Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations

Size: px
Start display at page:

Download "Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations"

Transcription

1 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations Tomislav Malvić 1 and Josipa Velić 2 1 INA-Industry of Oil Plc. & University of Zagreb, Faculty of Min., Geol. and Petr. Eng., 2 University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Zagreb, Croatia 8 1. Introduction The structural complex Croatian part (CPBS) of the Pannonian Basin System (PBS; Fig. 1) is regional known example of Neogene and Quaternary transtensional and transpressional tectonics (Royden, 1988; Velić, 2007). Tectonical and sedimentation features in this area are very well described in numerous publications and can be used as examples for interpretation of Upper Cenozoic geology in similar geological provinces in the world. Also, PBS is characterised with many hydrocarbon discoveries, making this basin system still one of the most important hydrocarbon province in Europe, including significant undiscovered reserves in subtle, satellite or simply smaller traps. CPBS covers entire SW/S part of PBS and is characterised with many features that are recognizable in other areas of basin. But as it is marginal southern part of that basinal system there are several unique tectonic characteristics. Also, CPBS is characterised with numerous hydrocarbon discoveries in rocks from Palaeozoic to Lower Pontian ages (Velić, 2007; Velić et al., 2002, 2008, 2010; Malvić, 2003). Structurally, hydrocarbon fields include compartmentalization controlled by fault system and lithological variations. These properties make some of field s structures in CPBS as classical examples of Neogene and Quaternary tectonics and hydrocarbon reservoirs in PBS as a whole. Also, geology of SW margin of CPBS is characterised by contact with Dinarides, as the next regional geological province. This remarkable contact is very deep fault zone called Periadriatic-Vardar lineament (Fig. 1). During Neogene it was the margin of Pannonian (as part of Paratethys) Sea and later Sava Lake. This sea or lake, comprised several Neogene depositional areas in CPBS, which is surrounded with many inland and highland areas (Malvić, 2003; Velić, 2007; Vrbanac, 2002; Vrbanac et al., 2010). As it is seen CPBS has relatively isolated position in PBS, thanks to numerous mountains which existed as uplifted palaeorelief through entire Neogene (like Medvednica, Kalnik, Moslavačka gora, Papuk, Psunj, Krndija and Dilj Mts.). The elongated shape of depressions, which clearly follows the SW margin of PBS, indicated on relatively shallow environment with irregular palaeo-cost line. All these facts asked for many detail studies of Neogene and Quaternary evolution of CPBS and its reflectance in hydrocarbon genesis, migration and accumulation, what had

2 216 New Frontiers in Tectonic Research - At the Midst of Plate Convergence been done through several decades and still are object of scientific interest. Analysis presented here is some kind of review of and contribution in our present knowledge of that area. Vienna ADRIATIC SEA EUROPEAN PLATE EASTERN ALPS Graz Vienna Mura Zagreb Sava Drava Krakow OUTER CARPATHIANPrzemysl INNER CARP Danubian Great Hungarian Plain Zala Slavonia- -Srijem Transylvanian Brasov MESIAN PLATE LEGEND: Drava 1-2 km 2-3 km >3 km Cenozoic deposits thickness volcanic rocks with age in Ma Pannonian Basin System (including regional overthrusts of Carpathians and Alps) Croatian part of Pannonian Basin System basins / depressions DINARIDES Periadriatic - location location on of Figure Figure Vardar lineament (Molve Field) km N Fig. 1. Geotectonic units of the Pannonian Basin System (modified after Royden, 1988) 2. Neogene tectonics in Croatian part of the Pannonian Basin system 0 m 3000 m Early Triassic Middle Miocene 3500 m Devonian and earlier g/w=3500 m Middle to Late Triassic 4000 m m LEGEND Grainstones Dolomites Quartzites Diaphthorites Transgression Fault zones Fig. 2. Typical large, faulted anticline in the Drava Depression

3 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 217 The oldest, still recognisable, tectonic displacements are the results of Palaeozoic and Mesozoic orogenesis. Many Mesozoic deposits were eroded during the Palaeogene. Palaeozoic and Mesozoic rocks are separated by regional unconformities from Neogene sediments, but also inside Neogene sequence can be found some local unconformities. However, the chronostratigraphic units mostly have retained their original superpositional relations. The present-day structures are developed in the Miocene, starting with extensional tectonics in opening of the PBS and uplifting of the Apennines and the Dinarides (Royden, 1988; Yilmaz et al., 1996). Middle Miocene was generally reflected in numerous extensional intrabasin strike-slip structures. Such strike-slip structures regular started as negative flower structures in Middle (rarely Lower) and Late Miocene, but later in Pliocene and Quaternary were inverted in positive (Malvić and Velić, 2010). It assumed reactivation and changing character of many faults, especially main bordering structure faults, from normal to reverse (Fig. 2). Eventually, many such uplifted anticlines had been connected through mutual spill points in larger anticlinorium. The best example is the largest anticlinorium in CPBS, the large Molve- Kalinovac-Stari Gradac structure. 2.1 Transtensional and transpressional phases in Neogene and Quaternary Royden (1988) and Rögl (1996, 1998) documented the ages of different Miocene episodes in the Pannonian area, establishing a scale used to categorize tectonic and sedimentation cycles. Tectonic extension in the PBS (probably sporadically also in CPBS) started in the Ottnangian (19.0 to 17.2 Ma; Haq & Eysinga, 1998), locally accompanied by a marine transgression, often paralic environments and strike-slip displacements. Extension continued in the Karpatian (17.2 to 16.4 Ma; Haq & Eysinga, 1998), when the some parts of CPBS possible were covered by brackish or marine sediments. 1 st transtensional phase in CPBS maximal extension reached in the Badenian (16.4 to 13.0 Ma; Haq & Eysinga, 1998), when strike-slip tectonics was main mechanism of structural development. Vrbanac (2002) described an extensive marine environment as dominant in CPBS during the Late Badenian, with several large mountains as islands. During extension, clastics sources were (a) siliciclastic basement rocks or (b) carbonates eroded by weathering of corallinaceaen sp. and briozoan sp. reefs (Malvić, 1998, 2003). This material was deposited in alluvial-fan environments. Coarse-grained sediments were deposited in the proximal part, and medium- and fine-grained sandstones in the middle or distal part such fans (Fig. 3). This explains the gradual decrease of porosity values in Middle Miocene facies in many field s structures, mostly toward SE (Fig. 5). Middle Badenian sediments are coarse-grained breccia and breccia-conglomerates, representing important reservoir lithofacies for hydrocarbon accumulations. Sometimes these reservoirs can contain significant part of non-hydrocarbon components (mercury, N 2, CO 2, H 2 S, chlorides and mercaptans) like reservoir fluid in the Molve Field. It can be explained by geological complexity, reservoir thermodynamics and generation in carbonate rocks (Barić et al., 1991, 1998). Upper Badenian sediments are mostly fine-grained sandstones, siltstones and, at the top, limestones and calcitic marlstones. It is very hard to determined border between Badenian and Sarmatian due to lithological similarity. The Late Badenian generally represented a transition between extensional (transtensional) and postextensional phases in Northern Croatia (Pavelić, 2002). Generally, evolution of the Badenian

4 218 New Frontiers in Tectonic Research - At the Midst of Plate Convergence environment was mostly controlled by palaeorelief of the pre-neogene basement, erosion rate, stream power of alluvial fans and local tectonics. Sarmatian was period of when 1 st transpression in CPBS started. After series of transgressive-regressive cycles in the Badenian, it was followed by a overall regression during the Sarmatian (13.0 to 11.5 Ma; Haq & Eysinga, 1998), typical for the Central Paratethys (e.g. Rögl & Steininger, 1984; Kovač et al., 1997; Pavelić, 2001; Vrsaljko et al., 2006). This post-extensional phase was characterized by local thermal subsidence of the base of the Pannonian Basin. Extensional tectonics (dominantly strike-slip negative structures and normal faulting) were replaced by a compressional style (mostly reverse faulting) over almost the entire PBS. Tectonics still controlled sedimentation locally (Royden, 1988; Rögl & Steininger, 1984; Pavelić, 2001, 2002), but the importance of alluvial fans significantly decreased. Sea level was lowered, salinity was reduced (existence of brackish environment) and, most importantly, the deep-water turbidites that originated in the Alps had been activated in some parts of PBS. These turbidites were a much more abundant source of sediments in CPBS from the Early Pannonian to the Late Pontian, when almost completely replaced mechanism of relatively small alluvial fans. Sedimentation of organic-rich material (later often matured source rocks) continues from Late Badenian. These limestones, marly limestones and calcitic marls today can be found on the depths between m. Such source rocks also are commonly seals, causing long (10-15 km; Malvić, 2003) lateral migration as a favourable mechanism of hydrocarbon accumulating in CPBS. In the Early Pannonian (11.5 to 9.3 Ma; Haq & Eysinga, 1998) the 2 nd transtensional localized strike-slip tectonics took place in the PBS (Royden, 1988). In a large lacustrine, brackish and eventually fresh-water environment, characterised by depths up to several hundreds metres (Vrbanac et al., 2010), salinity was continuously reduced owing to fresh-water inflow and a lack of connection with other open-sea environments. Turbidite currents of high-density were especially active in Late Pannonian (9.3 to 7.1 Ma; Haq & Eysinga, 1998) and Early Pontian (7.1 to 6.3 Ma; Haq & Eysinga, 1998) time. Significant quantities of clastics were transported from the Eastern Alps in CPBS through several turbidite events initiated by ramp-fault activity. Each depositional episode moved clastics over tens of kilometres, deposited them next to the tectonic ramp, and pushing sediments to a final depositional centres in the Mura, Sava, Drava and Slavonia-Srijem depressions to structurally determined areas. Successive turbidite events represented the dominant Late Miocene sedimentation mechanism in the Croatian depressions (Vrbanac, 2002). Turbiditic sequences were source of medium to fine-grained sandstones that represents the main reservoir lithofacies in CPBS. This mechanism was active periodically, interrupted typical hemipelagic sedimentation in lacustrine environment in CPBS. That resulted in monotonous alteration of sandstone and marlstone lithofacies through most of Pannonian and Pontian stages. The Late Pontian ( Ma), Pliocene and Quaternary (2.6 to 0.0 Ma) were period of 2 nd transpressional phase, when negative flower structures and faulted anticlines had been uplifted and hydrocarbons migrated in recent reservoirs. It was characterized by sporadically lacustrine, and mostly marsh, river and continental sediments (loess). Sedimentation took place in fresh lacustrine waters. This sedimentation represented periods of overall regression and reduction of the depositional area in final continental phase. The main described regional tectonical and depositional events in chronostratigraphical timescale are schematically given in Table 1.

5 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 219 Million of years in the past (Ma) Maybe sporadical extensions in CPBS? Badenian 1st transtensional phase Local inland weathering and alluvial fans mechanism Ottnangian Karpatian Sarmatian 1st transpression Shallowing and salinity reducing Pannonian Early Late 2nd transtensional phase Distant clastic source and turbidite mechanism Pontian Early Late Pliocene 2nd transpressional phase Quaternary Final structural forming, migration of hydrocarbons, eventually continental environment Table 1. Time-scale of the main tectonical and depositional events in Neogene and Quaternary in CPBS 2.2 Neogene and Quaternary sedimentation through megacycles as genetic units Neogene and Quaternary sediments are divided in 3 megacycles (Velić et al. 2002, Velić 2007). Each is described by depth and age of sediments, trap types and petrophysical properties. These sediments can be also found as outcrops on hills of surrounding mountains, but only with approx. 3% of total volume, but the largest part is covered with Quaternary deposits (Velić, 2007). In marginal parts of CPBS depressions Neogene thickness ranges m, and in central areas it could reach up to 3500 m in Slavonia-Srijem Depression, 5500 m in Sava and Mura Depressions and near 7000 m in Drava Depression. Neogene sediments are often cyclic. Such regularities and lithological characteristics were reason for selection 3 megacycles, and their division to lithostratigraphic formations and members. Each megacycles included rocks deposited in one super cycle of relative sea level changing, which is firstly characterised by gradually increasing, and secondly by relative abruptly decreasing of water depth (Mitchum, 1977). All megacycles are lithologically different, because they resulted from different transtensions and transpressions phases, different basins palaeorelief, as well as from eustatic and climate changes (Šimon, 1980) Lower and Middle Miocene (1 st ) megacycle The oldest megacycle lasted in Lower and (mostly) Middle Miocene, i.e. approx. 6.8 Ma (geochronological data after Rögl, 1996). It is characterized by heterogenetic clastic lithologies. Lithostratigraphically, this megacycle includes Prečec Formation in the Sava Depression, Vukovar Formation in the eastern Drava and Slavonia-Srijem Depression, Moslavačka gora Formation in the western Drava Depression and Murska Sobota Formation (except uppermost part) in the Mura Depression. These sediments are characterised by coarse-grained clastics (breccia, conglomerates or sandstones), fine-grained and pelitic clastics (clays, marls, calcitic marls, sandy and clayey marls with tuff intercalations) and carbonates (limestones, often Lithotamnium, and calcarenite sandstones). Some authors origin of tuffs and effusives in sediments of this age placed in Egerian and Egenburg (Pamić, 1997), and related sediments in Early Miocene paralic and transition environments. But Badenian is generally described as period when marine sedimentation took place everywhere in CPBS (e.g. Lučić et al., 2001, Vrbanac, 2006). Some new results located begging of all Neogene sedimentation in CPBS just in Badenian (Ćorić et al., 2009), what is today mostly accepted. Heterogeneity of rocks is accompanied with large (and somewhere rapid) changes in thicknesses. For example, in the Sava and Drava Depressions thickness of these sediments

6 220 New Frontiers in Tectonic Research - At the Midst of Plate Convergence can differ more than 2000 m on distance of 3-4 km. Generally, psamitic sediments of this megacycle are mostly deposited on margins as results of alluvial fans activity, and pelitic in central parts of depressions where normal basin plain sedimentation took place. As it was mentioned, pelitic sediments of this age are often source rocks (e.g. Troskot-Čorbić et al., 2009), including mature rocks from Upper Badenian to Lower Pannonian (2 nd megacycle) Late Miocene (2 nd ) megacycle The second megacycle had Late Miocene age (Pannonian and Pontian). It includes sedimentary association of the Sava Group (Ivanić-Grad, Kloštar-Ivanić and Široko Polje Formations) in the Sava and western Drava Depressions, then Vinkovci and Vera Formations in the eastern Drava and Slavonia-Srijem Depressions and Lendava Formation and lower part of Mura Formation in the Mura Depression. Deposition lasted approx. 5.9 Ma (Rögl, 1996). The oldest part is located deeper than 5000 m in Virovitica area. Generally, it is represented by uniform sequences (or homogeneous alteration) of sandstones (subgrauwacke and calcarenite subgrauwacke), siltites and marls with transitional lithotypes. Sandstones are mostly grey coloured, dominantly with quartz, and rock clasts (mostly limestones), mica and feldspat. The Pannonian sediments are deposited in brackish and Pontian in fresh water lake environment. The thickness varies from approx m (in small pull-aparts of Hrvatsko Zagorje Subdepression) to more than 4000 m in the deepest parts of the Drava Depression (Velić et al., 2002). The maximal total thicknesses are proven in wells located in the central part of depressions, where is also proven the maximum of sandstone thicknesses. These sandstones gradually pinch out toward margins, where are laterally gradually changed in marls. Deposition had been active in lake environment mostly deeper than 200 m (Vrbanac et al., 2010), where low energy basin sedimentation had been interrupted with periodical turbidites, which direction had been determined by sub-water, basement palaeorelief. The main sources of silt and sand particles were Eastern Alps. These clastics which had been several times re-deposited, and moved to tectonically instable slope or ramp and, after tectonical displacement, transported by turbidites in different parts of depressions (e.g. Velić et al., 2002; Vrbanac et al., 2010). Homogenous alteration of sandstones and marls in deeper parts is characterized by regional e-log markers (or key-beds) that are also chronostratigraphic border. These markers are regularly used in regional correlation of lithostratigraphic units in CPBS Pliocene and Quaternary (3 rd ) megacycle The youngest is 1 st megacycle of Pliocene and Quaternary periods, which lasted approx. 5.6 Ma (Rögl, 1996.). There are described Lonja Formation in the Sava and western Drava Depressions, Vuka Formation in the eastern Drava and Slavonia-Srijem Depressions, and Mura Formation in the Mura Depression. This megacycle is lithologically represented by alteration of poorly consolidated sandstones and soft clay with rare lignite. Only in the deepest parts (below 500 m) compaction can be enough strong for clayey limestones, marls and fine-grained sandstones. In the shallowest parts sediments are of gravels, loess and silts. Thickness can reach more than 1500 m in the Sava and 2200 m in the Drava Depression (Velić et al., 2002). All these sediments are product of mostly continental environments.

7 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations Main depositional mechanisms for reservoir rocks in Neogene Depositional systems through Neogene of CPBS can be considered through two main cycles when large part of clastic and reservoir lithofacies deposited, with different transport mechanisms and sources of clastic materials. The first one is period of Badenian that tectonically belongs to period of 1 st transtension in CPBS, and 3 rd megacycle. The second type of depositional mechanism had been active from Late Pannonian to Early Pontian, i.e. through period of 2 nd transtension and 2 nd megacycle Depositional mechanism during Badenian (1 st transtension and 1 st megacycle) Sediments of Middle (maybe locally also Lower) Miocene in CPBS are common reservoir, seal and source rocks. These are the earliest sediments deposited during Neogene transgression covering the entire CPBS (Ćorić et al., 2009). These sequences embracing mostly the Badenian, Sarmatian and Lower Pannonian ages are mainly clastic rocks. Badenian started by coarse-grained alluvial sediments and Lower Pannonian finished by lacustric marls. Marine environments (Vrbanac, 1996; Rögl, 1996, 1998; Ćorić et al., 2009) covered entire northern Croatia. Irregular, previously faulted and weathered, palaeorelief of Palaeozoic and Mesozoic basement resulted in significant depth differences and played important geomorphological role on the sea bottom. It is considered that large areas of present-day mountains in northern Croatia, like Medvednica, Kalnik, Moslavačka gora, Psunj and Papuk Mts., remained more or less isolated islands above the sea-level. Palaeozoic rocks and basement gave siliciclastic and Mesozoic carbonate detritus for coarsegrained sediments in Badenian. Moreover, lithoral algae reefs were abundant in shallow marine environments, where such reefs (mostly Coralinacea and Briozoa origin) were eroded by sea currents, representing important source of carbonate clasts later re-deposited in potential reservoir rocks. Lower fan (planar and trough cross-bedded sands, massive or laminate mud lens or siltites) Middle fan (gravels and planar, cross-bedded, coarse-grained sands) Upper fan (gravel and blocks) Basement Marine or lacustric marls Distal part Proximal part Fig. 3. Schematic review of typical alluvial fan and lithofacies distribution The main mechanism that transported clastics in shallow sea encompassed alluvial fans, divided in proximal and distal parts (Malvić, 1998). Coarse-grained sediments, as promising reservoir lithofacies, were deposited in the proximal part (Fig. 3). Sometimes in such fans, especially in proximal part, can not be found carbonate clasts originated form reef

8 222 New Frontiers in Tectonic Research - At the Midst of Plate Convergence organisms, what is indicator of strong erosion and high energy of fan. Mostly mediumgrained sands were deposited in the middle part of alluvial fan (Fig. 3). Sometimes their green colour, due to mica and chlorite minerals, is the indication of weak reductive environment in sea with normal salinity (Odin and Matter, 1981; Tišljar, 1993). Fine-grained sands and silts had been deposited in the lower part of alluvial fan (Fig. 3) and this sequence characterise a fan migration in time and space. Also, such vertical transition described change in brackish, shallow and stagnant environment of Upper Badenian. Badenian top is represented with marlstones and marly limestones deposited in stagnant and shallow (mostly up to 100 m deep) sea. The typical Badenian erosional slope had been mapped in many hydrocarbon fields in the CPBS (Tišljar, 1993; Malvić, 2003, 2006). It comprises Middle Badenian reservoir rocks connected in one hydrodynamic unit by catalysed basement rocks along unconformities. Upper Badenian included seal rocks, which are sometimes also source rocks, and such pelitic sequence is often continued in Sarmatian and Early Pannonian. One typical field structures, with Badenian reservoirs, located between major extensional faults and connected with basement buried hills, is shown on Fig. 4. The structural position and shape determined distribution of lithofacies and their thickness during Middle Miocene sedimentation. It is possible using maps of some geological reservoir variables like porosity (Fig. 5), thickness or depth for defining transition and spatial positions of different reservoir lithofacies (e.g. Malvić, 2006) as well as direction and energy of alluvial fan that had been active as mechanism for sedimentation of potential reservoir rocks. Very often borders are fault zones Zone of alluvial fan environment Corallinacean and Briozoan reefs NW SE Inland weathering of Mesozoic or Palaeozoic basement Siliciclastic or carbonate breccia and conglomerates Fine-grained and pelitic sediments Sea level Basin plain Up to 200 meters of depth Fig. 4. Schematic review of typical depositional environment in Early Badenian (modified after Malvić, 2006)

9 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 223 The coarse-grained sediments of alluvial fans have the great hydrocarbon potential, because they are, after few million years, often consolidated into good reservoir rocks, with significant primary porosity (more than 10%). Such rocks are mostly overlain by pelitic seal deposits (resulted from distal fan or basin plain sedimentation) sometimes including organic rich source facies (kerogene type II and III, Barić et al., 1991, 1993). It means that Badenian sequences can often be described as complete petroleum systems, what is confirmed by large number of oil and gas discoveries in such sediments in entire CPBS (Velić, 2007). Fig. 5. Distribution of porosity in alluvial fan environment in Stari Gradac-Barcs Nyugat Field (from Malvić, 2006) Alluvial environments are relatively short distribution area of few kilometres distance (Malvić, 1998), but they are also characterised by frequent changes of petrophysical properties due to local material source and depositional area. It means that Badenian lithofacies are characterised by heterogeneity of thickness and porosity already in small scale (within the range of several hundreds of meters). It could be observed in Fig. 5, where palaeo-activity of proximal part of alluvial fan is observed on the NW of the Stari Gradac-Barcs Nyugat structure. That area contains coarsegrained sandstones with primary porosity. Those sandstones originated from uplifted Mesozoic basement located close to the NW margin of the structure (Fig. 6). It was weathered and eroded close to strike-slip depression opened just on SE along of the main bordering faults (strike NW-SE and WNW-ESE; Fig. 6). The region of smaller (mostly lower than 3%, what was cut-off for HC reserve calculation) porosities (Fig. 5) and larger thicknesses belong to distal part of alluvial fan, which through Badenian existed on the SW part of the structure shown on Fig. 6. Distal part was tectonically downlifted along the main fault of the NNE-SSW striking, located in the middle of structure (Fig. 6). Lithologically, this area is characterised by fine-grained planar and trough cross-bedded sands or basin-plain marls (Malvić, 2006). Later, in the 1 st and especially 2 nd transpressional phase, entire structure was uplifted (changing of fault character) along the same main fault lines (NW-SE strike) that bordered the structure, which also changed fault character from normal to reverse. Described mechanism of alluvial fan lithofacies distribution and tectonic inversion is the most often geological mechanism of Middle Miocene reservoir forming in CPBS.

10 224 New Frontiers in Tectonic Research - At the Midst of Plate Convergence g/w = m A m N -3530,5-3479, Section on Figure HUNGARY CROATIA KEY TABLE: production well watered-out well mesuring well abandoned well directional well g/w = 3860 m gas/water contact -3472, ,1-3508,4-3506,9-3539,9 contour lines state border g/w = m B normal fault reverse fault , , ,7 g/w = m Fig. 6. Structural map of Badenian top (from Malvić, 2006; modified after Gaćeša, S., Futivić, I., Gyorgy, F. and Horvath, Z. (2001): Barcs Nyugat - Stari Gradac field study. INA-Naftaplin & MOL KTD, company archive, INA-Naftaplin, Zagreb) Deposition mechanism during Late Pannonian and Early Pontian (2 nd transtension or 2 nd megacycle) In the Late Pannonian and Early Pontian ( Ma), CPBS depressions were lacustric parts of the Pannonian Basin System, divided in partially independent elongated areas of brackish environments (e.g. Sava Depression had width of 25 km and a length of 100 km). In this period PBS was an open lake system, composed of several connected basins with active inflows and outflows (rivers) that have been described in detail by Bérczi et al. (1988). The chemical composition of water was determined by continuous inflows of fresh water from rivers, what resulted in the development of slightly brackish and eventually fresh lake environment. Croatian depressions had a very complex palaeorelief, especially the Sava and Drava Depressions, which represented typical tectonic grabens, with deep, elongated central part, and marginally uplifted parts of shallow water or continental palaeorelief (Fig. 7). Consequently, the largest thickness and lithofacies types had been described for central depression parts, simply because there was enough large accommodation space for the most sediment quantity. Mechanism of sediments transportation included turbidite flows. The major part of the siliciclastic material originates from one regional source (Eastern Alps). The last slope before CPBS, which contained detrital material that was accumulated with varying intensity, was probably located into the Mura depression (north of Varaždin). From this point, due to tectonic events, sediment was relocated and transported to the Drava, Sava and Slavonia-Srijem depressions. Such relocation was highly subdued by depression s palaeorelief. In the central parts depressions were surrounded by basement highs (somewhere even above sea-level), where water depths was mostly deeper than 200 m. The

11 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 225 erosion level of turbidites had been the strongest just in these central, deeper channels. But, such central parts are also place of large and thick sandstone bodies. However, it is necessary to outline that in the central part of PBS (e.g. Békés Basin in Hungary) the depositional mechanism had been partially different then on the margins of PBS. For example, Juhász and Magyar (1992) proved two main delta systems were dominated, which were Gilber-type deep water deltas. The sediment accumulation is reconstructed from two directions, from NW and NE, which encountered in Békés Basin. But, observing again CPBS turbiditic flows (or currents) had been determined by positions of Medvednica, Kalnik and Moslavačka gora Mts., i.e. location of the Mura Depression at very NW margin of CPBS. This depression was the first regional depositional centre for turbidites. As it was relatively shallow, the large quantities of clastics had been accumulated on eastern margin (tectonic ramp) of the Mura Depression, and later tectonically moved on the S/SE. Southern from uplifted palaeomountains re-activated turbidites transported material toward south in the Sava and northern in the Drava and Slavonia-Srijem Depressions. The strongest indicator of turbidite direction is the geometry of the sandstone bodies. The sandy detritus was transported into the depression exclusively by turbidites, and the primary flow direction had an arching (curved) shape from the NW, and later N, and somewhere even NE (influenced by palaeorelief). During a period of inactivity, permanent basin sedimentation resulted in deposition of the finest detritus throughout the entire CPBS. Structurally, main channels carried along the main part of the sandy material, while the minor part was deposited in the inter-channel areas. In addition, the channel locations were changed through space and time, continually migrating, thereby defining the inter-channel area pattern. In such transport directions the crucial role had Moslavačka gora Mt. (Fig. 7) that separated Sava and Drava Depressions, and regional dipping of the depressions toward SE and E. Moreover it is proven that turbidites in the Sava Depression had been transported through two main channels northern and southern, and during the Early Pontian deposition in the NW part of the Sava Depression was locally inclined firstly toward S (Vrbanac et al., 2010) and locally even toward the SW (Hernitz & Jurak, 1973). This was likely the result of the uplifting of Moslavčka gora Mt., stronger subsidence of the Donja Jelenska and Ilova sags in the NE and existence of Martinska Ves horst in the SW margin of the Sava Depression. Also, this depression had been also S margin of the CPBS, which was closed by mostly underwater palaeorelief located between the Psunj and Prosara Mts. (Blašković, 1982), what also was pinchout zone of the turbidites. The Drava Depression had more irregular shape due to SW extension of the rhomboidal Bjelovar Subdepression (Fig. 7). However sedimentation was similar to the Sava Depression. It means monotonous alteration of sandstones and marls in the central part, while the Bjelovar Subdepression as relatively closed basin of moderate palaeorelief included significantly more hemipelagic marls, especially in Late Pannonian. The final forming of the Drava Depression was took part during Pliocene and Quaternary when northern margin of the Bjelovar Subdepression, the Bilogora Mountain was uplifted (2-3 Ma ago) and separated these depositional areas in practically different depressions. Reconstruction of the palaeorelief can indicate the palaeodepth of the CPBS Neogene lakes. The most reliable indicator of water depth and the depositional environment are the remains of animals and plants (biotop) that characterise particular environments. Unfortunately, the Upper Pannonian sediments contain very few fossils. However, some macrofossils, microfossils and palinological analysis showed at the point at which the

12 226 New Frontiers in Tectonic Research - At the Midst of Plate Convergence transition from brackish to fresh water occurred just in Late Pannonian. Some other indicates the presence of shallow water in that period (e.g. Pletikapić, 1965, Lučić et al., 1995). Relatively rare samples of sporomorphs would indicate that land was relatively far, but the presence of kerogen type III (terrestrial) supports conclusion (Lučić et al., 1995) that the shore was close. Medvednica Mt. Sava Horst Depression Bjelovar Subdepression NW Z Rs5 Moslavačka gora Mt. Horst Legend: Depositional body of Okoli Sandstones (Early Pontian) Depositional body of Iva Sandstones (Late Pannonian) Association of massive marl of Ivanić-Grad Formation (Zagreb Member and Lipovec Marl) Z Rs5 electro-log marker (Late Pannonian/Early Pontian) electro-log marker (Early/Late Pannonian) Fig. 7. Schematic palaeographic situation on the border between Sava and Drava Depressions at the end of Late Pannonian (from Vrbanac et al., 2010) Regarding the relatively narrow depositional depressions it is not clear where the beaches and shoals could be located and where the transported material was eroded only from the close land. However, if marls are defined as sediments of swamps and lagoons, but which do not include in present cores any characteristics that indicate the presence of close land

13 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 227 areas, it can hardly be accept. Even if they are reworked some fossils could be found in collection of numerous well cores. Also it is illogical assume that throughout the entire Late Pannonian (which was about 2 Ma long), in a tectonically active depressions, shallow marsh environment existed all the time with constant water level. Indeed, this would means that no parts of the shallow-water (marsh, lagoons) were exposed to the air, due to continuously deepening and compensating sedimentation rate. Also, there are no evidences for delta activities and erosion of on-shore and near-shore material (like mud and marl) from exposed land. All these facts (assumptions of far land or near shore) can be explained by such mechanism that allowed clastic materials could be derives from distant near-shore environment, and then delivered by turbidity currents to the deeper parts of the basins, also several times reworked (like also skeletal and plant remains) and redeposited. So, today for CPBS is accepted deeply water (more than 200 m in the deepest parts; Fig. 8), turbidite mechanism as the main source of Upper Miocene sandstones in CPBS. Also complete sequence of massive, hemipelagic marls deposited over the basin plain has been described both in the marginal and central parts of depressions, indicating on calm basin environment. Such lake environment can explain all of the rapid changes in lithologies (especially vertically) and the nearly identical depositional conditions that were observed over a geological ages of Late Pannonian and Early Pontian. SW Sava Depression Brackish water Lake water level (depth more than 200 m) Z Bjelovar Subdepression Brackish water NE? Martinska Ves Horst? Z Rs 5 R ρ? Palaeozoic and Mesozoic basement? unconformity Moslavačka gora Horst unconformity R ρ Rs 5 Lower Pontian sandstones Upper Pannonian sandstones L. Pontian and U. Pannonian marls Badenian - Lower Pannonian clastics Palaeozoic and Mesozoic basement Z Rϕ Rs5 EL marker Early/Late Pontian EL marker Late Pannonian/Early Pontian EL marker Early/Late Pannonian Fig. 8. Schematic palaeographic reconstruction in the beginning of Late Pontian at margin between the Sava and Drava Depressions (modified after Vrbanac et al., 2010) Sedimentary, mineralogical and petrographic characteristics of the Upper Pannonian and Lower Pontian sediments in CPBS are very similar. The majority of the detritus originates from the Alpine mineral association (Šćavničar, 1979). Transport from Alps has taken a very long time, and the material was re-deposited several times. This explains why the sandstones are mostly medium- to fine-grained, with relatively rounded grains. Conversely, the influence of local horst as a source of detritus has been limited as they probably were under water at that time. According to large distance from Eastern Alps it can be assumed

14 228 New Frontiers in Tectonic Research - At the Midst of Plate Convergence that margins of CPBS (especially eastern Drava and Slavonia-Srijem Depression) were not only filled by turbidites, but also with clastics originated from much closer palaeomountains, like Mecsek in southern Hungary. However, it is still not undoubtedly proven Main facies associations in Upper Miocene turbiditic environments Turbiditic clastic environments are the most complex depositional facies through entire Neogene in CPBS, also characterised with the largest thickness and extension of reservoir lithofacies. It is why here will be described such lithofacies, using the most characteristics basin facies association for period from Upper Pannonian to Lower Pontian. There can be distinguished several facies association in all depression. Recently it was very detailed described for the Sava Depression and Bjelovar Subdepression (Vrbanac et al., 2010), but can be almost in the same way accepted for entire CPBS. The facies with the main reservoir potential is turbidite channel fill facies association consists of thick-bedded sandstone facies and thin-bedded sandstone facies. The channel axis is usually characterised by thick sandstone beds with rare marl layers. The number of marl layers is greater in the channel margins, while the basin plain sandstones are thinner and contain more fine-grained sediments. Usually this association in the lower part is composed of thick bedded sandstones, which strongly eroded marls in bottom of turbiditic flow. In fact, the energy of currents was strongest inside the channel, which resulted in strong bottom erosion. Therefore, the missing marl that could be deposited in the previous calm period due to energy of turbidite currents was probably eroded, what is the result of activity in channel axis where the current was the strongest. Such feature describes channels as depositional (Hamilton, 1967) and erosional (Laughton, 1968) environments in which the main current mass was transported. Moreover, channel facies association is composed of thin bedded sandstones in the upper parts (when the channel began to be less active and eventually inactive). If the channel is abandoned rapidly, there is no observed upward fining and thinning sequences what is often event in many CPBS hydrocarbon fields. Then SP log is characterised by a cylindrical shape (Pirson, 1970). Erosion of channel bottom was strongest in the central parts of the channels and weaker in the margins, which indicates that the positions of the channel in distributary system can be determined based on the number of altered marl layers. Specifically, the positions can be deduced based on the direction of the main current during different periods. In the proximal and bottom parts of the current the particle concentration was highest, while the majority of suspended detritus was deposited in distal areas due to the decreasing energy. This resulted in the maximum sandstone thicknesses being developed in channels that were formed in according to basin morphology and synsedimentary tectonics. Turbidite overbank-levee facies association is composed of facies of laminated sandstones, siltstones and marls in the lower part and facies of sandstone layers in the upper part. Sediments of this facies association were deposited outside the distributary channels, where the turbidity currents were significantly weaker, which created overbank-levee, fringe and channel bank deposits. These characteristics resulted in the erosional effects being smaller than in the channel facies. As a result, amalgamations are very rare and the thickness of eroded marls is probably not higher than several to several dozen centimetres. However, the

15 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations 229 total thickness of the sandstone body in this association can be more than 30 m and shows upward thickening. This association is characteristic at the marginal parts of channels and the channel s banks. This indicates that the distribution was not restricted to the channels, but also occurred in the wider channel area, which resulted in thick sandstones occasionally being deposited in bank (levee) areas. Lateral or distal turbidite facies association consists of a monotonous alternation of very thin (laminated), thin and medium thick sandstone beds passing into siltstones and marls. In this association, erosion on the bedding plane is almost completely absent. The sublayers of marls and sandstones are so thin that they are beyond the resolution of well-log curves. Sediments of this association are recognized in distal areas, where the maximal range of turbidites occurred. Moreover, such sediments are discovered on morphologically uplifted parts between channels or further away from the channels for great distances. Consequently, the portion of siltstones and marls in the facies is increased and the portion of marly sandstones and sandstones is decreased. The total thickness of this association can reach several dozens of meters, and can cover several hundreds of meters laterally. This distal turbidite association can be compared with classical turbidite sequences that are deposited (Walker, 1978) at the end of the distal part of a lower fan in the basin plain, which is the area in which the maximal extensions of the turbidity current exist. Such distal turbidite associations can also be found on the banks of the upper fan (Walker, 1978). Generally, they are the result of the deposition of sandy and fine-grained detritus in the marginal, transitional parts of the basin (or in CPBS areas between strikeslip depressions), between the main current flow and morphologically uplifted areas. These results indicate that deposition was active in areas where turbidity current is still active, but only from a thin portion of the current cloud. This part of current is characterised with low energy, which resulted in only small quantities of sandy detritus being transported. Massive marls facies association is primarily represented by massive marl facies with rare intercalations of thin siltstone or sandstone laminae. Sediments in this association are continuously deposited in marginal areas or areas outside the range of turbidites. However, deposition of these marls was also active in the central parts of the depressions during periods of calm basin sedimentation in which there were no turbidite activities. This association can be compared to hemipelagic sediments of open seas. 2.4 Hydrocarbon reserves and reservoir characteristics in CPBS Approximately 104 x 10 6 m 3 of oil from 39 fields, 6.93 x 10 6 m 3 of condensate (11 fields) and x 10 9 m 3 of gas (52 fields) were recovered in the Croatian part of the Pannonian basin during 63 years of exploitation. Detail calculation is performed for period in Velić et al. (2010). The total production peak was attained in , when exploration resulted in discoveries of 12 oil (Fig. 9) and 20 gas (Fig. 10) fields. Generally 30 years ( ) can be described as a highly successful exploration period (Fig. 9 and Fig. 10). The total (geological) reserves are about 740 x 10 6 m 3 of equivalent oil, with recoverable reserves of 112 x 10 6 m 3 of oil, x 10 6 m 3 of condensate and x 10 9 m 3 of gas (Belošić, 2003; Velić et al., 2008). Up to 2004 a total of x 10 6 m 3 of equivalent oil had been recovered from Croatian fields, including x 10 6 m 3 of oil from 39 fields, 6.93 x 10 6 m 3 of condensate from 11 fields and x 10 9 m 3 of gas from 52 fields (Velić et al., 2010; Fig. 11).

16 230 New Frontiers in Tectonic Research - At the Midst of Plate Convergence Fig. 9. Number of discovered oil fields during (from Velić et al., 2010) Fig. 10. Number of discovered gas fields during (from Velić et al., 2010) Production is decreased after 1989 caused by depletion (maturation) of older fields, and substantial decrease in exploration activities. Dependence between these two factors it is not favourable condition, because reserves decreasing can be only ceased by discovering of new proven reserves as result of new exploration drilling. But total recovery of proven reserves is continuously increasing due to application of additional method for improving recovery. The most applied secondary recovery method for many fields is water injection. However, the fields of all sizes are often revitalized with mechanisms of artificial (gas) lift. Also, it is proven, especially in the largest oil fields, that sandstone reservoirs of Pannonian and Pontian age have the most favourable values of petrophysical properties and consequently the highest recoveries and the longest production period (Velić et al., 2002).

17 Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations Total recoverable gas reserves (x1,000,000 cubic meter) Total produced gas reserves (x1,000,000 cubic meter) Total remaining gas reserves (x1,000,000 cubic meter) Total recoverable oil reserves (x1,000 cubic meter) Total produced oil reserves (x1,000 cubic meter) Total remaining oil reserves (x1,000 cubic meter) 0 Fig. 11. Total hydrocarbon recoverable, produced and remaining reserves in CPBS (from Velić et al., 2010) Hydrocarbon reserves in numbers Regarding reserves, there are many sources and estimations. But, recently there are published two estimations in internationally reliable source (Dobrova et al., 2003; Velić et al., 2010) for CPBS. Lower estimation originated from 2010 (Velić et al., 2010), and higher from 2003 (Dobrova et al., 2003). Also, the complete deterministical calculation procedure for reserve estimation in CPBS through geological categories that define petroleum system is presented in Malvić (2003) and later upgraded in Malvić & Rusan (2009). According to earlier estimation (Dobrova et al.; 2003) Croatia is ranked in third place according to the remaining recoverable liquid reserves in the central and eastern European states regarding reserves at the end of 2002 (Romania first, 39%; Ukraine second, 25%; and Croatia, Austria and Belarus third, 6%). But later Velić et al. (2010) included newer production data from CPBS are stated that recoverable oil reserves are lower x10 6 m 3 of oil ( x10 6 m 3 of condensates), versus x10 6 m 3 of oil in Dobrova et al. (2003). For gas ratio is x10 6 m 3 (Velić et al., 2010) vs x10 9 m 3 (Dobrova et al., 2003). But decreasing published for remaining reserves is more dramatic and for oil it is 8.01x10 6 m x10 6 m 3 of condensate (Velić et al., 2010) vs x10 6 m 3 (Dobrova et al., 2003), and for gas x10 9 m 3 (Velić et al., 2010) vs x10 9 m 3 (Dobrova et al., 2003). In any case, significant remaining hydrocarbons could be recovered from reservoirs with proven reserves in CPBS. It is sure that there are some subtle, potentially medium or small reservoirs of about 200,000 m 3 recoverable oil equivalent (Malvić, 2003; Malvić & Rusan, 2009), where can be located remaining reserves (Fig. 11). There are two stratigraphic plays as targets, logically based on two previously described depositional environments, which could be considered for future explorations. The first ones are smaller structures in Badenian sediments. Reservoirs of such age are generally coarse-grained sediments, deposited in smaller (generally up to 5 km in longer axis) strike-slip depressions. The largest such fields are already discovered, but there is for sure smaller structures of such type that were not recognized earlier on regional seismic sections, subsurface geological maps or include large uncertainty about possible accumulated hydrocarbons (e.g. in Malvić, 2003).

18 232 New Frontiers in Tectonic Research - At the Midst of Plate Convergence The second ones targets are Upper Miocene sandstones, where hydrocarbon recovery can be increased by producing from marginal, thin or marly (inter-channel) sandstone layers. Also, the largest sandstone reservoirs in CPBS are very probable accompanied with several satellite or smaller reservoirs as separate hydrodynamic units Hydrocarbon reservoirs characteristics Hydrocarbon reservoirs absolute depths in CPBS range approx. from 400 to 4000 m. Initial reservoir pressure is hydrostatic or higher. Average geothermal gradient is about 4.5 o C/100 m, but locally can vary 30-40%. Gas and condensate reservoirs are always over-pressured, with average gradient 0.16 bars/m. Temperature of reservoirs are sometimes high ( o C) with large part of non-hydrocarbon gases CO 2 (10-25%), H 2 S ( ppm) and mercury. The oldest reservoir rocks are proven in the Šumećani (Palaeozoic schists and granites), Bunjani (Palaeozoic granites and gneisses), Molve, Kalinovac and Stari Gradac-Barcs Nyugat Fields (highly tectonized Palaeozoic schists and quartzites of Permian and Triassic systems). On the east, the oldest reservoirs are discovered in Ilača, Privlaka and Đeletovci Fields (pre-cenozoic). There are significant reserves found in Mesozoic (Triassic) dolomites in Molve, Kalinovac and Stari Gradac Fields. The most important Badenian reservoirs in CPBS are located in the Sava and Drava Depressions. In the eastern part of Drava Depression the largest is Beničanci Field, from where is recoverable about 18x10 6 m 3 of oil. Smaller, but economical, reservoirs of that age are located in surrounding Obod, Kučanci-Kapelna, Bokšić-Klokočevci and Števkovica Fields. Badenian reservoirs are proven also in Mura Depression (Legrad Field), Sava Depression (Vezišće, Stružec and Kloštar Fields) and elsewhere. Generally, the most hydrocarbons from reservoirs of 1 st megacycle are recovered from eight fields: Beničanci, Molve, Kalinovac, Žutica, Stružec, Ivanić, Šandrovac and Bokšić. The largest hydrocarbon reserves (recovered and remained) in CPBS belongs to sandstones of Upper Pannonian and Lower Pontian. These reservoirs are deposited during 2 nd megacycle, and the best properties are proven in central parts of depressions for thick and lithologically clean, medium and fine-grained sandstones. Average primary (inter-granular) porosity is often higher than 20% and permeability is about 60x10-3 µm 2. The largest sandstone reservoirs are discovered in the Sava Depression on Stružec Field (16x10 6 recovered oil tons), Žutica Field (14 x10 6 recovered oil tons), Ivanić Field (7x10 6 recovered oil tons) and Šandrovac Field (6.5 x10 6 recovered oil tons) in the Drava Depression. Three largest fields in CPBS (Beničanci, Molve and Kalinovac) contain hydrocarbon reserves of approx. 200 x10 6 tons of oil equivalent, and are classified in 1000 the world s largest hydrocarbon fields (Velić, 2007). The main gas reservoirs (also rich in condensate) are Molve, Kalinovac and Stari Gradac-Barcs Nyugat in the western Drava Depression, with 70% gas reserves in CPBS. 3. Conclusion Neogene and Quaternary tectonics in the Croatian basin is very complex, due to two phases of transtension (Badenian and Late Pannonian-Early Pontian) and two of transpression (Sarmatian-Early Pannonian and Late Pontian-recent). Transtensions were periods of main sediment accumulation and transpression of uplifting and structural forming. Consequently, there are lithological heterogeneities laterally and vertically as well as

Potential Hydrocarbon Discoveries in Bjelovar Subdepression, Croatia By Tomislav Malvic 1 and Igor Rusan 2

Potential Hydrocarbon Discoveries in Bjelovar Subdepression, Croatia By Tomislav Malvic 1 and Igor Rusan 2 Potential Hydrocarbon Discoveries in Bjelovar Subdepression, Croatia By Tomislav Malvic 1 and Igor Rusan 2 Search and Discovery Article #10133 (2007) Posted September 25, 2007 1 INA-Industrija nafte, d.d.,

More information

Tomislav Malvić 1 and Josipa Velić 2. Department (Advisor), Šubićeva 29, Zagreb, Croatia

Tomislav Malvić 1 and Josipa Velić 2. Department (Advisor), Šubićeva 29, Zagreb, Croatia Relations between Effective Thickness, Gas Production and Porosity in Heterogeneous Reservoirs: an Example from the Molve Field, Croatian Pannonian Basin Q1 Tomislav Malvić 1 and Josipa Velić 2 1 INA-Industry

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

Depositional History and Petroleum Potential of Ombilin Basin, West Sumatra - Indonesia, Based on Surface Geological Data*

Depositional History and Petroleum Potential of Ombilin Basin, West Sumatra - Indonesia, Based on Surface Geological Data* Depositional History and Petroleum Potential of Ombilin Basin, West Sumatra - Indonesia, Based on Surface Geological Data* Yahdi Zaim 1, Litto Habrianta 2, Chalid I. Abdullah 1, Aswan 1, Yan Rizal 1, Nurcahyo

More information

SELECTION OF THE MOST SUCCESFUL NEURAL NETWORK ALGORITHM FOR THE PORPUSE OF SUBSURFACE VELOCITY MODELING, EXAMPLE FROM SAVA DEPRESSION, CROATIA

SELECTION OF THE MOST SUCCESFUL NEURAL NETWORK ALGORITHM FOR THE PORPUSE OF SUBSURFACE VELOCITY MODELING, EXAMPLE FROM SAVA DEPRESSION, CROATIA SELECTION OF THE MOST SUCCESFUL NEURAL NETWORK ALGORITHM FOR THE PORPUSE OF SUBSURFACE VELOCITY MODELING, EXAMPLE FROM SAVA DEPRESSION, CROATIA Marko CVETKOVIĆ 1, Josipa VELIĆ 1 and Filip VUKIČEVIĆ 2 1

More information

Lab 7: Sedimentary Structures

Lab 7: Sedimentary Structures Name: Lab 7: Sedimentary Structures Sedimentary rocks account for a negligibly small fraction of Earth s mass, yet they are commonly encountered because the processes that form them are ubiquitous in the

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

From 2D Seismic to Hydrodynamic Modelling

From 2D Seismic to Hydrodynamic Modelling From 2D Seismic to Hydrodynamic Modelling A Complex Study of Turbidites in a Petroleum-Bearing Basin Marcell Lux, HC Exploration Geologist Ahmed Amran, HC Exploration Advisor Marianna Vincze, Geomodel

More information

Sediment. Weathering: mechanical and chemical decomposition and disintegration of rock and minerals at the surface

Sediment. Weathering: mechanical and chemical decomposition and disintegration of rock and minerals at the surface Sediment Some basic terminology Weathering: mechanical and chemical decomposition and disintegration of rock and minerals at the surface Erosion: removal of weathered rock and minerals from one place to

More information

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

BALOCHISTAN FOLDBELT BASIN

BALOCHISTAN FOLDBELT BASIN INTRODUCTION BALOCHISTAN FOLDBELT BASIN The Kharan-3 block is located in the Kharan Trough of Balochistan Basin. GEOLOGICAL SETTING The Balochistan Province is an Upper Cretaceous to Recent structurally

More information

entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas product

entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas product (), entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas production has increased from 50bcm in 2000 to nearly

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

Lecture Outline Wednesday - Friday February 14-16, 2018

Lecture Outline Wednesday - Friday February 14-16, 2018 Lecture Outline Wednesday - Friday February 14-16, 2018 Quiz 2 scheduled for Friday Feb 23 (Interlude B, Chapters 6,7) Questions? Chapter 6 Pages of the Past: Sedimentary Rocks Key Points for today Be

More information

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes Geo 302D: Age of Dinosaurs LAB 2: Sedimentary rocks and processes Last week we covered the basic types of rocks and the rock cycle. This lab concentrates on sedimentary rocks. Sedimentary rocks have special

More information

Geologia Croatica. Reservoir geology, hydrocarbon reserves and production in the Croatian part of the Pannonian Basin System

Geologia Croatica. Reservoir geology, hydrocarbon reserves and production in the Croatian part of the Pannonian Basin System 65/1 91 101 5 Figs. 4 Tabs. Zagreb 2012 91 Reservoir geology, hydrocarbon reserves and production in the Croatian part of the Pannonian Basin System Josipa Velić 1, Tomislav Malvić 1,2, Marko Cvetković

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 100 Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

The Nature of Sedimentary Rocks

The Nature of Sedimentary Rocks The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks Chemical precipitates Organic matter or biochemically produced materials The Nature of Sedimentary Rocks Sedimentary

More information

Paleo Lab #4 - Sedimentary Environments

Paleo Lab #4 - Sedimentary Environments Paleo Lab #4 - Sedimentary Environments page - 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation

More information

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS APPENDIX C GEOLOGICAL CHANCE OF SUCCESS Page 2 The Geological Chance of Success is intended to evaluate the probability that a functioning petroleum system is in place for each prospective reservoir. The

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Classification of sedimentary rocks Sedimentary rocks are products of weathered, fragmented or dissolved,

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Sequence Stratigraphy. Historical Perspective

Sequence Stratigraphy. Historical Perspective Sequence Stratigraphy Historical Perspective Sequence Stratigraphy Sequence Stratigraphy is the subdivision of sedimentary basin fills into genetic packages bounded by unconformities and their correlative

More information

Sedimentary Basins. Gerhard Einsele. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Sedimentary Basins. Gerhard Einsele. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Gerhard Einsele Sedimentary Basins Evolution, Facies, and Sediment Budget With 269 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part I Types

More information

History of Exploration and Exploitation of Geothermal Energy in the Zagreb Geothermal Area (Croatia)

History of Exploration and Exploitation of Geothermal Energy in the Zagreb Geothermal Area (Croatia) Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 History of Exploration and Exploitation of Geothermal Energy in the Zagreb Geothermal Area (Croatia) Miron Kovačić Croatian

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre Oil & Gas From exploration to distribution Week 1 V05 Origin of hydrocarbon resources part 1 Jean-Pierre Deflandre W1V5 Origin of hydrocarbon resources1 p. 1 Introduction to hydrocarbon resources You will

More information

Exploration Significance of Unconformity Structure on Subtle Pools. 1 Vertical structure characteristics of unconformity

Exploration Significance of Unconformity Structure on Subtle Pools. 1 Vertical structure characteristics of unconformity Exploration Significance of Unconformity Structure on Subtle Pools Wu Kongyou (China University of Petroleum,College of Geo-Resources and Information,Shandong Qingdao 266555) Abstract: Vertical structure

More information

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom Geological and Geophysical Evaluation of Offshore Morondava Frontier Basin based on Satellite Gravity, Well and regional 2D Seismic Data Interpretation MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON

More information

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode K. S. Krishna National Institute of Oceanography, Dona Paula, Goa-403 004. krishna@nio.org Seismic

More information

Chapter 3. Geology & Tectonics

Chapter 3. Geology & Tectonics Chapter 3 Geology & Tectonics 3.1 Geology The general geological features of Indonesia are shown in Figure 3.1. The basement formation is metamorphic and it is intruded with plutonic formations. They are

More information

Sedimentary rocks. Mechanical Weathering. Weathering. Chemical weathering. Rates of weathering. Fossil Fuel Resources. Two kinds of weathering

Sedimentary rocks. Mechanical Weathering. Weathering. Chemical weathering. Rates of weathering. Fossil Fuel Resources. Two kinds of weathering Sedimentary rocks Fossil Fuel Resources Exam next Tuesday February 14 Bring Scantron and Review Questions About 75% of all rock outcrops on the continents Important to reconstruct much of Earth's history

More information

EGAS. Ministry of Petroleum

EGAS. Ministry of Petroleum EGAS Ministry of Petroleum EGAS Ministry of Petroleum About The Block Location: N. El Arish offshore block is located in the extreme eastern part of the Egypt s economic water border and bounded from the

More information

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas Lecture Goals A) Rivers and Deltas (types) B) Water Flow and sedimentation in river/deltas

More information

The McCully gas field in southern New Brunswick was discovered in the year 2000 on a joint drilling exploration venture by Corridor Resources Inc.

The McCully gas field in southern New Brunswick was discovered in the year 2000 on a joint drilling exploration venture by Corridor Resources Inc. 1 The McCully gas field in southern New Brunswick was discovered in the year 2000 on a joint drilling exploration venture by Corridor Resources Inc. and Potash Corporation of Saskatchewan. Located about

More information

The Kingfisher Field, Uganda - A Bird in the Hand! S R Curd, R Downie, P C Logan, P Holley Heritage Oil plc *

The Kingfisher Field, Uganda - A Bird in the Hand! S R Curd, R Downie, P C Logan, P Holley Heritage Oil plc * A Bird in the Hand! EXTENDED ABSTRACT The Kingfisher Field, Uganda - A Bird in the Hand! Heritage Oil plc * The Kingfisher Field lies on Uganda s western border beneath Lake Albert, situated in the western

More information

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Mellinda Arisandy 1 and I Wayan Darma 1 Search and Discovery Article #11008 (2017)** Posted November 6, 2017 *Adapted

More information

GeoCanada 2010 Working with the Earth

GeoCanada 2010 Working with the Earth Lithofacies Identification and the Implications for SAGD Well Planning in the McMurray Formation, Christina Lake Area, Alberta Travis Shackleton*, Robert Gardner, Sung Youn, Grace Eng and Lori Barth Cenovus

More information

Seismic Expressions of Submarine Channel - Levee Systems and Their Architectural Elements

Seismic Expressions of Submarine Channel - Levee Systems and Their Architectural Elements Seismic Expressions of Submarine Channel - Levee Systems and Their Architectural Elements Summary D.V. Ramana, Santanu De* and Kalyanbrata Datta KDMIPE, ONGC, Dehradun E-mail- devvenram@rediffmail.com

More information

EGAS. Ministry of Petroleum

EGAS. Ministry of Petroleum EGAS Ministry of Petroleum EGAS Ministry of Petroleum About The Block Location: N. Thekah offshore block is located at about 56 km to the north of the Mediterranean shore line, 85 km to the north west

More information

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 6 (Iryam)

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 6 (Iryam) Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 6 (Iryam) The Iryam Block (6) occupies an area of 3,911 km 2 in the Sabatayn Basin in the province of Shabwah in central

More information

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Marco Venieri and Per Kent Pedersen Department of Geoscience, University

More information

Clastic Sedimentary Rocks

Clastic Sedimentary Rocks Clastic Sedimentary Rocks Alessandro Grippo, Ph.D. Alternating sandstones and mudstones in Miocene turbidites Camaggiore di Firenzuola, Firenze, Italy Alessandro Grippo review Mechanical weathering creates

More information

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 85 (Al Uqlah North)

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 85 (Al Uqlah North) Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 85 (Al Uqlah North) The Al Uqlah North Block (85) occupies an area of 597 km 2 in the Sabatayn Basin in the province of Shabwah

More information

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 3 Minerals, Rocks, and Structures Section 7 Reading the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section,

More information

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Available online at  ScienceDirect. Energy Procedia 114 (2017 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 114 (2017 ) 2772 2780 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne,

More information

RELINQUISHMENT REPORT FOR LICENCE P.1663, BLOCK 29/4b and 29/5e

RELINQUISHMENT REPORT FOR LICENCE P.1663, BLOCK 29/4b and 29/5e RELINQUISHMENT REPORT FOR LICENCE P.1663, BLOCK 29/4b and 29/5e Licence: P.1663 Blocks: 29/4b & 29/5e 25th Round Traditional Licence Operator: Ithaca Energy UK(Ltd) 100% Work Programme Summary The agreed

More information

Chapter 5. The Sedimentary Archives

Chapter 5. The Sedimentary Archives Chapter 5 The Sedimentary Archives Factors affecting Sedimentary Characteristics 1. Tectonic setting 2. Physical, chemical, and biological processes in the depositional environment 3. Method of sediment

More information

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b

More information

We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0

We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0 We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0 E.Y. Lee* (University of Vienna), J. Novotny (Brown University) & M. Wagreich (University

More information

Outcrops from Every Continent and 20 Countries in 140 Contributions. Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick.

Outcrops from Every Continent and 20 Countries in 140 Contributions. Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick. Paper VIII Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick Editors Outcrops from Every Continent and 20 Countries in 140 Contributions http://bookstore.aapg.org Length ~ 23 m (75.5

More information

Image: G. Parker. Presenters: Henry Chan, Kayla Ireland, Mara Morgenstern, Jessica Palmer, Megan Scott

Image: G. Parker. Presenters: Henry Chan, Kayla Ireland, Mara Morgenstern, Jessica Palmer, Megan Scott Image: G. Parker Presenters: Henry Chan, Kayla Ireland, Mara Morgenstern, Jessica Palmer, Megan Scott Is the Ross Formation a suitable analog for sand-rich turbidite plays in passive margin basins? Play:

More information

Objectives: Define Relative Age, Absolute Age

Objectives: Define Relative Age, Absolute Age S6E5. Students will investigate the scientific view of how the earth s surface is formed. c. Classify rocks by their process of formation. g. Describe how fossils show evidence of the changing surface

More information

The boundary between two formations (or any distinct layers) is called a contact. Sedimentary rocks cover 75% of continents.

The boundary between two formations (or any distinct layers) is called a contact. Sedimentary rocks cover 75% of continents. Sedimentary Rocks Sedimentary rocks form at the Earth s surface through interactions of the hydrologic system and the crust. Fortunately, many of these processes are in operation today, and geologists

More information

Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary)

Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary) Geologia Croatica 56/1 101 122 13 Figs. ZAGREB 2003 Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary)

More information

6. Cretaceous Zone Play Results

6. Cretaceous Zone Play Results C H A P T E R S I X 6. Cretaceous Zone Play Results 6. Geological Overview The Mannville Group was deposited as a clastic wedge east of the mountain ranges. This wedge varies in thickness from 7 metres

More information

Abstract. Introduction. Regional Setting. GCSSEPM to be published December 2003

Abstract. Introduction. Regional Setting. GCSSEPM to be published December 2003 Shelf Margin Deltas and Associated Deepwater Deposits: Implications on Reservoir Distribution and Hydrocarbon Entrapment, Block VI-1, Ulleung Basin, East Sea, South Korea Sneider, John S. Sneider Exploration,

More information

Chapter 6 Pages of Earth s Past: Sedimentary Rocks

Chapter 6 Pages of Earth s Past: Sedimentary Rocks Chapter 6 Pages of Earth s Past: Sedimentary Rocks Introduction! Drilling into the bottom of the North Sea, we encounter: " Soft mud and loose sand, silt, pebbles, and shells. Then: " Similar materials

More information

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 80 Mountain Building in Scotland 7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 7.1 Introduction In mid-ordovician to Silurian times, the Grampian mountains underwent exhumation,

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples Very well sorted Travelled grate distance, effective sorting 5 medium-grained sandstone with well rounded grains; large scale high angle planar cross-beds. Migration of straight crested mega ripples Desert

More information

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR)

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR) Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR) The Wadi Sarr Block (80) occupies an area of 1961 km 2 on the Sayun- Masilah Basin in the central Yemen. Block

More information

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND 1) THE CARBONIFEROUS SERIES OF ROCKS The rocks of the Todmorden district are of the Carboniferous Series and were first laid down in an ancient sea, which covered

More information

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D 1. A student obtains a cup of quartz sand from a beach. A saltwater solution is poured into the sand and allowed to evaporate. The mineral residue from the saltwater solution cements the sand grains together,

More information

Sedimentary Rocks, our most Valuable Rocks. Or, what you will probably find when you are outdoors exploring.

Sedimentary Rocks, our most Valuable Rocks. Or, what you will probably find when you are outdoors exploring. Sedimentary Rocks, our most Valuable Rocks Or, what you will probably find when you are outdoors exploring. Sedimentary rocks give us evidence to earth s earlier history. We look at processes happening

More information

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 The correct answers are listed at the bottom (no peeking!). These questions are to give you an idea of the type of questions that will be asked. They are not a

More information

NAME HOMEWORK ASSIGNMENT #3 MATERIAL COVERS CHAPTERS 8, 9, 10, 11

NAME HOMEWORK ASSIGNMENT #3 MATERIAL COVERS CHAPTERS 8, 9, 10, 11 NAME HOMEWORK ASSIGNMENT #3 MATERIAL OVERS HAPTERS 8, 9, 10, 11 Assignment is due the beginning of the class period on November 23, 2004. Answers for each chapter will be discussed in class, as Exam #3

More information

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Forty-First Annual Convention & Exhibition, May 2017

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Forty-First Annual Convention & Exhibition, May 2017 IPA17-369-SG PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Forty-First Annual Convention & Exhibition, May 2017 FACIES ANALYSIS OF LATE NEOGENE DEPOSIT: MARINE TO CONTINENTAL ENVIRONMENT OF THE MERAPI

More information

Geo 302D: Age of Dinosaurs. LAB 1: Introduction to Rocks and Sedimentary Processes

Geo 302D: Age of Dinosaurs. LAB 1: Introduction to Rocks and Sedimentary Processes Geo 302D: Age of Dinosaurs LAB 1: Introduction to Rocks and Sedimentary Processes We would not be able to address the interesting questions of dinosaurs and their place in the history of life without the

More information

NATURAL ENVIRONMENT. Geophysics

NATURAL ENVIRONMENT. Geophysics NATURAL ENVIRONMENT Geophysics Geodynamics Alpine, Carpathian and Dinaric mountain belts surround the Pannonian (Carpathian) Basin, of Neogene through Quaternary in age. The Cenozoic evolution of the Alpine-Pannonian

More information

Geology Stratigraphic Correlations (Lab #4, Winter 2010)

Geology Stratigraphic Correlations (Lab #4, Winter 2010) Name: Answers Reg. lab day: Tu W Th Geology 1023 Stratigraphic Correlations (Lab #4, Winter 2010) Introduction Stratigraphic correlation is the process of comparing rocks at one locality with related rocks

More information

1. Base your answer to the following question on The diagram below represents a part of the crystal structure of the mineral kaolinite.

1. Base your answer to the following question on The diagram below represents a part of the crystal structure of the mineral kaolinite. 1. Base your answer to the following question on The diagram below represents a part of the crystal structure of the mineral kaolinite. An arrangement of atoms such as the one shown in the diagram determines

More information

Kristina Novak Zelenika 1, Renata Vidaček 1, Tomislav Ilijaš 1 and Petar Pavić 1. Abstract

Kristina Novak Zelenika 1, Renata Vidaček 1, Tomislav Ilijaš 1 and Petar Pavić 1. Abstract Journal of the Croatian Geological Survey and the Croatian Geological Society 2017 70/2 105 114 13 Figs. www.geologia-croatica.hr Application of deterministic and stochastic geostatistical methods in petrophysical

More information

Meandering Miocene Deep Sea Channel Systems Offshore Congo, West Africa

Meandering Miocene Deep Sea Channel Systems Offshore Congo, West Africa Meandering Miocene Deep Sea Channel Systems Offshore Congo, West Africa S. Baer* (PGS), J. E. Comstock (PGS), K. Vrålstad (PGS), R. Borsato (PGS), M. Martin (PGS), J.P. Saba (SNPC), B. Débi-Obambé (SNPC)

More information

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13 ESC102 Sedimentary Rocks Our keys to the past Sedimentary Rocks Sedimentary rocks are rocks that form through the accumulation of sediment and the process of lithification. Lithification occurs after deposition

More information

Introduction to Prospecting. Session Two Geology

Introduction to Prospecting. Session Two Geology Introduction to Prospecting Session Two Geology The Earth Earth is 4.6 billion years old (Ba). Bacteria & algae +3.5 Ba. Microscopic animals ~2 Ba. Animals ~600 million years (Ma) old. Mankind about 100,000

More information

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69 EROSION, DEPOSITION AND SEDIMENTARY ROCKS Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages 124-133 Chapter 3: pages 52-54, 61-69 Base Level Resistant bed Resistant bed creates a local base level

More information

Writing Earth s History

Writing Earth s History Earths History Writing Earth s History How is Earths History like writing in your Journal? Everyday, something happens and, with a pen, it is written down in the pages of your journal. As you continue,

More information

Facies Analysis Of The Reservoir Rocks In The. Sylhet Trough, Bangladesh. Abstract

Facies Analysis Of The Reservoir Rocks In The. Sylhet Trough, Bangladesh. Abstract Facies Analysis Of The Reservoir Rocks In The Sylhet Trough, Bangladesh Joyanta Dutta Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

More information

Igneous Rocks. Sedimentary Rocks

Igneous Rocks. Sedimentary Rocks Earth Sciences 083F Plate Tectonics Exercises Plate tectonics is a model for the dynamic behaviour of Earth s lithosphere. Outlining stable areas of lithosphere are narrow zones (plate boundaries) in which

More information

Bulletin of Earth Sciences of Thailand

Bulletin of Earth Sciences of Thailand Quantitative Seismic Geomorphology of Early Miocene to Pleistocene Fluvial System of Northern Songkhla Basin, Gulf of Thailand Oanh Thi Tran Petroleum Geoscience Program, Department of Geology, Faculty

More information

Module 9 Sedimentary Rocks

Module 9 Sedimentary Rocks Module 9 Sedimentary Rocks SEDIMENTARY ROCKS Rocks formed from material derived from preexisting rocks by surfacial processes followed by diagenesis There are two main classes of sedimentary rocks Clastic

More information

Thickness maps of Neogene and Quaternary sediments in the

Thickness maps of Neogene and Quaternary sediments in the Journal of Maps (manuscript 000 words) Thickness maps of Neogene and Quaternary sediments in the Kloštar Field (Sava Depression, Croatia) GORN JOVIĆ TOMISLV MLVIĆ, 7 8 9 0 IN-Industry of Oil Plc., Sector

More information

Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems

Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems P2-2-13 Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems Eva Hollebeek, Olivia Osicki, Duplo Kornpihl Schlumberger, London, UK Introduction Offshore

More information

RELINQUISHMENT REPORT. License P1546 Block April 2009

RELINQUISHMENT REPORT. License P1546 Block April 2009 RELINQUISHMENT REPORT License P1546 Block 110-01 14 April 2009 Sherritt International Oil and Gas Limited 2000, 425-1 st street S.W., Calgary, Alberta Canada T2P 3L8 Telephone (403) 260-2900 Fax (403)

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 5: SEDIMENTATION: Rocks Formed by Surface Processes Lecturer: H Mohammadzadeh Assistant professors, Department of Geology, FUM Copyright

More information

Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC

Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC March 2012 1. Header Licence Number: P1368 Licence Round: 23 rd Licence Type: Frontier Block Numbers: 202/4, 202/5, 204/30,

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data*

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Yun Ling 1, Xiangyu Guo 1, Jixiang Lin 1, and Desheng Sun 1 Search and Discovery Article #20143 (2012) Posted April

More information

Answers. Rocks. Year 8 Science Chapter 8

Answers. Rocks. Year 8 Science Chapter 8 Answers Rocks Year 8 Science Chapter 8 p171 1 Rocks are made up of minerals such as quartz, feldspars, micas, and calcite. Different rocks are made up of different combinations of minerals. 2 Igneous,

More information

Depositional Sequences Sequences

Depositional Sequences Sequences Depositional Sequences Transgressive and Regressive packages can be bound by unconformities Because sediment can only be preserved during net aggradation and progradation All other times there is either

More information

NAME: GEL 109 Final Winter 2010

NAME: GEL 109 Final Winter 2010 GEL 109 Final Winter 2010 1. The following stratigraphic sections represents a single event followed by the slow accumulation of background sedimentation of shale. Describe the flows that produced the

More information

Ocean Floor. Continental Margins. Divided into 3 major regions. Continental Margins. Ocean Basins. Mid-Ocean Ridges. Include:

Ocean Floor. Continental Margins. Divided into 3 major regions. Continental Margins. Ocean Basins. Mid-Ocean Ridges. Include: Ocean Floor Divided into 3 major regions Continental Margins Ocean Basins Mid-Ocean Ridges Continental Margins Include: Continental Shelves Continental Slopes Continental Rise 1 Continental Shelves Part

More information

Chapter 6 Sedimentary and Metamorphic Rock

Chapter 6 Sedimentary and Metamorphic Rock Chapter 6 Sedimentary and Metamorphic Rock Weathering and Erosion Wherever rock is exposed at Earth s surface, it is continuously being broken down by weathering a set of physical and chemical processes

More information

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Page No. 069-1 High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Thérèse Lynch* and John Hopkins, Department

More information

SEDIMENTARY ROCKS. Processes, Environments, Structures and Rocks. Sedimentary Processes and Rocks

SEDIMENTARY ROCKS. Processes, Environments, Structures and Rocks. Sedimentary Processes and Rocks SEDIMENTARY ROCKS Processes, Environments, Structures and Rocks Sedimentary Processes and Rocks Origins of Sedimentary Rocks Sediment transport and texture Sedimentary structures Lithification Classifying

More information

Page 1. Name:

Page 1. Name: Name: Questions 1 through 3 refer to the following: The diagrams below represent two rock outcrops found several miles apart in New York State. Individual rock layers are lettered, and fossils and rock

More information

ROCK CLASSIFICATION AND IDENTIFICATION

ROCK CLASSIFICATION AND IDENTIFICATION Name: Miramar College Grade: GEOL 101 - Physical Geology Laboratory SEDIMENTARY ROCK CLASSIFICATION AND IDENTIFICATION PRELAB SECTION To be completed before labs starts: I. Introduction & Purpose: The

More information