2C09 Design for seismic and climate changes

Size: px
Start display at page:

Download "2C09 Design for seismic and climate changes"

Transcription

1 2C09 Design for seismic and climate changes Lecture 10: Characterisation of seismic motion Aurel Stratan, Politehnica University of Timisoara 07/04/2017 European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events CZ-ERA MUNDUS-EMMC

2 Lecture outline 10.1 Engineering characterisation of ground motion 10.2 Factors affecting seismic motion 2

3 Engineering characterisation of ground motion Seismic recordings are characterised by a large variability of their characteristics Engineering parameters: amplitude, frequency content and Duration of motion

4 Engineering characterisation of ground motion Analysed earthquake records: earthquake Vrancea, Vrancea, moment magnitude Mw 7.2 station Bucharest -Măgurele abbreviation epicentral distance (km) distance to fault (km) MAG soil very soft 7.2 Carcaliu CAR rock

5 Amplitude parameters: PGA and PGV Peak ground acceleration (PGA) maximum force induced in very rigid structures Peak ground velocity (PGV) good correlation with structural damage Disadvantages A single value is not characterising appropriately the complex shape of record Structural characteristics are not accounted for

6 Amplitude parameters: PGA and PGV Comparison between Bucharest-Măgurele and Carcaliu Acceleration Velocity record PGA, m/s 2 PGV, m/s VR86-MAG-EW VR86-CAR-EW

7 Amplitude parameters: EPA and EPV Effective peak acceleration (EPA) Effective peak velocity (EPV) Scope: a parameter that is closely related to structural response and with the damage potential of a seismic recording There is no unique definition Lungu et al., 2003: the maximum value of the 0.4 sec moving average of the spectral (pseudo)-acceleration. SPECTRAL ACCELERATION (g) sec max PSA EPA s PERIOD, s

8 Frequency content: response spectra Elastic response spectra: Displacement spectra (SD) Velocity and pseudo-velocity (PSV) response spectra Acceleration and pseudo-acceleration (PSA) response spectra Displacement spectra (SD): peak values of response of elastic SDOF systems with different values of the natural period of vibration and damping SD, m i T i Vrancea, , Magurele (B), EW 0.2 T D 0.05 T C T, s

9 Frequency content: response spectra PSV and PSA spectra determined from SD PSV 2 SD T PSA PSV spectra: related to the maximum strain energy induced in the system 2 2 T SD PSV, m/s Vrancea, , Magurele (B), EW 0.5 T D T C T, s PSA spectra: very suggestive for engineers, as it represents the equivalent static force induced in an elastic structure with a unit mass PSA, m/s 2 Vrancea, , Magurele (B), EW T C T D T, s

10 Frequency content: response spectra Smooth/idealised spectra used in design Control periods T B, T C, T D delimitate zones of Constant acceleration: T B <T<T C Constant velocity: T C <T<T D Constant displacement: T>T D T C EPV EPD 2 TD 2 EPA EPV PSA PSV SD T B T C T D T T B T C T D T T B T C T D T

11 Frequency content: response spectra Comparison between Bucharest-Măgurele and Carcaliu PSA, m/s T C T D VR86-MAG-EW VR86-CAR-EW T, s PSV, m/s T C T D VR86-MAG-EW VR86-CAR-EW T, s Record EPA, m/s 2 EPV, m/s T C, s T D, s VR86-MAG-EW VR86-CAR-EW

12 Frequency content: response spectra Seismic motion recorded on the soft soil in Măgurele (VR86-MAG-EW) has a high frequency content in the intermediate and long period range (larger spectral accelerations and velocities in this interval). This fact is also reflected by the T C values of the two records (0.97 and 0.31). PSA, m/s T C T D VR86-MAG-EW VR86-CAR-EW T, s PSV, m/s T C T D VR86-MAG-EW VR86-CAR-EW T, s

13 Frequency content: Fourier spectra

14 Time domain Frequency content: Fourier spectra Fourier transform Frequency domain N /2 i k k k 0 cos 2 / x t C ki N x(t i ) is the i-th value of the signal (taking values between 0 and N-1); N is the number of values in the signal; C k represents the amplitude of cosine functions, while k their phase angle. The Fourier transform provides a two-way connection between the signal in time domain (x(t i )) and in frequency domain (C k şi k ) Power spectrum density is directly related to the Fourier amplitude spectra and may be expressed as: PSD k =C k 2

15 Frequency content: Fourier spectra Higher energy content in the period range of 1-2 sec for the Bucharest-Măgurele record Vrancea, , Magurele (B), EW Vrancea, , Carcaliu, EW s 2 -s PSD, g 1 PSD, g T, s T, s

16 Frequency content: Fourier spectra Fourier spectra and power spectrum density are best suited for characterisation of stationary random processes, Earthquake records are 1 nonstationary random processes PSD, g 2 -s SIN, Np=1 T, s acceleration, m/s SIN Np=1 Np=3 PSD, g 2 -s SIN, Np= T, s 3 4 time, s

17 Duration parameters Spectra provide no information on the duration of seismic action Ground motion duration increases with earthquake magnitude Definitions of duration: interval between first and last exceedance of a threshold value of (usually 0.05g) interval between a built-up of energy of (5-95% or 5-75%) "significant duration, t s " Energy an be expressed using arias intensity 2 IA a () t dt 2g 0

18 Duration parameters Comparison between Bucharest-Măgurele and Carcaliu Record t s, s I A, m/s VR86-MAG-EW VR86-CAR-EW Vrancea, , Magurele (B), EW Significant duration (5-95%) acceleratie, m/s timp, s 2 Vrancea, , Carcaliu, EW acceleratie, m/s timp, s

19 Factors affecting seismic motion The main factors that influence seismic motions can be grouped in four categories: (1) source factors, (2) path effects, (3) site effects, (4) soil-structure interaction

20 Seismic motion: source factors There are three generally recognized tectonic regimes: active regions (inter-plate earthquakes) the interior of tectonic plates (intra-plate earthquakes) subduction zones Inter-plate earthquakes: large magnitude events, characterised by large peak ground accelerations, long durations and intensities that can affect large areas (hundreds of km). more energy in the low-frequency range. Intra-plate earthquakes lower magnitude, lower frequency of occurrence, smaller duration and smaller affected area.

21 Seismic motion: source factors Normalised response spectra in EN : Type 1: for earthquakes with surface wave magnitude M S > 5.5 Type 2: for earthquakes with surface wave magnitude M S 5.5 Type 1 earthquakes (large magnitude long distance events) have a larger frequency content in the long period range than type 2 (local events of small and moderate magnitude) S a /a g T, s EC8 tip1 EC8 tip2

22 Seismic motion: source factors Seismicity of a source is characterised by length (or area) of rupture surface, probability of occurrence of earthquakes of a given magnitude, slip rate Fault types: Strike-slip fault: are vertical (or nearly vertical) fractures where the blocks have mostly moved horizontally. Normal fault: fractures where the blocks have mostly shifted vertically, while the rock mass above an inclined fault moves down. Reverse fault: fractures where the blocks have mostly shifted vertically, while the rock above the fault moves up. Oblique fault: the most general case, a combination of vertical and horizontal movement. falie inversă falie normală falie transcurentă falie oblică

23 Seismic motion: source factors In the case of near-field ground motions, with the distance to the fault up to km, the azimuth of the site with respect to the hypocenter may affect considerably the characteristics of the seismic motion. The effect of forward directivity is produced when the rupture propagates towards a site and the slip takes place also towards the site

24 Seismic motion: source factors Ground motion in a site affected by forward directivity effect has the form of a long duration pulse. This effect is characteristic of the faultnormal component of the ground motion. Rupture propagates away from the site: backward directivity, characterised by longer duration and lower amplitudes of the seismic motion.

25 Velocity of rupture is close to the shear wave velocity Forward directivity: an accumulation of energy is observed at the rupture front. Backward directivity: when the rupture propagates away from the site, seismic waves arrive distributed in time. Seismic motion: source factors

26 Seismic motion: source factors Schematics of fault-normal (FN) and fault-parallel (FP) components in case of strike-slip earthquakes

27 Travel path effects Motion recorded in a site will depend on focal depth, source-site distance, geologic structure between them Motion recorded in a site is affected by multiple reflections, refractions, diffractions and interferences, etc. As the distance to the seismic source increases, earthquake intensity decreases, while the duration increases Importance of vertical component decrease

28 Local site effects Seismic motion recoded at the surface will be sometimes substantially different from the one recorded at the base rock. Schematically, the effect of soil layers beneath the structure may be represented by a dynamic oscillator, which modifies the motion at the base rock depending on its linear and non-linear characteristics. Investigation methods: Comparison of two recordings: at the base rock and at the soil surface Comparison of horizontal and vertical components (spectral H/V ratios) Analytical procedures

29 Local site effects: soil classification Surface geology: generally separate materials according to geologic age (e.g., Holocene-Pleistocene-Tertiary- Mesozoic) Average shear wave velocity in the upper 30 m (v S,30 ). Classification depending on v s,30 was adopted by most recent codes. Geotechnical data, including stiffness, thickness and type of material. Depth to basement rock (defined as having a shear wave velocity of 2.5 km/s). This parameter is used ti supplement the schemes above, which provide data only fir topmost layers.

30 Local site effects: intensity Amplification is maximum (between 1.5 and 4.0) for small intensities of acceleration at the base rock ( g) Decreases for large intensities of the earthquake (factors around 1.0 for PGA rock = 0.4 g) This effect is attributed to nonlinear response of soft soil at large intensities of the ground motion.

31 Local site effects: frequency content Stiff soils: amplification of spectral ordinates in the short-period range Weak soils: amplification of spectral ordinates in the long-period range Maximum amplification of response for periods of vibration close to the predominant period of soil layers.

32 Local site effects: basin effects Soils with horizontal layers the incident wave can resonate in the soil layer, but part of the energy is refracted, limiting the effects of amplification of seismic waves Basins: the seismic wave enters the basin through its edge, larger than critical incident angles may develop, leading to the eave being be "trapped" inside the basin. effects of multiple reflections are amplification of amplitude of motion and increase in duration.

33 Local site effects: surface topography Amplification of seismic motion may be observed as well for irregular topographies, such as crest, canyon, and slope In case of crests, analytical studies found base/ridge amplifications of for H/Lratios= L H ridge canyon slope

34 Soil-structure interaction (SSI) Structural response to free-field motion is influenced by SSI. SSI modifies the dynamic characteristics of the structure, and characteristics of ground motion at the foundation level. For structures situated on deformable soils, seismic motion at the foundation level is generally different from the one in the "free-field", having an important rotational component, beside the translational one. The rotational component, and SSI in general, have important effects on rigid structures located on flexible soils. Another effect of SSI is the dissipation of energy from the foundation to the soil, through radiation of waves and nonlinear response of the soil.

35 Soil-structure interaction (SSI) Inertial Interaction: Inertia developed in the structure due to its own vibrations gives rise to base shear and moment, which in turn causes displacements of the foundation relative to the freefield. Increase in period of vibration of the structure due to flexibility of the soil modification (usually increase) of soil damping due to energy dissipation through radiation of waves and nonlinear response of the soil Kinematic Interaction: The presence of stiff foundation elements on or in soil cause foundation motions to deviate from free-field motions as a result of ground motion incoherence, wave inclination, or foundation embedment. reduction of translational component of the ground motion, increase of the torsional and rotational components, and filtering of high frequencies of the seismic action.

36

Characterization and modelling of seismic action

Characterization and modelling of seismic action COST C26: Urban Habitat Constructions under Catastrophic Events Final Conference, 16-18 September 2010, Naples, Italy Characterization and modelling of seismic action Report of WG2: Earthquake resistance

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Design for seismic and climate changes Lecture 08: Seismic response of SDOF systems Aurel Stratan, Politehnica University of Timisoara 13/03/2014 European Erasmus Mundus Master Course Sustainable

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Design for seismic and climate changes Lecture 07: Seismic response of SDOF systems Aurel Stratan, Politehnica University of Timisoara 06/04/2017 European Erasmus Mundus Master Course Sustainable

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL: http://www.civil.iitb.ac.in/~dc/

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

7 SEISMIC LOADS. 7.1 Estimation of Seismic Loads. 7.2 Calculation of Seismic Loads

7 SEISMIC LOADS. 7.1 Estimation of Seismic Loads. 7.2 Calculation of Seismic Loads 1 7 SEISMIC LOADS 7.1 Estimation of Seismic Loads 7.1.1 Seismic load and design earthquake motion (1) For ordinary buildings, seismic load is evaluated using the acceleration response spectrum (see Sec.7.2)

More information

Outstanding Problems. APOSTOLOS S. PAPAGEORGIOU University of Patras

Outstanding Problems. APOSTOLOS S. PAPAGEORGIOU University of Patras NEAR-FAULT GROUND MOTIONS: Outstanding Problems APOSTOLOS S. PAPAGEORGIOU University of Patras Outline Characteristics of near-fault ground motions Near-fault strong ground motion database A mathematical

More information

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength. Earthquakes Vocabulary: Stress Strain Elastic Deformation Plastic Deformation Fault Seismic Wave Primary Wave Secondary Wave Focus Epicenter Define stress and strain as they apply to rocks. Distinguish

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

Department of Civil Engineering, Serbia

Department of Civil Engineering, Serbia FACTA UNIVERSITATIS Series: Architecture and Civil Engineering Vol. 10, N o 2, 2012, pp. 131-154 DOI: 10.2298/FUACE1202131B TOWARDS PREPARATION OF DESIGN SPECTRA FOR SERBIAN NATIONAL ANNEX TO EUROCODE

More information

Introduction to Geotechnical Earthquake Engineering

Introduction to Geotechnical Earthquake Engineering Module 1 Introduction to Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL:

More information

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE Mihailo D. Trifunac Civil Eng. Department University of Southern California, Los Angeles, CA E-mail: trifunac@usc.edu

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 3 Understanding Earthquakes and Earthquake Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information:

More information

Micro Seismic Hazard Analysis

Micro Seismic Hazard Analysis Micro Seismic Hazard Analysis Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Overview Site effects Soft ground effect Topographic effect Liquefaction Methods

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

Dynamic Soil Structure Interaction

Dynamic Soil Structure Interaction Dynamic Soil Structure Interaction Kenji MIURA, Dr. Eng. Professor Graduate School of Engineering Hiroshima University Dynamic Soil Structure Interaction Chapter 1 : Introduction Kenji MIURA, Dr. Eng.

More information

STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA

STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. 59 STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA XU Longjun, XIE Lili, SUMMARY The determination

More information

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT A. Giannakou 1, J. Chacko 2 and W. Chen 3 ABSTRACT

More information

Design of Earthquake-Resistant Structures

Design of Earthquake-Resistant Structures NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY OF EARTHQUAKE ENGINEERING Design of Earthquake-Resistant Structures Basic principles Ioannis N. Psycharis Basic considerations Design earthquake: small

More information

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Lecture No. # 32 Probabilistic Methods in Earthquake Engineering-1 (Refer Slide

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 20, 30 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Seismic Spectra & Earthquake Scaling laws. Seismic Spectra & Earthquake Scaling laws. Aki, Scaling law

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

ANALYSIS OF THE CORRELATION BETWEEN INSTRUMENTAL INTENSITIES OF STRONG EARTHQUAKE GROUND MOTION

ANALYSIS OF THE CORRELATION BETWEEN INSTRUMENTAL INTENSITIES OF STRONG EARTHQUAKE GROUND MOTION ANALYSIS OF THE CORRELATION BETWEEN INSTRUMENTAL INTENSITIES OF STRONG EARTHQUAKE GROUND MOTION J.Enrique Martinez-Rueda 1, Evdokia Tsantali 1 1 Civil Engineering & Geology Division School of Environment

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Harmonized European standards for construction in Egypt

Harmonized European standards for construction in Egypt Harmonized European standards for construction in Egypt EN 1998 - Design of structures for earthquake resistance Jean-Armand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization

More information

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING H. Moghaddam 1, N. Fanaie 2* and H. Hamzehloo 1 Professor, Dept. of civil Engineering, Sharif University

More information

Ground Motion Prediction Equations: Past, Present, and Future

Ground Motion Prediction Equations: Past, Present, and Future Ground Motion Prediction Equations: Past, Present, and Future The 2014 William B. Joyner Lecture David M. Boore As presented at the SMIP15 meeting, Davis, California, 22 October 2015 The William B. Joyner

More information

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy Engebawy,, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture

More information

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING QUESTION BANK UNIT I THEORY OF VIBRATIONS PART A

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING QUESTION BANK UNIT I THEORY OF VIBRATIONS PART A CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING QUESTION BANK UNIT I THEORY OF VIBRATIONS PART A 1. What is mean by Frequency? 2. Write a short note on Amplitude. 3. What are the effects of vibration?

More information

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1918 SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT

More information

KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES

KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES th International Conference on Earthquake Geotechnical Engineering June 5-8, 7 Paper No. 5 KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES Amalia GIANNAKOU, Nikos GEROLYMOS, and George GAZETAS 3 ABSTRACT

More information

20 and 29 May events. Luigi Petti, Alessio Lodato

20 and 29 May events. Luigi Petti, Alessio Lodato PRELIMINARY SPATIAL ANALYSIS AND COMPARISON BETWEEN RESPONSE SPECTRA EVALUATED FOR EMILIA ROMAGNA EARTHQUAKES AND ELASTIC DEMAND SPECTRA ACCORDING TO THE NEW SEISMIC ITALIAN CODE 20 and 29 May events Introduction

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS 1. Introduction CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS This section presents information on engineering seismology and engineering characterization of earthquakes. The key references for this module

More information

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Earthquake Machine Stick-slip: Elastic Rebound Theory Jerky motions on faults produce EQs Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Three

More information

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems :

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems : Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module Seismology Exercise Problems :.4. Estimate the probabilities of surface rupture length, rupture area and maximum

More information

Near-field strong ground motion records from Vrancea earthquakes

Near-field strong ground motion records from Vrancea earthquakes Near-field strong ground motion records from Vrancea earthquakes F. Pavel, A. Aldea & R. Vacareanu Technical University of Civil Engineering Bucharest ABSTRACT: The seismic events of March 4, 1977 (M W

More information

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 1 Emeritus Professor, Hachinohe Institute of Technology, Hachinohe, Japan 2 Chief Engineer, Izumo, Misawa, Aomori, Japan 3 Profesr, Geo-Technical Division, Fudo

More information

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 74 CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 999 CHI-CHI, TAIWAN EARTHQUAKE Vietanh PHUNG, Gail

More information

GLOSSARY 1. Accelerometer (Analog or Digital)

GLOSSARY 1. Accelerometer (Analog or Digital) GLOSSARY 1 Key Word Meaning Accelerometer (Analog or Digital) Instrument to measure strong motion acceleration. It can be of two types: analog: ground acceleration is reproduced by a mechanical instrument

More information

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA ABSTRACT Y. Bozorgnia, M. Hachem, and K.W. Campbell Associate Director, PEER, University of California, Berkeley, California, USA Senior Associate,

More information

EXAMPLE OF PILED FOUNDATIONS

EXAMPLE OF PILED FOUNDATIONS EXAMPLE OF PILED FOUNDATIONS The example developed below is intended to illustrate the various steps involved in the determination of the seismic forces developed in piles during earthquake shaking. The

More information

PARAMETERS CHARACTERIZING THE SEISMIC DEMAND FOR EARTHQUAKE DAMAGE SCENARIO EVALUATION

PARAMETERS CHARACTERIZING THE SEISMIC DEMAND FOR EARTHQUAKE DAMAGE SCENARIO EVALUATION PARAMETERS CHARACTERIZING THE SEISMIC DEMAND FOR EARTHQUAKE DAMAGE SCENARIO EVALUATION Response spectra SDF SYSTEMS The ground acceleration can be registered using accelerographs: A SDF system is subjected

More information

PRELIMINARY STUDY OF THE 2011 JAPAN EARTHQUAKE (M 9.0) GROUND MOTION RECORDS V1.01

PRELIMINARY STUDY OF THE 2011 JAPAN EARTHQUAKE (M 9.0) GROUND MOTION RECORDS V1.01 Cite as: F. De Luca, E. Chioccarelli, I. Iervolino (), Preliminary study of the Japan earthquake ground motion record V., available at http://www.reluis.it. PRELIMINARY STUDY OF THE JAPAN EARTHQUAKE (M

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Seismic Waves. 1. Seismic Deformation

Seismic Waves. 1. Seismic Deformation Types of Waves 1. Seismic Deformation Seismic Waves When an earthquake fault ruptures, it causes two types of deformation: static; and dynamic. Static deformation is the permanent displacement of the ground

More information

THREE-DIMENSIONAL CHARACTERISTICS OF STRONG GROUND MOTION IN THE NEAR-FAULT AREA

THREE-DIMENSIONAL CHARACTERISTICS OF STRONG GROUND MOTION IN THE NEAR-FAULT AREA THREE-DIMENSIONAL CHARACTERISTICS OF STRONG GROUND MOTION IN THE NEAR-FAULT AREA Rajesh RUPAKHETY 1 and Ragnar SIGBJÖRNSSON 2 ABSTRACT This works presents an analysis of three-dimensional characteristics

More information

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac THE NATURE OF SITE RESPONSE DURING EARTHQUAKES Mihailo D. Trifunac Dept. of Civil Eng., Univ. of Southern California, Los Angeles, CA 90089, U.S.A. http://www.usc.edu/dept/civil_eng/earthquale_eng/ What

More information

ESTIMATION OF SEDIMENT THICKNESS BY USING MICROTREMOR OBSERVATIONS AT PALU CITY, INDONESIA. Pyi Soe Thein. 11 November 2013

ESTIMATION OF SEDIMENT THICKNESS BY USING MICROTREMOR OBSERVATIONS AT PALU CITY, INDONESIA. Pyi Soe Thein. 11 November 2013 ESTIMATION OF SEDIMENT THICKNESS BY USING MICROTREMOR OBSERVATIONS AT PALU CITY, INDONESIA By Pyi Soe Thein 11 November 2013 Outlines Introduction Research objectives Research analyses Microtremor Single

More information

Distribution Restriction Statement Approved for public release; distribution is unlimited.

Distribution Restriction Statement Approved for public release; distribution is unlimited. CECW-ET Engineer Manual 1110-2-6050 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 EM 1110-2-6050 30 June 1999 Engineering and Design RESPONSE SPECTRA AND SEISMIC ANALYSIS

More information

Seismic Source Mechanism

Seismic Source Mechanism Seismic Source Mechanism Yuji Yagi (University of Tsukuba) Earthquake Earthquake is a term used to describe both failure process along a fault zone, and the resulting ground shaking and radiated seismic

More information

EQ Ground Motions. Strong Ground Motion and Concept of Response Spectrum. March Sudhir K Jain, IIT Gandhinagar. Low Amplitude Vibrations

EQ Ground Motions. Strong Ground Motion and Concept of Response Spectrum. March Sudhir K Jain, IIT Gandhinagar. Low Amplitude Vibrations Amplitude Strong Ground Motion and Concept of Response Spectrum March 2013 Sudhir K Jain, IIT Gandhinagar Sudhir K. Jain March 2013 1 EQ Ground Motions Low Amplitude Vibrations Long distance events Usually

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

Introduction to Strong Motion Seismology. Norm Abrahamson Pacific Gas & Electric Company SSA/EERI Tutorial 4/21/06

Introduction to Strong Motion Seismology. Norm Abrahamson Pacific Gas & Electric Company SSA/EERI Tutorial 4/21/06 Introduction to Strong Motion Seismology Norm Abrahamson Pacific Gas & Electric Company SSA/EERI Tutorial 4/21/06 Probabilistic Methods Deterministic Approach Select a small number of individual earthquake

More information

Objectives. Vocabulary

Objectives. Vocabulary Forces Within Earth Objectives Define stress and strain as they apply to rocks. Distinguish among the three types of faults. Contrast three types of seismic waves. Vocabulary stress strain fault primary

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

Dynamic modelling in slopes using finite difference program

Dynamic modelling in slopes using finite difference program Bulletin of the Department of Geology Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 12, 2009, pp. 89 94 Dynamic modelling in slopes using finite difference program

More information

Relation of Pulse Period with Near-Fault Strong Motion Parameters

Relation of Pulse Period with Near-Fault Strong Motion Parameters th International Conference on Earthquake Geotechnical Engineering 1- November 15 Christchurch, New Zealand Relation of Pulse Period with Near-Fault Strong Motion Parameters V. Kardoutsou 1, P. Mimoglou,

More information

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS Bulletin of the Seismological Society of America, Vol. 79, No. 6, pp. 1984-1988, December 1989 THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS BY DAVID M. BOORE

More information

Multi-station Seismograph Network

Multi-station Seismograph Network Multi-station Seismograph Network Background page to accompany the animations on the website: IRIS Animations Introduction One seismic station can give information about how far away the earthquake occurred,

More information

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations Arthur Frankel, William Stephenson, David Carver,

More information

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake K. Sato, K. Asano & T. Iwata Disaster Prevention Research Institute, Kyoto University, Japan

More information

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes... CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY Earth Formation... 1-2 Plate Tectonics... 1-2 Sources of Earthquakes... 1-3 Earth Faults... 1-4 Fault Creep... 1-5 California Faults... 1-6 Earthquake

More information

IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION

IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION Wilfred D IWAN 1, Ching-Tung HUANG 2 And Andrew C GUYADER 3 SUMMARY Idealized structural models are employed to reveal

More information

SHAKE MAPS OF STRENGTH AND DISPLACEMENT DEMANDS FOR ROMANIAN VRANCEA EARTHQUAKES

SHAKE MAPS OF STRENGTH AND DISPLACEMENT DEMANDS FOR ROMANIAN VRANCEA EARTHQUAKES SHAKE MAPS OF STRENGTH AND DISPLACEMENT DEMANDS FOR ROMANIAN VRANCEA EARTHQUAKES D. Lungu 1 and I.-G. Craifaleanu 2 1 Professor, Dept. of Reinforced Concrete Structures, Technical University of Civil Engineering

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

Earthquakes in Canada

Earthquakes in Canada Earthquakes in Canada Maurice Lamontagne, Ph.D., ing. Geological Survey of Canada Natural Resources Canada 1 What is an Earthquake? P S P S P PS 2 2 Movement on a fault plane causes vibrations The larger

More information

THE ROLE OF THE AMPLITUDE AND FREQUENCY CONTENT OF THE INPUT GROUND MOTION ON THE ESTIMATION OF DYNAMIC IMPEDANCE FUNCTIONS

THE ROLE OF THE AMPLITUDE AND FREQUENCY CONTENT OF THE INPUT GROUND MOTION ON THE ESTIMATION OF DYNAMIC IMPEDANCE FUNCTIONS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1445 THE ROLE OF THE AMPLITUDE AND FREQUENCY CONTENT OF THE INPUT GROUND MOTION ON THE ESTIMATION OF DYNAMIC

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

Examining the Adequacy of the Spectral Intensity Index for Running Safety Assessment of Railway Vehicles during Earthquakes

Examining the Adequacy of the Spectral Intensity Index for Running Safety Assessment of Railway Vehicles during Earthquakes October 1-17, 8, Beijing, China Examining the Adequacy of the Spectral Intensity Index for Running Safety Assessment of Railway Vehicles during Earthquakes Xiu LUO 1 and Takefumi MIYAMOTO 1 Dr. Eng., Senior

More information

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 015, Sydney, Australia Frequency-dependent Strong Motion Duration Using Total

More information

SEISMOLOGICAL INFORMATION FOR DISPLACEMENT-BASED SEISMIC DESIGN A STRUCTURAL ENGINEER S WISH LIST

SEISMOLOGICAL INFORMATION FOR DISPLACEMENT-BASED SEISMIC DESIGN A STRUCTURAL ENGINEER S WISH LIST SEISMOLOGICAL INFORMATION FOR DISPLACEMENT-BASED SEISMIC DESIGN A STRUCTURAL ENGINEER S WISH LIST Nigel Priestley Rose School Pavia, Italy 1. FORMULATION OF THE DIRECT DISPLACEMENT-BASED (DDBD) APPROACH

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

ESTIMATION OF INPUT SEISMIC ENERGY BY MEANS OF A NEW DEFINITION OF STRONG MOTION DURATION

ESTIMATION OF INPUT SEISMIC ENERGY BY MEANS OF A NEW DEFINITION OF STRONG MOTION DURATION ESTIMATION OF INPUT SEISMIC ENERGY BY MEANS OF A NEW DEFINITION OF STRONG MOTION DURATION I.M. Taflampas 1, Ch.A. Maniatakis and C.C. Spyrakos 3 1 Civil Engineer, Dept. of Civil Engineering, Laboratory

More information

Determining the Earthquake Epicenter: Japan

Determining the Earthquake Epicenter: Japan Practice Name: Hour: Determining the Earthquake Epicenter: Japan Measuring the S-P interval There are hundreds of seismic data recording stations throughout the United States and the rest of the world.

More information

Prediction of elastic displacement response spectra in Europe and the Middle East

Prediction of elastic displacement response spectra in Europe and the Middle East EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. 2007; 36:1275 1301 Published online 27 February 2007 in Wiley InterScience (www.interscience.wiley.com)..679 Prediction of elastic

More information

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core.

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core. Tutorial Problems 1. Where Do Earthquakes Happen? 2. Where do over 90% of earthquakes occur? 3. Why Do Earthquakes Happen? 4. What are the formulae for P and S velocity 5. What is an earthquake 6. Indicate

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara LONG-PERIOD (3 TO 10 S) GROUND MOTIONS IN AND AROUND THE

More information

ENGINEERING GROUND MOTION PARAMETERS ATTENUATION RELATIONSHIPS FOR GREECE

ENGINEERING GROUND MOTION PARAMETERS ATTENUATION RELATIONSHIPS FOR GREECE ENGINEERING GROUND MOTION PARAMETERS ATTENUATION RELATIONSHIPS FOR GREECE Laurentiu Danciu and G-Akis Tselentis 1 SUMMARY Engineering ground motion parameters can be used to describe the damage potential

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Contributions to the Chilean Code for Seismic Design of Buildings with Energy Dissipation Devices

Contributions to the Chilean Code for Seismic Design of Buildings with Energy Dissipation Devices Contributions to the Chilean Code for Seismic Design of Buildings with Energy Dissipation Devices A. Sáez, M. O. Moroni & M. Sarrazin Dept. Civil Engineering. Universidad de Chile, Chile SUMMARY: A code

More information

21. Earthquakes I (p ; 306)

21. Earthquakes I (p ; 306) 21. Earthquakes I (p. 296-303; 306) How many people have been killed by earthquakes in the last 4,000 years? How many people have been killed by earthquakes in the past century? What two recent earthquakes

More information

UNIT - 7 EARTHQUAKES

UNIT - 7 EARTHQUAKES UNIT - 7 EARTHQUAKES WHAT IS AN EARTHQUAKE An earthquake is a sudden motion or trembling of the Earth caused by the abrupt release of energy that is stored in rocks. Modern geologists know that most earthquakes

More information

EMPIRICAL EVIDENCE FROM THE NORTHRIDGE EARTHQUAKE FOR SITE- SPECIFIC AMPLIFICATION FACTORS USED IN US BUILDING CODES

EMPIRICAL EVIDENCE FROM THE NORTHRIDGE EARTHQUAKE FOR SITE- SPECIFIC AMPLIFICATION FACTORS USED IN US BUILDING CODES EMPIRICAL EVIDENCE FROM THE NORTHRIDGE EARTHQUAKE FOR SITE- SPECIFIC AMPLIFICATION FACTORS USED IN US BUILDING CODES Roger D BORCHERDT And Thomas E FUMAL SUMMARY Site-specific amplification factors, F

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture - 01 Seismology

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture - 01 Seismology Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture - 01 Seismology In this series of lectures on Seismic Analysis of Structures,

More information

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of. Chapter Outline Earthquakes CHAPTER 6 Lesson 1: Earthquakes and Plate Boundaries A. What is an earthquake? 1. A(n) is the rupture and sudden movement of rocks along a fault. A fault is a fracture surface

More information

GEOLOGY MEDIA SUITE Chapter 13

GEOLOGY MEDIA SUITE Chapter 13 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 13 Earthquakes 2010 W.H. Freeman and Company Three different types of seismic waves are recorded by seismographs Key Figure

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

RESPONSE SPECTRA RECOMMENDED FOR AUSTRALIA

RESPONSE SPECTRA RECOMMENDED FOR AUSTRALIA RESPONSE SPECTRA RECOMMENDED FOR AUSTRALIA Malcolm Somerville, Kevin McCue and Cvetan Sinadinovski Australian Geological Survey Organisation, Canberra SUMMARY Response spectra suitable for intraplate regions

More information

Chapter 4 Near Fault Ground Motion

Chapter 4 Near Fault Ground Motion Chapter 4 Near Fault Ground Motion 4.1 Introduction This chapter deals with the description of near-source ground motions and their characteristics which make them different from far-field ground motions.

More information

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer Design Spectra Page 1 Design Spectra Reading Assignment Course Information Lecture Notes Pp. 73-75 Kramer Appendix B7 Kramer Other Materials Responsespectra.pdf (Chopra) ASCE 7-05.pdf Sakaria time history

More information

Earthquakes How and Where Earthquakes Occur

Earthquakes How and Where Earthquakes Occur Earthquakes How and Where Earthquakes Occur PPT Modified from Troy HS Is there such thing as earthquake weather? Absolutely NOT!!! Geologists believe that there is no connection between weather and earthquakes.

More information

River Basin Research Center, Gifu University, Gifu city, Japan.

River Basin Research Center, Gifu University, Gifu city, Japan. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 Noember 2015, Sydney, Australia Estimation of the strong motion generation area based

More information

Earthquake. earthquake, epicenters in the U.S. Kobe, Japan deaths

Earthquake. earthquake, epicenters in the U.S. Kobe, Japan deaths Kobe, Japan 1995 5000 deaths Earthquakes It is estimated that there are 500,000 detectable earthquakes in the world each year. 100,000 of those can be felt, and 100 of them cause damage. The world's deadliest

More information

Embedded Foundation with Different Parameters under Dynamic Excitations

Embedded Foundation with Different Parameters under Dynamic Excitations 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2287 Embedded Foundation with Different Parameters under Dynamic Excitations Jaya K P 1 and Meher Prasad

More information

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading

More information

Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN Approach

Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN Approach Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN 1998-6 6 Approach 1 Chimneys Masts Towers EN 1998-6: 005 TOWERS, CHIMNEYS and MASTS NUMERICAL MODELS

More information

Two-Dimensional Site Effects for Dry Granular Soils

Two-Dimensional Site Effects for Dry Granular Soils 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Two-Dimensional Site Effects for Dry Granular Soils D. Asimaki 1 and S. Jeong 2 ABSTRACT

More information