) and normalized energy of each rockfall in the hours following each blast. Fig. 12 History of energy associated to rockfalls during tunnel construction. Color indicate the time after last blasted face. Frequency of energy released: When plotting the accumulative frequency/ energy chart (Fig. 14), considering the total energy associated to each STR (not normalized by area), an important part of the data can be adjusted by a linear relationship. If the same linear relationship that exist in earthquake seismology si applied, the maximum energy to be released through rock fracturing is

8 around 1000 KJ, which normalized by half of the tunnel face area (largest rockburst at the face), correspond to 47KJ/m 2, defined as a severe rockburst incident in the Canadian Rockburst Handbook (Kaiser et al. 1996). In the same way, the minimum energy associated with the linear trend correspond to 2KJ, value associated with small rockfalls at the face, that occur in the first few hours after blast, thus, not all observed since the sector is under after blast restriction period i.e. many small rockfalls that occur, are not measured in this time window. This information suggests that there are specific zones in the rock mass where the rock responds differently to the induced stresses and, starting from chainage 1900, a different rock type occurs, marked by more violent rockfall occurrences. The fact that there are large instabilities meters behind the face and that this corresponds with the zones where instability happened long time after the blast is an indication of a fault slip mechanism, recognized by large event occurrence (Gibowicz and Kijko 1990, Ortlepp 1992, Hasegawa 1984), away from blasts (Swanson 1992, Swan and Semanedi 1992, Mckinnon 2006, etc..) and with a considerable time difference in respect to the last blast (Gibowicks and Kijko 1990, Beneteau 2012) Based on this, it is recommended that these structures or lithological changes must be recognized and characterized as this features may be present in the future construction of the tunnel. 7 ACKNOWLEDGMENT Fig. 14 Accumulative frequency of energy occurrences based on the proposed method, identifying a emin and emax value. 6 CONCLUSIONS FROM ESTIMATED ROCKFALL ENERGY. From the previous results, it can be stated that: 1. There are sharp changes in the behavior of the accumulative estimated energy, most noticeable in chainage Only 60% of the total seismic energy after blast occurs in the first 7 following hours 3. Rockfalls that occur far away from the blast face are clustered in specific zones along the tunnel chainage. 4. Rockfalls that occur more than 9 hours after the blast are clustered in the same zone as those in point 3. Authors would like to thanks AES-GENER and SRK Consulting Chile for their permission to publish this work. Also to the Australian centre for Geomechanics and the mxrap international Consortium. 8 REFERENCES 1. Armijo, R. et al., The West Andean Thrust, the San Ramon Fault, and the seismic hazard for Santiago, Chile. Tectonics, 29(2). 2. Diederichs, MS, Carter, T. Martin Practical Rock Spall Prediction in Tunnel. Proceedings of World Tunneling Congress '10 - Vancouver. 3. Gibowicz, S. J., & Kijko, A. (1990). An Introduction to Mining Seismology. Elsevier. 4. Jarufe, J. A. & Vásquez, P., Numerical modelling of rock-burst loading for use in

9 rock support design at Codelco s New Mine Level Project. Mining Technology, 123(3), pp Kaiser, P. K., McCreath, D. R. & Tannant, D. D., Canadian rokburst support handbook. 1 ed. Sudbury: Elsevier. 6. McKinnon, S. D. (2006). Triggering of Seismicity Remote from Active Mining Excavations. Rock Mechanics and Rock Engineering, 39(3), Ortlepp, W. D. (1992). Note on fault-slip motion inferred from a study of microcataclastic particles from an underground shear rupture. Pure and Applied Geophysics. 8. Price, N. J., Fault and Joint Development in Brittle Rock and Semi- Brittle Rock. 1 st ed. Oxford: Pergamon Press Ltd. 9. Swan, G., & Semadeni, T. (1992). Rockbursts in a development drift: field observations. Workshop on Induced Seismicity. 10. Tannant, D.D., McDowell, G.M., Brummer, R.K., Kaiser, P.K. (1993). Ejection Velocities measured during a rockburst simulation experiment. 3 rd Int. Symp. On Rockburst and Seismicity in Mines. A.A. Balkema, Rotterdam,

Empirical Design in Geotechnical Engineering

Empirical Design in Geotechnical Engineering EOSC433: Geotechnical Engineering Practice & Design Lecture 5: Empirical Design (Rock Mass Classification & Characterization) 1of 42 Erik Eberhardt UBC Geological Engineering EOSC 433 (2013) Empirical

More information

Open Pit Rockslide Runout

Open Pit Rockslide Runout EOSC433/536: Geological Engineering Practice I Rock Engineering Lecture 5: Empirical Design & Rock Mass Characterization 1of 46 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) Open Pit Rockslide

More information

ISMS Paper No Influence of weak planes on rockburst occurrence. Amin Manouchehrian, Ming Cai *

ISMS Paper No Influence of weak planes on rockburst occurrence. Amin Manouchehrian, Ming Cai * Paper No. 176 ISMS 2016 Influence of weak planes on rockburst occurrence Amin Manouchehrian, Ming Cai * Bharti School of Engineering, Laurentian University, Sudbury, Canada, P3E 2C6 MIRARCO, Laurentian

More information

Ground Support in Mining and Underground Construction

Ground Support in Mining and Underground Construction Ground Support in Mining and Underground Construction Proceedings of the Fifth International Symposium on Ground Support 28-30 September 2004, Perth, Western Australia Edited by Ernesto Villaescusa Yves

More information

A NEW ROCK BOLT CONCEPT FOR UNDERGROUND EXCAVATIONS UNDER HIGH STRESS CONDITIONS

A NEW ROCK BOLT CONCEPT FOR UNDERGROUND EXCAVATIONS UNDER HIGH STRESS CONDITIONS A NEW ROCK BOLT CONCEPT FOR UNDERGROUND EXCAVATIONS UNDER HIGH STRESS CONDITIONS François Charette 1 and Michel Plouffe 2 1 Atlas Copco MAI, 2 CANMET-MMSL, Natural Resources Canada Abstract This paper

More information

Correlating seismic wave velocity measurements with mining activities at Williams Mine

Correlating seismic wave velocity measurements with mining activities at Williams Mine Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_19_rebuli/ Correlating seismic wave

More information

NUMERICAL MODELING OF BRITTLE ROCK FAILURE UNDER DYNAMIC STRESS LOADING. N. Golchinfar and M. Cai

NUMERICAL MODELING OF BRITTLE ROCK FAILURE UNDER DYNAMIC STRESS LOADING. N. Golchinfar and M. Cai NUMERICAL MODELING OF BRITTLE ROCK FAILURE UNDER DYNAMIC STRESS LOADING N. Golchinfar and M. Cai Laurentian University 935 Ramsey Lake Road Sudbury, Canada P3E 2C6 NUMERICAL MODELING OF BRITTLE ROCK FAILURE

More information

Influence of the undercut height on the behaviour of pillars at the extraction level in block and panel caving operations

Influence of the undercut height on the behaviour of pillars at the extraction level in block and panel caving operations Caving 2018 Y Potvin and J Jakubec (eds) 2018 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-9-4 https://papers.acg.uwa.edu.au/p/1815_24_alvarez/ Influence of the undercut height on the

More information

Establishing a Methodology for the Assessment of Remnant Stability Using Recorded Seismic Events on Harmony Mines

Establishing a Methodology for the Assessment of Remnant Stability Using Recorded Seismic Events on Harmony Mines SHIRMS 2008 Y. Potvin, J. Carter, A. Dyskin, R. Jeffrey (eds) 2008 Australian Centre for Geomechanics, Perth, ISBN 978-0-9804185-5-2 Establishing a Methodology for the Assessment of Remnant Stability Using

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

Weak Rock - Controlling Ground Deformations

Weak Rock - Controlling Ground Deformations EOSC 547: Tunnelling & Underground Design Topic 7: Ground Characteristic & Support Reaction Curves 1 of 35 Tunnelling Grad Class (2014) Dr. Erik Eberhardt Weak Rock - Controlling Ground Deformations To

More information

Prevention and Control of Rockbursts in Dongguashan Copper Mine

Prevention and Control of Rockbursts in Dongguashan Copper Mine Prevention and Control of Rockbursts in Dongguashan Copper Mine L. Tang Central South University, Changsha, P. R. China K. Xia University of Toronto, Toronto, Canada ABSTRACT: A seismic monitoring system

More information

In situ stress estimation using acoustic televiewer data

In situ stress estimation using acoustic televiewer data Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_39_goodfellow/ SD Goodfellow KORE

More information

Numerical analysis of ground motion in a South African mine using SPECFEM3D

Numerical analysis of ground motion in a South African mine using SPECFEM3D Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_20_wang/ Numerical analysis of ground

More information

Application of rock mass classification systems as a tool for rock mass strength determination

Application of rock mass classification systems as a tool for rock mass strength determination Deep Mining 217: Eighth International Conference on Deep and High Stress Mining J Wesseloo (ed.) 217 Australian Centre for Geomechanics, Perth, ISBN 978--992481-6-3 https://papers.acg.uwa.edu.au/p/174_38_moser/

More information

Rockburst mitigation experiences on underground projects in the Cheves Hydropower project in the Peruvian Andes

Rockburst mitigation experiences on underground projects in the Cheves Hydropower project in the Peruvian Andes Paper No. 156 ISMS 2016 Rockburst mitigation experiences on underground projects in the Cheves Hydropower project in the Peruvian Andes Santiago Veyrat a, Jose-Miguel Galera b, *, Marcos Sancho c a Subterra

More information

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2006 Methods of Interpreting Ground Stress Based on Underground Stress Measurements and

More information

Technical Note Burst Energy Release Index. S. P. Singh. Introduction

Technical Note Burst Energy Release Index. S. P. Singh. Introduction Rock Mechanics and Rock Engineering 21, 149--155 (1988) Rock Mechanics and Rock Engineering 9 by Springer-Verlag 1988 Technical Note Burst Energy Release Index By S. P. Singh School of Engineering, Laurentian

More information

ENGINEERING GEOLOGY AND ROCK ENGINEERING

ENGINEERING GEOLOGY AND ROCK ENGINEERING 1 ENGINEERING GEOLOGY AND ROCK ENGINEERING HANDBOOK NO. 2 Norwegian Group for Rock Mechanics (NBG) www.bergmekanikk.com Prepared in co-operation with Norwegian Tunnelling Society (NFF) Issued in 2000 SECRETARIAT:

More information

Challenges and Innovations in Site investigation, Ground Behaviour Prediction and Risk Assessment for Deep Hard Rock Tunnels

Challenges and Innovations in Site investigation, Ground Behaviour Prediction and Risk Assessment for Deep Hard Rock Tunnels OCT 4 6, 2015 Queens University Kingston, ON Canada Challenges and Innovations in Site investigation, Ground Behaviour Prediction and Risk Assessment for Deep Hard Rock Tunnels Dr. Mark Diederichs, PhD.,

More information

FIRST INTERNATIONAL SEMINAR DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 2002 PERTH, AUSTRALIA. Potential. T. Wiles Mine Modelling Pty Ltd, Australia

FIRST INTERNATIONAL SEMINAR DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 2002 PERTH, AUSTRALIA. Potential. T. Wiles Mine Modelling Pty Ltd, Australia FIRST INTERNATIONAL SEMINAR ON DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 22 PERTH, AUSTRALIA Loading System Stiffness A Parameter to Evaluate Rockburst Potential T. Wiles Mine Modelling Pty Ltd, Australia

More information

Practical guidelines for strain burst hazard awareness for development miners

Practical guidelines for strain burst hazard awareness for development miners Practical guidelines for strain burst hazard awareness for development miners Ryan R. Lyle, Sr. Geotechnical Engineer Alun Price Jones, Technical Director John Renaud, Safety and Training Coordinator (Totten)

More information

Critical Borehole Orientations Rock Mechanics Aspects

Critical Borehole Orientations Rock Mechanics Aspects Critical Borehole Orientations Rock Mechanics Aspects By R. BRAUN* Abstract This article discusses rock mechanics aspects of the relationship between borehole stability and borehole orientation. Two kinds

More information

Lecture # 6. Geological Structures

Lecture # 6. Geological Structures 1 Lecture # 6 Geological Structures ( Folds, Faults and Joints) Instructor: Dr. Attaullah Shah Department of Civil Engineering Swedish College of Engineering and Technology-Wah Cantt. 2 The wavy undulations

More information

Rock slope failure along non persistent joints insights from fracture mechanics approach

Rock slope failure along non persistent joints insights from fracture mechanics approach Rock slope failure along non persistent joints insights from fracture mechanics approach Louis N.Y. Wong PhD(MIT), BSc(HKU) Assistant Professor and Assistant Chair (Academic) Nanyang Technological University,

More information

Borehole Camera And Extensometers To Study Hanging Wall Stability Case Study Using Voussoir beam - Cuiabá Mine

Borehole Camera And Extensometers To Study Hanging Wall Stability Case Study Using Voussoir beam - Cuiabá Mine Rock Mechanics for Natural Resources and Infrastructure ISRM Specialized Conference 09-13 September, Goiania, Brazil CBMR/ABMS and ISRM, 2014 Borehole Camera And Extensometers To Study Hanging Wall Stability

More information

Seismic Monitoring of Mine Environments

Seismic Monitoring of Mine Environments Mapping and Monitoring the Mine Environment Paper 123 Explor97 Master Page Explor97 Contents Previous Paper G O T O Author Index Section Contents Next Paper Seismic Monitoring of Mine Environments Urbancic,

More information

SYLLABUS AND REFERENCES FOR THE STRATA CONTROL CERTIFICATE. METALLIFEROUS MINING OPTION Updated November 1998

SYLLABUS AND REFERENCES FOR THE STRATA CONTROL CERTIFICATE. METALLIFEROUS MINING OPTION Updated November 1998 CHAMBER OF MINES OF SOUTH AFRICA SYLLABUS AND REFERENCES FOR THE STRATA CONTROL CERTIFICATE METALLIFEROUS MINING OPTION Updated November 1998 1 PART 1 : THEORY 1.1 Basic principles of rock engineering

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

Underground Excavation Design Classification

Underground Excavation Design Classification Underground Excavation Design Underground Excavation Design Classification Alfred H. Zettler alfred.zettler@gmx.at Rock Quality Designation Measurement and calculation of RQD Rock Quality Designation index

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

The influence of change in mining and ground support practice on the frequency and severity of rockbursts

The influence of change in mining and ground support practice on the frequency and severity of rockbursts Deep Mining 2014 M Hudyma and Y Potvin (eds) 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 https://papers.acg.uwa.edu.au/p/1410_09_hadjigeorgiou/ The influence of change in mining

More information

Geotechnical & Mining Engineering Services

Geotechnical & Mining Engineering Services Geotechnical & Mining Engineering Services Southwest Research Institute San Antonio, Texas A s an independent, nonprofit research and development organization, Southwest Research Institute (SwRI ) uses

More information

The Mine Geostress Testing Methods and Design

The Mine Geostress Testing Methods and Design Open Journal of Geology, 2014, 4, 622-626 Published Online December 2014 in SciRes. http://www.scirp.org/journal/ojg http://dx.doi.org/10.4236/ojg.2014.412046 The Mine Geostress Testing Methods and Design

More information

Dynamic Rock Failures Due to High Stress at Shallow Depth

Dynamic Rock Failures Due to High Stress at Shallow Depth Deep Mining 07 Y. Potvin (ed) 2007 Australian Centre for Geomechanics, Perth, ISBN 978-0-9804185-2-1 https://papers.acg.uwa.edu.au/p/711_13_stacey/ T.R. Stacey University of the Witwatersrand, South Africa

More information

The design, optimisation, and use of the seismic system at the deep and high-stress block cave Deep Mill Level Zone mine

The design, optimisation, and use of the seismic system at the deep and high-stress block cave Deep Mill Level Zone mine Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_18_collins/ The design, optimisation,

More information

GROUND RESPONSE AND SUPPORT MEASURES FOR PIR PANJAL TUNNEL IN THE HIMALAYAS

GROUND RESPONSE AND SUPPORT MEASURES FOR PIR PANJAL TUNNEL IN THE HIMALAYAS Ground IGC 2009, Response Guntur, and INDIA Support Measures for Pir Panjal Tunnel in the Himalayas GROUND RESPONSE AND SUPPORT MEASURES FOR PIR PANJAL TUNNEL IN THE HIMALAYAS K.S. Rao Professor, Department

More information

EXAMINATION PAPER MEMORANDUM

EXAMINATION PAPER MEMORANDUM EXAMINATION PAPER MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 3.1 : HARD ROCK TABULAR EXAMINER: PJ LE ROUX SUBJECT CODE: COMRMC EXAMINATION DATE: MAY 2015 TIME: MODERATOR: WM BESTER TOTAL MARKS:

More information

Effect of Faults on Rockbursts Hazard

Effect of Faults on Rockbursts Hazard Effect of Faults on Rockbursts Hazard. Tajduś, T. Majcherczyk & M. Cała University of Mining and Metallurgy, Kraków, Poland BSTRCT: t present time in Polish underground coal mining most of the mines excavates

More information

Building on Past Experiences Worker Safety

Building on Past Experiences Worker Safety EOSC433: Geotechnical Engineering Practice & Design Lecture 11: Rock Stabilization Principles 1 of 43 Erik Eberhardt UBC Geological Engineering EOSC 433 (2016) Building on Past Experiences Worker Safety

More information

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT *D.S. Subrahmanyam National Institute of Rock Mechanics, Bangalore

More information

1 of 46 Erik Eberhardt UBC Geological Engineering ISRM Edition

1 of 46 Erik Eberhardt UBC Geological Engineering ISRM Edition Rock Engineering Practice & Design Lecture 12: Rock Stabilization Principles 1 of 46 Erik Eberhardt UBC Geological Engineering ISRM Edition Author s Note: The lecture slides provided here are taken from

More information

25th International Conference on Ground Control in Mining

25th International Conference on Ground Control in Mining ANALYTICAL INVESTIGATION OF SHAFT DAMAGES AT WEST ELK MINE Tim Ross, Senior Associate Agapito Associates, Inc. Golden, CO, USA Bo Yu, Senior Engineer Agapito Associates, Inc. Grand Junction, CO, USA Chris

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

Shear rupture two case studies from a deep mine

Shear rupture two case studies from a deep mine Deep Mining 2014 M Hudyma and Y Potvin (eds) 2014 Australian Centre for Geomechanics, Perth, ISBN 978-0-9870937-9-0 https://papers.acg.uwa.edu.au/p/1410_45_bewick/ Shear rupture two case studies from a

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

1 of 57 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) 1. Yes, review of stress and strain but also

1 of 57 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) 1. Yes, review of stress and strain but also EOSC433/536: Geological Engineering Practice I Rock Engineering Lecture 4: Kinematic Analysis (Wedge Failure) 1 of 57 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) Problem Set #1 - Debriefing

More information

The effect of discontinuities on strength of rock samples

The effect of discontinuities on strength of rock samples The effect of discontinuities on strength of rock samples T Szwedzicki 1 and W Shamu 2 ABSTRACT The mechanical properties of rock samples of identical lithological composition may vary significantly due

More information

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification Table of Contents 1 Development of rock engineering...1 1.1 Introduction...1 1.2 Rockbursts and elastic theory...4 1.3 Discontinuous rock masses...6 1.4 Engineering rock mechanics...7 1.5 Geological data

More information

Seismic hazard assessment using apparent stress ratio

Seismic hazard assessment using apparent stress ratio Underground Design Methods 2015 Y Potvin (ed.) 2015 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-3-2 https://papers.acg.uwa.edu.au/p/1511_04_brown/ Seismic hazard assessment using apparent

More information

GEOLOGY MEDIA SUITE Chapter 13

GEOLOGY MEDIA SUITE Chapter 13 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 13 Earthquakes 2010 W.H. Freeman and Company Three different types of seismic waves are recorded by seismographs Key Figure

More information

Evolution of seismicity at Kiruna Mine

Evolution of seismicity at Kiruna Mine Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining J Wesseloo (ed.) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-6-3 Evolution of seismicity at Kiruna

More information

Influence of Rock Mass Anisotropy on Tunnel Stability

Influence of Rock Mass Anisotropy on Tunnel Stability Influence of Rock Mass Anisotropy on Tunnel Stability R.P. Bewick, P.Eng., M.A.Sc. Golder Associates Ltd., Sudbury, ON, Canada P.K. Kaiser, P.Eng., Ph.D. Center for Excellence in Mining Innovation (CEMI),

More information

How mountains are made. We will talk about valleys (erosion and weathering later)

How mountains are made. We will talk about valleys (erosion and weathering later) How mountains are made We will talk about valleys (erosion and weathering later) http://www.ilike2learn.com/ilike2learn/mountainmaps/mountainranges.html Continent-continent plate convergence Less dense,

More information

The effect of discontinuities on stability of rock blocks in tunnel

The effect of discontinuities on stability of rock blocks in tunnel International Journal of the Physical Sciences Vol. 6(31), pp. 7132-7138, 30 November, 2011 Available online at http://www.academicjournals.org/ijps DOI: 10.5897/IJPS11.777 ISSN 1992-1950 2011 Academic

More information

BRIEFING MEMO ON RESERVOIR TRIGGERED SEISMICITY (RTS)

BRIEFING MEMO ON RESERVOIR TRIGGERED SEISMICITY (RTS) BRIEFING MEMO ON RESERVOIR TRIGGERED SEISMICITY (RTS) 1. General. The issue of reservoir-triggered seismicity (RTS) has been controversial, and hotly debated, for many decades. There has been general recognition

More information

Instructional Objectives. Why use mass classification? What is rock mass classification? 3 Pillars of empirical design and rock mass classification

Instructional Objectives. Why use mass classification? What is rock mass classification? 3 Pillars of empirical design and rock mass classification GE 6477 DISCONTINUOUS ROCK 5. Rock Mass Classification and Empirical Design Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1.

More information

The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine

The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine by G.B. Quaye and G. Guler* Synopsis The deep level gold mining environment

More information

Systematic review of georisk in underground hard rock mines. European Mining Course. Martyna Szydlowska. Master s Thesis Espoo,

Systematic review of georisk in underground hard rock mines. European Mining Course. Martyna Szydlowska. Master s Thesis Espoo, European Mining Course Martyna Szydlowska Systematic review of georisk in underground hard rock mines Master s Thesis Espoo, 26.08.2016 Supervisor: Prof. Mikael Rinne Instructor: M.Sc. Lauri Uotinen Aalto

More information

Characteristics on Rock Fractures Induced by Different Excavation Methods of Deep tunnels

Characteristics on Rock Fractures Induced by Different Excavation Methods of Deep tunnels International Meeting of CSRME 14th Biennial National Congress, 14-17 December 2016, Hong Kong, China Characteristics on Rock Fractures Induced by Different Excavation Methods of Deep tunnels Shaojun Li

More information

Geotechnical Monitoring for Safe Excavation of Large Rock Cavern: A Case Study

Geotechnical Monitoring for Safe Excavation of Large Rock Cavern: A Case Study The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014) Geotechnical Monitoring for Safe Excavation of Large Rock Cavern: A Case Study A.Mandal a, C. Kumar b,

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Earthquakes.

Earthquakes. Earthquakes http://quake.usgs.gov/recenteqs/latestfault.htm An earthquake is a sudden motion or shaking of the Earth's crust, caused by the abrupt release of stored energy in the rocks beneath the surface.

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Successful Construction of a Complex 3D Excavation Using 2D and 3D Modelling

Successful Construction of a Complex 3D Excavation Using 2D and 3D Modelling University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2015 Successful Construction of a Complex 3D Excavation Using 2D and 3D Modelling Yvette

More information

In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme

In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme H. Matsui, K. Sugihara and T. Sato Japan Nuclear Cycle Development Institute, Japan Summary The HLW disposal program

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Pillar strength estimates for foliated and inclined pillars in schistose material

Pillar strength estimates for foliated and inclined pillars in schistose material Pillar strength estimates for foliated and inclined pillars in schistose material L.J. Lorig Itasca Consulting Group, Inc., Minneapolis, MN, USA A. Cabrera Itasca S.A., Santiago, Chile ABSTRACT: Pillar

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes... CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY Earth Formation... 1-2 Plate Tectonics... 1-2 Sources of Earthquakes... 1-3 Earth Faults... 1-4 Fault Creep... 1-5 California Faults... 1-6 Earthquake

More information

Application of a transversely isotropic brittle rock mass model in roof support design

Application of a transversely isotropic brittle rock mass model in roof support design University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2012 Application of a transversely isotropic brittle rock mass model in roof support

More information

Geotechnical data from optical and acoustic televiewer surveys

Geotechnical data from optical and acoustic televiewer surveys Geotechnical data from optical and acoustic televiewer surveys by Farrin De Fredrick MAusIMM, Senior Geotechnical Engineer; Ta Nguyen AIG, Geotechnical Engineer; Clive Seymour MAusIMM, Principal; and Gary

More information

Numerical analysis of K0 to tunnels in rock masses exhibiting strain-softening behaviour (Case study in Sardasht dam tunnel, NW Iran)

Numerical analysis of K0 to tunnels in rock masses exhibiting strain-softening behaviour (Case study in Sardasht dam tunnel, NW Iran) International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 4 (6): 1572-1581 Science Explorer Publications Numerical analysis of K0 to tunnels

More information

Some Thoughts About Rock Mechanics Aspects of Mars. Ömer Aydan

Some Thoughts About Rock Mechanics Aspects of Mars. Ömer Aydan 3 rd Off Earth Mining Forum - 2017OEMF Some Thoughts About Rock Mechanics Aspects of Mars Courtesy of NASA Opportunity Curiosity Spirit Ömer Aydan University of the Ryukyus, Department of Civil Engineering

More information

Recent advances in seismic monitoring technology at Canadian mines

Recent advances in seismic monitoring technology at Canadian mines Ž. Journal of Applied Geophysics 45 2000 225 237 www.elsevier.nlrlocaterjappgeo Recent advances in seismic monitoring technology at Canadian mines Theodore I. Urbancic ), Cezar-Ioan Trifu Engineering Seismology

More information

DEVELOPMENT OF DATA SETS ON JOINT CHARACTERISTICS AND CONSIDERATION OF ASSOCIATED INSTABILITY FOR A TYPICAL SOUTH AFRICAN GOLD MINE

DEVELOPMENT OF DATA SETS ON JOINT CHARACTERISTICS AND CONSIDERATION OF ASSOCIATED INSTABILITY FOR A TYPICAL SOUTH AFRICAN GOLD MINE DEVELOPMENT OF DATA SETS ON JOINT CHARACTERISTICS AND CONSIDERATION OF ASSOCIATED INSTABILITY FOR A TYPICAL SOUTH AFRICAN GOLD MINE HLANGABEZA GUMEDE A DISSERTATION SUBMITTED TO THE FACULTY OF ENGINEERING

More information

Structurally controlled instability in tunnels

Structurally controlled instability in tunnels Structurally controlled instability in tunnels Introduction In tunnels excavated in jointed rock masses at relatively shallow depth, the most common types of failure are those involving wedges falling

More information

Damage-free coring technique for rock mass under high in-situ stresses

Damage-free coring technique for rock mass under high in-situ stresses Journal of Rock Mechanics and Geotechnical Engineering. 2012, 4 (1): 44 53 Damage-free coring technique for rock mass under high in-situ stresses Peng Yan 1, 2, 3, Wenbo Lu 1, 2*, Ming Chen 1, 2, Zhigang

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

Experiments on Rock Burst and its Control

Experiments on Rock Burst and its Control Experiments on Rock Burst and its Control M He 1 and L R Sousa 2,3 ABSTRACT Rock burst is common in deep underground excavations and is characterised by a violent ejection of block rocks from excavation

More information

Mitigation Plans for Mining in Highly Burst-Prone Ground Conditions at Vale Inco Copper Cliff North Mine

Mitigation Plans for Mining in Highly Burst-Prone Ground Conditions at Vale Inco Copper Cliff North Mine Mitigation Plans for Mining in Highly Burst-Prone Ground Conditions at Vale Inco Copper Cliff North Mine Mike Yao Chief Ground Control Engineer, Mine Technical Services, Vale Inco, Sudbury, Canada D. Reddy

More information

Calculation of periodic roof weighting interval in longwall mining using finite element method

Calculation of periodic roof weighting interval in longwall mining using finite element method Calculation of periodic roof weighting interval in longwall mining using finite element method Navid Hosseini 1, Kamran Goshtasbi 2, Behdeen Oraee-Mirzamani 3 Abstract The state of periodic loading and

More information

Earthquakes How and Where Earthquakes Occur

Earthquakes How and Where Earthquakes Occur Earthquakes How and Where Earthquakes Occur PPT Modified from Troy HS Is there such thing as earthquake weather? Absolutely NOT!!! Geologists believe that there is no connection between weather and earthquakes.

More information

How to Build a Mountain and other Geologic Structures. But first, questions

How to Build a Mountain and other Geologic Structures. But first, questions How to Build a Mountain and other Geologic Structures But first, questions Questions your students might ask How were Montana s mountains formed? How old are the mountains? What are the different ways

More information

Final design of Belesar III and Los Peares III Hydropower Projects. (Galicia, Spain).

Final design of Belesar III and Los Peares III Hydropower Projects. (Galicia, Spain). Final design of Belesar III and Los Peares III Hydropower Projects. (Galicia, Spain). J. Baztán and A. Martín Gas Natural Fenosa Engineering, S.L.U, Madrid, Spain. J. M. Galera and D. Santos Subterra Ingeniería

More information

Geotechnical project work flow

Geotechnical project work flow Wulf Schubert INTRODUCTION The approach to solve an engineering problem is to combine experience with analysis The more complex the conditions are, the more difficult a direct analysis becomes, as appropriate

More information

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: Topic 5: The Dynamic Crust (workbook p. 65-85) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: --sedimentary horizontal rock layers (strata) are found

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3 ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3 DAVID SAIANG Principal Consultant SRK Consulting Sweden NEIL MARSHALL Corporate Consultant SRK Consulting UK 1 of XX SRK

More information

Predicting rock conditions ahead of the face

Predicting rock conditions ahead of the face Predicting rock conditions ahead of the face Dr Thomas Dickmann, Product Manager Geophysics, Amberg Technologies AG Seismic methods of predicting rock conditions ahead of the tunnel face have developed

More information

Moho (Mohorovicic discontinuity) - boundary between crust and mantle

Moho (Mohorovicic discontinuity) - boundary between crust and mantle Earth Layers Dynamic Crust Unit Notes Continental crust is thicker than oceanic crust Continental Crust Thicker Less Dense Made of Granite Oceanic Crust Thinner More Dense Made of Basalt Moho (Mohorovicic

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Design for seismic and climate changes Lecture 10: Characterisation of seismic motion Aurel Stratan, Politehnica University of Timisoara 07/04/2017 European Erasmus Mundus Master Course Sustainable

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes Earthquakes 1 Topic 4 Content: Earthquakes Presentation Notes Earthquakes are vibrations within the Earth produced by the rapid release of energy from rocks that break under extreme stress. Earthquakes

More information

Ground support modelling involving large ground deformation: Simulation of field observations Part 1

Ground support modelling involving large ground deformation: Simulation of field observations Part 1 Ground Support 2016 E. Nordlund, T.H. Jones and A. Eitzenberger (eds) Ground support modelling involving large ground deformation: Simulation of field observations Part 1 D.Saiang, Luleå University of

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 8. Fracture Detection Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the advantages and disadvantages

More information

Comparative study of TBM performance prediction models

Comparative study of TBM performance prediction models Comparative study of TBM performance prediction models *Tae Young KO 1), Seung Mo SON 2) and Taek Kon KIM 3) 1), 2, 3) SK Engineering & Construction, Seoul, 04534, Korea * tyko@sk.com ABSTRACT In this

More information