RISK ASSESSMENT OF ENHANCED GEOLOGICAL STORAGE OF CO2 USING GAS HYDRATES

Size: px
Start display at page:

Download "RISK ASSESSMENT OF ENHANCED GEOLOGICAL STORAGE OF CO2 USING GAS HYDRATES"

Transcription

1 Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, RISK ASSESSMENT OF ENHANCED GEOLOGICAL STORAGE OF CO2 USING GAS HYDRATES Takeshi Komai, Yasuhide Sakamoto and Atsuko Tanaka Geo-resources and Environment, AIST-west 16-1 Onogawa, Tsukuba, JAPAN ABSTRACT The framework of risk assessment system for CCS is proposed, especially for enhanced recovery of gas, oil and gas hydrates. Based on the protocol proposed by European Union, the framework of enhanced CCS has been modified to improve the functions of geologicalbased performance assessment. Some results on simulation of CO 2 migration and the estimation of the leakage of CO 2 in pathways will be presented and discussed for the further development. In addition, the promotion of methane gas hydrates would be one of the CO 2 storage in geological structure of marine sediments. The original method of CO 2 -CH 4 substitution in the production of gas hydrates will be introduced in the presentation. Keywords: gas hydrates, carbon storage, risk assessment, enhanced recovery INTRODUCTION Both aspects of risk and benefit as well as the balance are very important in understanding the feasibility of CO 2 geological storage at specified situation of enhanced recovery of gas hydrates. Researchers in Europe and USA have considered the framework for risk assessment of CCS, especially for geological storage of CO 2 and enhanced recovery system of oil and gas production. Various kinds of benefits of geological carbon storage, compared with ocean and atmospheric discharge, can be easily understood in the scientific aspect of global environment and the economical aspect of CDM. However, the assessment of risks caused by CCS wo uld be hardly undertaken, because of some difficulties in determining the end point and parameters for estimating ecological and human risks. In order to achieve transparent risk governance for any stakeholders who are involved in CCS project, it is necessary to develop the general and/or common framework, enabling to be fully communicated among any party of concern. In this paper, we propose the framework of risk assessment system for CCS, especially for enhanced recovery of gas, oil and gas hydrates. Some results on simulation of CO 2 migration and the estimation of the leakage of CO 2 in pathways will be presented and discussed for the further development. In addition, the enhanced recovery of methane gas hydrates would be one of the CO 2 geological storage in geological structure of marine sediments. The original method of CO 2 - CH 4 substitution in the production of gas hydrates will be introduced in the presentation. CO 2 GEOLOGICAL STORAGE Capture and storage of CO 2 in deep geological structure is one of the mitigation measures of carbon emission, regarding the issue of global climate change. The possible target of geological storage of CO 2 has shifted from areas at onshore to offshore. This change is considered to be the reason that risks caused by the injection of CO 2 at offshore area might be smaller than at onshore residential places. In terms of environmental risk assessment for CCS, there are typical endpoints of Corresponding author: Phone: Fax takeshi-komai@aist.go.jp

2 geological storage of CO 2, human and animals, ecological system, local and global environments. The offshore storage of CO 2 has a possibility to reduce risks for some endpoints, except for marine environment. The effects of retardation and attenuation of CO 2 emission would be expected through various media of escape pathways of CO 2 migration. IPCC report has stated the possibility of CCS wo uld be in deeper geological structures. Major institutions of geological survey in the world have been investigating the possible places of offshore geological storage of CO 2. CO 2 GEOLOGICAL STORAGE USING GAS HYDRATES Preliminary study was carried out to clarify the mechanism of CO 2 gas hydrate formation in marine sediments, which are targets to exploitation of gas hydrates [1]. Regarding to actual CO 2 reservoirs, the growth kinetics of CO 2 hydrate formation, the quantity of CO 2 st orage, and the condition change in reservoirs were experimentally investigated. Thus we clarified the mechanism of gas hydrate formation in sand layers representing marine sediments. Firstly, the L w -H- V (water liquid, hydrate, and vapor) equilibrium condition of the hydrate and microscopic observation of the hydrate formation were examined by using a small-scale pressure cell filled with porous media in unsaturated condition of water and gas. Then, behavior of the hydrate formation front was observed by using a bulkscale pressure vessel filled with sand. CO 2 can be sequestrated as a form of solid phase of gas hydrate in marine sediments. Because the situation is in a condition of high pressure and low temperature under the seabed, CO 2 hydrate can form easily and exists in a stable solid condition in-situ by injecting CO 2 or exhaust combustion gas including nitrogen into submarine sediments. Therefore, in order to examine feasibility of this CO 2 storage system, it is important to investigate the mechanism of the hydrate formation in sediments. This system features not only the sequestration as CO 2 hydrate under the seabed, but also the combination with methane hydrate production. ENHANCED GAS HYDRATE PRODUCTION USING CO 2 The enhanced recovery process of oil, natural gas and gas hydrates by using CO 2 is expected to be one of the CO 2 geological storage methods [2]. In addition, the process of CO 2 injection into aquifers has also been studied as a CO 2 storage technique. Recently, based on the perspective of gas hydrate exploitation under the seabed with CO 2 substitution reaction or stability and environmental conservation of marine sediments, there has been some basic researches for CO 2 hydrate formation in marine sediments. This CO 2 storage process using gas hydrates has the possibility of satisfying simultaneously both aspects resources development and environmental conservation. Large amounts of methane gas hydrates are found in marine sediments and permafrost. To extract methane gas from its reservoir in a practical production way, it is necessary to obtain fundamental information on the mechanism underlying the formation and dissociation of gas hydrates and their properties, including kinetics and crystal growth. We have proposed an advanced method of gas hydrate production, by which methane gas is extracted from the reservoir by replacing methane with CO 2 at the molecular level. Fig.1 illustrates a concept of enhanced production of CH 4 gas hydrates using CO 2 [3].This method would be feasible to achieve the sequestration of CO 2 into the sediments. The main purposes of this research are to elucidate the mechanism underlying hydrate reformation and substitution and accumulate practical data for completing the original concept of the proposed method. The heat generation in CO 2 hydrate formation can be utilized to stimulate the dissociation of methane gas hydrates. Enhanced CO 2 storage system N 2+CO 2 mixture Injection well CO 2 hydrate MH Production system Sea bottom N 2 2 +water drain Production well Water+N 2 Formation kinetics Hydrate saturation Formation rate Equilibrium Permeability change Gas hydrate bearing sediments marine sediments Thenomenclature should follow the abstract as the Fig.1 The concept of enhanced extraction system of CH 4 gas hydrate using CO 2 sequestration [3].

3 FRAMEWORK OF CCS RISK ASSESSMENT The methodology of risk assessment needed for CCS operation is essential to achieve the management of environmental risks and effective operation. In order to implement transparent risk governance for any stakeholders who are involved in CCS project, it is necessary to develop the general and/or common framework of risk assessment, enabling to be fully communicated within any party of concern [4]. Geosciences (geo-structure) Geological survey Hydro-geology Geochemistry (mechanism) Parameter fitting Sequestration Scientific aspects Risk analysis (assessment) risk management system of CCS Company, Municipal Geophysics (monitoring) Natural analog Physical property Fluid dynamics (simulation) Mass transport Porous media flow Social aspects Fig.2 Synthesized approach for CCS investigation. Fig.2 illustrates an integrated scenario of various investigations for CO 2 geological storage. It is necessary for risk assessment of CCS to synthesize some fundamental studies, such as geosciences, geophysics, geochemistry, risk analysis, and fluid dynamics. Both scientific and social approaches are also needed to create more realistic risk assessment scenario. Integrated Framework for CCS Risk Assessment Risk assessment should be undertaken for CO 2 geological storage in three phases, like as in the following contents. Different type of models have be developed for process of Tier1 to Tier3 assessment. Tier1: Risk source assessment, screening model for selection of adequate site and its identification, Amplification and Fluorescence End Point. (FEP analysis) Tier2: Exposure assessment, site specific exposure model for environmental impact. (Performance assessment) Tier3: Effects assessment, detailed analytical model for business planning, operation and shut-down. (Risk management) En d Points of risk assessment It is essential to clarify endpoints for quantitative risk assessment. The following are typical envisioned endpoints of risk assessment for geological storage. At each site endpoints and their we ighting should be selected and identified. 1) Human or animals Respiratory inhibition, earthquake damage, exposure in operating. 2) Ecological environment Population reduction of fishes, benthic community, plants, and geo-microbes. 3) Regional environment Reduction of environmental values and services. 4) Global environment Global climate change, change in ocean and geo-environment. Concerned Hazards due to CCS Hazards caused by CCS operation would be identified for each set of endpoint. The following are the characterization of expected hazards. 1) Human effects High CO 2 exposure, trigger of geo-hazards, elution of toxic components. 2) Ecological effects Damage to fishery, reduction of ecological diversity, effect to microbiology. 3) Effects to geo-structure Ground slide, subsidence, induced earthquake, effect to groundwater. 4) Effects to natural recourses Pollution of aquifer, gas intrusion, effect to oil reservoir, depletion of natural resources. Whole System and Related Technologies It is necessary to develop the whole system of CCS and related technologies, regarding to various kind of geological and environmental processes, as listed in the following. 1) Geological performances Fault, trap structure, reservoir, aquifer, and seal performance. 2) Hydro-geological properties Groundwater transport, porosity, permeability, temperature, dissolved matter. 3) Geochemical properties Isolation, transformation, dissolution, equilibrium and kinetic properties. 4) Mechanical properties Physical strength, compaction, failure, run-off, ground slide, earthquake.

4 5) Environmental media Atmosphere, ocean, marine sediments, ground surface, subsurface. 6) CCS technologies Injection method, well system, injection rate, pressure, flow rate, surface equipments. 7) Public acceptance Risk scenario, risk trade-off, mitigation, risk communication, risk and benefit analysis. Site assessment and performance assessment In the tier2 risk assessment, exposure assessment or performance assessment, assuming site specific conditions and geological structures, will be introduced for environmental impacts assessment of CCS. The scenario of site characterization and performances on CO 2 release, fluid flow and geochemical reactions was proposed by Los Alamos National Laboratory [5]. Different kind of exposure models would be utilized in each scenario, because that time and special dimension are unlikely valuated from days to million years. CO 2 release might take place at surface and/or around borehole to reveal the emission into atmospheric environment. CO 2 injected into deep geological structure might migrate as fluid flow in pore space of geological media and a part of that could store as solid material in geochemical reactions. Although most of injected CO 2 could isolate inside the geological media, some portion might flow and migrate through geological media for a long period. The risk of leakage wo uld greatly vary due to the geological and hydro-geological structure at specific sites [6]. DEVELOPMENT OF RISK ASSESSMENT SYSTEM FO R CCS An original risk assessment system for CCS and enhanced production of gas hydrates using CO 2 has been developed, based on fundamental studies of the framework of CCS risk assessment and the numerical simulations [7]. To establish optimum risk assessment decision basis for safety and risk management of CO 2 geological storage, we have been developing risk assessment tool that consists of hazard impact estimation part, CO 2 migration evaluation part and risk evaluation part. Fig.3 illustrates the formation of elements needed for risk assessment. For hazard impact estimation, we introduced the preliminary hazard analysis (PHA) methodology. Using PHA format, the authors have been collecting hazard elements, and gathering information that will be able to be utilized for semi-quantification of probability or frequency and consequences, especially for hazards which have potential impacts onto surface. The criteria of environmental impacts due to the exposure of CO 2 are listed in Fig.4. Fig.3 Elements needed for risk assessment for CCS. Fig.4 Criteria data for impact assessment due to exposure of CO 2.

5 Target depth of CO 2 injection varies from deeper than [m] level of gas or oil reservoirs to shallower than -800 [m] level of unconsolidated seams or aquifers. In Japan, aquifers are regarded to be one of the promising targets for geological storage. In shallower than -800 [m] aquifers, storage capacity of CO 2 will be smaller, compared to deeper formations as the matter of pressure balance between rock and injected CO 2. Even then, CO 2 storage in aquifers wo uld be possible. One of essential parts of risk assessment of CO 2 geological storage is the quantitative assessment of fractures or faults [8]; whether they will act as seals or paths for fluid? Regarding fractures or faults deeper than [m] level, a scheme has been proposed to evaluate sealing possibility [9]. As for faults shallower than [m] level, some reports showed qualitative relationship between depth of shallower faults and seal functions, as illustrated in Fig.5, using gas outburst static data in coal seams in Japan [10]. Fig.5 Fault distribution in Ishikari coalfield in Hokkaido, Japan. We have worked for designing functions necessary for impact assessment of surface area, including atmospheric and ecological impacts due to little seepage of CO 2 from ground surface. The result of the calculation will be combined with hazard consequences calculation using impact data listed in Fig. 4. The developed risk assessment system will provide stakeholders for transparent risk communication. CONCLUSIONS The original method for enhanced extraction of gas hydrates is proposed, based on the mechanism of CO 2 -CH 4 substitution in the production of gas hydrates. Various kinds of benefits of geological carbon storage, compared with ocean and atmospheric discharge, can be easily understood in the scientific aspect of global environment and the economical aspects. Both aspects of risk and benefit as well as the balance are very important in understanding the feasibility of CO 2 geological storage at specified situation. The assessment of risks caused by CCS would be hardly undertaken, because of some difficulties in determining the end point and parameters for estimating ecological and human risks. In order to achieve transparent risk governance for any stakeholders, it is necessary to develop the general and/or common framework, enable to be fully communicated among any stakeholders. We have proposed an integrated risk assessment system for CCS, especially for the cases of CO 2 geological storage in aquifers and enhanced recovery of gas hydrates. The framework of enhanced CCS has been modified to improve the functions of geological-based performance assessment. Some results of a numerical simulation of CO 2 migration and the estimation of the leakage of CO 2 in principal pathways, such as faults and groundwater paths, are also discussed for the development of risk assessment system. REFERENCES [1] Inui, M., Komai, T., Behavior of Gas Hydrate Formation in Marine Se diments for CO 2 Se questration, Proc of 15 th ISOPE, 2006, Seoul, Korea. [2] Komai, T. Sakamoto, Y. and Kawamura, T. Carbon Capture and Storage System Using Gas Hydrates, 6 th Int Symp. Gas Hydrates, 2007, Vol.6, pp [3] Komai, T., Inui, M. and Sato, T. Behavior of Ga s Hydrate Formation in Marine Sediments for CO 2 Se questration, Int J Offshore and Polar Eng, ISOPE, 2005, Vol 14, No 1, pp [4] Corre, A., CO 2 storage risk assessment from site selection to project abandonment, AIST- Imperial College London annual seminar, 2008, Tsukuba Japan. [5] Pawar J. Rajesh, Development of a framework for long-term performance assessment of geologic CO 2 sequestration sites, Joint meeting with AIST and LANL, 2007, Los Alamos, USA.

6 [6] Okuyama, Y., Geo-chemical Effects on CO2 storage into Aquifers, J of Geological Science Japan, 107 (4), 2008, pp [7] Tanaka, A., Sakamoto, Y. and Komai, T., Framework of risk assessment of CO2 geological storage, proc. JGU, L , [8] Færseth, et.al, Methodology for risking fault seal capacity: Implications of fault zone architecture, AAPG Bulletin, 91(9), 2007, pp [9] Takahashi, M., Development of Evaluation Method for Sealing Abilities of Geo-Formations, RITE, 2008, pp [10] Ujihira, M., Geological study on Ga s Outbursts in Coal Mines, J of MMIJ, volume 90, 1989, 197.

Current challenges at CO 2 Sites

Current challenges at CO 2 Sites Current challenges at CO 2 Sites Ola Eiken et al., Statoil R&D Force seminar on injection safety 4 th December 2013 Offshore Sleipner Onshore In Salah Sub-sea Snøhvit 1 - Classification: External 2010-09-23

More information

What is the scope for carbon capture and storage in Northern Ireland. Michelle Bentham

What is the scope for carbon capture and storage in Northern Ireland. Michelle Bentham What is the scope for carbon capture and storage in Northern Ireland Michelle Bentham Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Tel 0115 936 3100 What is Carbon Capture and Storage? Capture of

More information

Storage 6 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia

Storage 6 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Storage 6 - Modeling for CO 2 Storage Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Regina, Sask., Canada, 17-22 July, 2016 Modeling 2 What

More information

Storage 4 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia

Storage 4 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Storage 4 - Modeling for CO 2 Storage Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia 1 Modelling 2 On Models. All models are wrong. some

More information

SUCCESS. Critical Elements and Superior Strategy

SUCCESS. Critical Elements and Superior Strategy SUCCESS SUbsurface CO2 storage Critical Elements and Superior Strategy Slide 1 / 30-Sep FME Centres for Environment- friendly Energy Research 8 FME-centres announced 4. February 2009 Slide 2 / 30-Sep Slide

More information

IN POLAND. Adam WÓJCICKI. National Research Institute

IN POLAND. Adam WÓJCICKI. National Research Institute CO2 GEOLOGICAL STORAGE POTENTIAL IN POLAND Adam WÓJCICKI Polish Geological Institute National Research Institute Warsaw, June 2009 CO2 geological sequestration (definitions) Carbon capture and storage

More information

Yev Kontar. Illinois State Geological Survey, University of Illinois at Urbana-Champaign

Yev Kontar. Illinois State Geological Survey, University of Illinois at Urbana-Champaign Addressing Caribbean Geophysical Hazards through the Continuously Operating Caribbean GPS Observational Network (COCONet) and International Ocean Drilling Program (IODP) Yev Kontar Illinois State Geological

More information

Building confidence of CCS using knowledge from natural analogues

Building confidence of CCS using knowledge from natural analogues Building confidence of CCS using knowledge from natural analogues Kenshi Itaoka and Koji Yamamoto Mizuho Information and Research Institute (MHIR), Tokyo, Japan The 2 nd Meeting of the Risk Assessment

More information

Gas hydrate-related sedimentary pore pressure changes offshore Angola

Gas hydrate-related sedimentary pore pressure changes offshore Angola Gas hydrate-related sedimentary pore pressure changes offshore Angola Christian Berndt and Bedanta Goswami 1 National Oceanography Centre, Southampton, U.K. cbe@noc.soton.ac.uk, bedantag@gmail.com ABSTRACT

More information

Geologic CO 2 Storage Options for California

Geologic CO 2 Storage Options for California Geologic CO 2 Storage Options for California Larry Myer WESTCARB Technical Director California Energy Commission lrmyer@lbl.gov Carbon Capture & Sequestration Public Workshops February 13 14, 2008 Outline

More information

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques.

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. ROAR HEGGLAND, Statoil ASA, N-4035 Stavanger, Norway Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. Summary By the use of 3D seismic data,

More information

Modelling of CO 2 storage and long term behaviour in the Casablanca field

Modelling of CO 2 storage and long term behaviour in the Casablanca field Available online at www.sciencedirect.com Energy Procedia 1 (2009) (2008) 2919 2927 000 000 GHGT-9 www.elsevier.com/locate/xxx www.elsevier.com/locate/procedia Modelling of CO 2 storage and long term behaviour

More information

The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity: A Review

The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity: A Review H2-2-10 The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity: A Review Sam Green 1, Stephen A O'Connor 1, Alexander P Edwards 2 1 Ikon Science, Durham, UK, 2 Ikon Science, Teddington,

More information

We LHR1 01 The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity - A Review

We LHR1 01 The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity - A Review We LHR1 01 The Influence of Pore Pressure in Assessing Hydrocarbon Prospectivity - A Review S. Green (Ikon Science), S.A. O'Connor (Ikon Science) & A.P. Edwards* (Ikon Science) SUMMARY Assessing the prospectivity

More information

Geological deep storage of CO2 : the problem

Geological deep storage of CO2 : the problem Geological deep storage of CO2 : the problem Stuart HASZELDINE University of Edinburgh EU storage North Sea Trans-boundary www.geos.ed.ac.uk/sccs/ s.haszeldine@ed.ac.uk Geological Society, London 22 Nov

More information

5 IEAGHG CCS Summer School. Geological storage of carbon dioxide (a simple solution)

5 IEAGHG CCS Summer School. Geological storage of carbon dioxide (a simple solution) Storage 1- Reservoirs, Traps, Seals and Storage Capacity for Storage Geological storage of carbon dioxide (a simple solution) Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum,

More information

Monitoring techniques developed at CO2 natural laboratories to improve risks assessment and safety strategy

Monitoring techniques developed at CO2 natural laboratories to improve risks assessment and safety strategy Monitoring techniques developed at CO2 natural laboratories to improve risks assessment and safety strategy Sabina Bigi Dipartimento di Scienze della Terra Sapienza Università di Roma 3 rd International

More information

Geomechanics for reservoir and beyond Examples of faults impact on fluid migration. Laurent Langhi Team Leader August 2014

Geomechanics for reservoir and beyond Examples of faults impact on fluid migration. Laurent Langhi Team Leader August 2014 Geomechanics for reservoir and beyond Examples of faults impact on fluid migration Laurent Langhi Team Leader August 2014 Reservoir Geomechanics It is critical to understand the mechanical behaviour of

More information

Investigations of Hard (difficult) to drain Seam

Investigations of Hard (difficult) to drain Seam Investigations of Hard (difficult) to drain Seam Dr Ting Ren, Professor Naj Aziz and Dr Jan Nemcik Mining Research Group School of Civil, Mining and Environmental Engineering University of Wollongong Industry

More information

region includes nine states and four provinces, covering over 1.4 million square miles. The PCOR Partnership

region includes nine states and four provinces, covering over 1.4 million square miles. The PCOR Partnership Overview of Phase II PCOR Partnership MVA Activities IEAGHG Monitoring Network Meeting Natchez, MS May 6-8, 2010 Steven A. Smith, Energy & Environmental Research Center The Plains CO 2 Reduction (PCOR)

More information

Reservoir Geomechanics and Faults

Reservoir Geomechanics and Faults Reservoir Geomechanics and Faults Dr David McNamara National University of Ireland, Galway david.d.mcnamara@nuigalway.ie @mcnamadd What is a Geological Structure? Geological structures include fractures

More information

RATE OF FLUID FLOW THROUGH POROUS MEDIA

RATE OF FLUID FLOW THROUGH POROUS MEDIA RATE OF FLUID FLOW THROUGH POROUS MEDIA Submitted by Xu Ming Xin Kiong Min Yi Kimberly Yip Juen Chen Nicole A project presented to the Singapore Mathematical Society Essay Competition 2013 1 Abstract Fluid

More information

Exploration, Drilling & Production

Exploration, Drilling & Production Nontechnical Guide to PETMOLEUM Geology, Exploration, Drilling & Production Third Edition Norman J. Hyne, Ph.D. Contents Preface *i Introduction 1 The Nature of Gas and Oil 1 Petroleum 1 The Chemistry

More information

Z046 Seismic Characteristics of Gas Migration Structures on the North Atlantic Margin Imaged by High-resolution 3D Seismic

Z046 Seismic Characteristics of Gas Migration Structures on the North Atlantic Margin Imaged by High-resolution 3D Seismic Z046 Seismic Characteristics of Gas Migration Structures on the North Atlantic Margin Imaged by High-resolution 3D Seismic O.K. Eriksen* (P-Cable 3D Seismic), C. Berndt (IFM-GEOMAR), S. Buenz (University

More information

Effects of depositional and diagenetic heterogeneitites on fluid flow in Plio -- Pleistocene reefal carbonates of the Southern Dominican Republic

Effects of depositional and diagenetic heterogeneitites on fluid flow in Plio -- Pleistocene reefal carbonates of the Southern Dominican Republic Viviana Díaz was born in Puerto Rico and received her undergraduate degree from the University of Puerto Rico and her Master's at the University of North Carolina. She is currently working on her PhD at

More information

Methane Hydrates and Their Prospects for Gas Industry

Methane Hydrates and Their Prospects for Gas Industry WOC1 V N IIG A Z Methane Hydrates and Their Prospects for Gas Industry Dr. Vladimir Yakushev, Gazprom, Russia 23 rd World Gas Conference Amsterdam, 5-9 June, 2006 Global natural gas production cost trend

More information

Shale Gas:- What is it?, Where is it? How can we get it and when? Professor Peter Styles, Applied and Environmental Geophysics Research Group

Shale Gas:- What is it?, Where is it? How can we get it and when? Professor Peter Styles, Applied and Environmental Geophysics Research Group Shale Gas:- What is it?, Where is it? How can we get it and when? Professor Peter Styles, Applied and Environmental Geophysics Research Group 1 Outline Introductory comments What is Shale Gas? What is

More information

NATURAL GAS HYDRATES in INDIA. Prof. Y. F. Makogon, Texas A&.M University

NATURAL GAS HYDRATES in INDIA. Prof. Y. F. Makogon, Texas A&.M University NATURAL GAS HYDRATES in INDIA Prof. Y. F. Makogon, Texas A&.M University Abstract Natural Gas-Hydrates is untraditional mineral energy, when natural gas exist in the reservoir in solid state (Makogon,

More information

Tim Carr - West Virginia University

Tim Carr - West Virginia University Tim Carr - West Virginia University Role of Geology in Field Development Develop static geological model of the reservoir(s) Analyze relevant geoscience and engineering data, integrate them into model

More information

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments *Chul-Whan Kang 1), Ah-Ram Kim 2), Hak-Sung Kim 3), Gye-Chun Cho 4) and Joo-Yong Lee 5) 1), 2), 3), 4) Department of Civil

More information

JAPEX s 60 Years Experience Exploring Volcanic Reservoirs in Japan*

JAPEX s 60 Years Experience Exploring Volcanic Reservoirs in Japan* Click to view oral presentation (3.00 MB) JAPEX s 60 Years Experience Exploring Volcanic Reservoirs in Japan* Kentaro Takeda 1 and Yasuo Yamada 2 Search and Discovery Article #70297 (2017)** Posted October

More information

Overview of potential CO 2 /brine leakage rates along faults. Elizabeth Keating (Given by Rajesh Pawar) Los Alamos National Laboratory

Overview of potential CO 2 /brine leakage rates along faults. Elizabeth Keating (Given by Rajesh Pawar) Los Alamos National Laboratory Overview of potential CO 2 /brine leakage rates along faults Elizabeth Keating (Given by Rajesh Pawar) Los Alamos National Laboratory Why fault-leakage scenarios are important to consider Although presence

More information

FRIO BRINE SEQUESTRATION PILOT IN THE TEXAS GULF COAST

FRIO BRINE SEQUESTRATION PILOT IN THE TEXAS GULF COAST I1-2 FRIO BRINE SEQUESTRATION PILOT IN THE TEXAS GULF COAST Susan D. Hovorka and Paul R. Knox Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, The University of Texas

More information

Major Points in Introduction

Major Points in Introduction Near- Surface Processes and Resources John Louie - louie@seismo.unr.edu eismo. unr.edu Thomas Pratt tpratt@ocean.washington.edu ashington.edu Here is a Laundry List- With it, we can prioritize Major Points

More information

Coupled geomechanics and InSAR inversion of CO2 injection parameters

Coupled geomechanics and InSAR inversion of CO2 injection parameters 11512. Scrutinizing CO2 Sequestration - A Case Study Coupling InSAR and Geomechanical Modelling to Monitor Spatial and Temporal Characteristics of CO2 Injection at In Salah, Algeria N. Gourmelen (University

More information

Deep Borehole Disposal Performance Assessment and Criteria for Site Selection

Deep Borehole Disposal Performance Assessment and Criteria for Site Selection Deep Borehole Disposal Performance Assessment and Criteria for Site Selection Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

More information

The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs

The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs *Joo Yong Lee, Jong-Hwa Chun and Se Joon Kim Petroleum & Marine Research Division, KIGAM,

More information

IEAGHG Study Programme Update

IEAGHG Study Programme Update IEAGHG Study Programme Update Millie Basava-Reddi NACAP Workshop Morgantown 5 th 6 th April 2011 Content of Presentation Current Studies Global Storage Resource Gap Analysis for Policy Makers Potential

More information

Soil gas and gas flux baselines

Soil gas and gas flux baselines Soil gas and gas flux baselines Regional and site-scale baseline surveys of near- surface gas geochemistry parameters Understanding natural variability as a framework for monitoring programs and public

More information

Seismic mapping of the Utsira Formation. Petrophysical interpretations and fracture gradient estimates.

Seismic mapping of the Utsira Formation. Petrophysical interpretations and fracture gradient estimates. Presentation March 4 th 2009 OG21 Innovation Seminar: TTA2 Exploration and reservoir Characterization Venue: StatoilHydro, Sandsli CO 2 Sequestration A geophysical and geological study related to CO 2

More information

M.Sc. Track Petroleum Engineering & Geosciences

M.Sc. Track Petroleum Engineering & Geosciences M.Sc. Track Petroleum Engineering & Geosciences 3-9-2017 Delft University of Technology Challenge the future Challenging industry (and study) 2 Geothermal Energy Produce energy (heat) from subsurface for

More information

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2 Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method S. Soleymani 1, A. Akhtarpur 2 1 Group of Dam Construction, Toossab Company, P.O. Box 917751569, Mashhad City, Iran, PH (+98) 511-7684091;

More information

An Open Air Museum. Success breeds Success. Depth Imaging; Microseismics; Dip analysis. The King of Giant Fields WESTERN NEWFOUNDLAND:

An Open Air Museum. Success breeds Success. Depth Imaging; Microseismics; Dip analysis. The King of Giant Fields WESTERN NEWFOUNDLAND: VOL. 7, NO. 4 2010 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EXPRO VOL. 7, NO. 4 2010 Success breeds Success geoexpro.com Country Profile: Senegal Ocean Bottom Node Seismic WESTERN NEWFOUNDLAND: An Open Air

More information

Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada

Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada Gordon T. Stabb, Michael Webb Durando Resources Corp, Suncor Energy

More information

Tutorial on Methane Hydrate. Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004

Tutorial on Methane Hydrate. Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004 Tutorial on Methane Hydrate Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004 Tutorial on Methane Hydrate What is it and how is it formed? Where is it found? How much may exist? Multi-National

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

European Research Network of Excellence on the Geological Storage of CO 2

European Research Network of Excellence on the Geological Storage of CO 2 European Research Network of Excellence on the Geological Storage of CO 2 CO2GeoNet Dr Nick Riley MBE (British Geological Survey, Nottingham, UK; CO2GeoNet Coordinator) njr @bgs.ac.uk www.co2geonet.com

More information

CO2 Storage- Project list

CO2 Storage- Project list a) NGI involvement with CO 2 storage field sites, pilots and demos 1. In Salah CO2 storage In Salah is located in Krechba, central Algeria. Injection of CO 2 started in 2004 and halted in 2011. A total

More information

Overview of Geoscience Employers Workshop Outcomes

Overview of Geoscience Employers Workshop Outcomes Overview of Geoscience Employers Workshop Outcomes General thoughts on concepts: From Geoscience Employers Workshop Systems Thinking How systems work and interact Processes Atmosphere: Climate, Weather,

More information

Tim Carr - West Virginia University

Tim Carr - West Virginia University Tim Carr - West Virginia University J. Jacquet, Marcellus Shale Education and Training Center 2 3 en.wikipedia.org/wiki/image:hubbert_peak_oil_plot.svg en.wikipedia.org/wiki/image:hubbert.jpg en.wikipedia.org/wiki/image:hubbert.jpg

More information

Measurement, Monitoring and Verification (MMV)

Measurement, Monitoring and Verification (MMV) Measurement, Monitoring and Verification (MMV) Larry Myer USCSC CCS Capacity Building Workshop Charleston, West Virginia October 25, 2011 Outline Why monitor? Information needs Monitoring methods Baselines

More information

Geography 3202 Unit 4 S.C.O. 4.3 & 4.5. Primary Resource Activities Offshore Oil And Gas

Geography 3202 Unit 4 S.C.O. 4.3 & 4.5. Primary Resource Activities Offshore Oil And Gas Geography 3202 Unit 4 S.C.O. 4.3 & 4.5 Primary Resource Activities Offshore Oil And Gas Factors Affecting The Decision To Recover Offshore Oil And Gas (4.3.1) Physical Factors 1. Ocean Related Factors

More information

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre Oil & Gas From exploration to distribution Week 1 V05 Origin of hydrocarbon resources part 1 Jean-Pierre Deflandre W1V5 Origin of hydrocarbon resources1 p. 1 Introduction to hydrocarbon resources You will

More information

Fr CO2 02 Fault Leakage Detection From Pressure Transient Analysis

Fr CO2 02 Fault Leakage Detection From Pressure Transient Analysis Fr CO2 2 Fault Detection From Pressure Transient Analysis A. Shchipanov *, L. Kollbotn, R. Berenblyum IRIS Summary of reservoir fluids from injection site, e.g. through faults, is one of the key risks

More information

GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK Second Edition

GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK Second Edition GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK Second Edition Roy E. Hunt Taylor & Francis Taylor & Francis Croup Boca Raton London New York Singapore A CRC title, part of the Taylor & Francis imprint,

More information

Model Inversion for Induced Seismicity

Model Inversion for Induced Seismicity Model Inversion for Induced Seismicity David Castiñeira Research Associate Department of Civil and Environmental Engineering In collaboration with Ruben Juanes (MIT) and Birendra Jha (USC) May 30th, 2017

More information

STORAGE POTENTIAL OF POLAND (THE BALTIC BASIN) Adam Wójcicki & Jolanta Pacześna, PGI-NRI

STORAGE POTENTIAL OF POLAND (THE BALTIC BASIN) Adam Wójcicki & Jolanta Pacześna, PGI-NRI STORAGE POTENTIAL OF POLAND (THE BALTIC BASIN) Adam Wójcicki & Jolanta Pacześna, PGI-NRI.. Espoo, 23.05.2013 CO2 storage projects Poland and Europe 1995-..Borzęcin gas field (acidic gas 60% CO2; INiG,

More information

Is It Likely That Fracking the Organic-Rich Utica Shale Beneath Bowling Green, OH Would Be Environmentally Safe?

Is It Likely That Fracking the Organic-Rich Utica Shale Beneath Bowling Green, OH Would Be Environmentally Safe? Is It Likely That Fracking the Organic-Rich Utica Shale Beneath Bowling Green, OH Would Be Environmentally Safe? Dr. Robert K. Vincent Prof. Emeritus, Dept. of Geology Bowling Green State University How

More information

NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF EARTH AND ENVIRONMENTAL STUDIES

NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF EARTH AND ENVIRONMENTAL STUDIES NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF EARTH AND ENVIRONMENTAL STUDIES Curriculum & Syllabi for B. Tech. Course SECOND/ FOURTH SEMESTER Sub. Code Subject L-T-P Credits ES 01 ENVIRONMENTAL

More information

K.A. Terzi 1,2, I. Bountas 1,2 C.A. Aggelopoulos 1, C.D. Tsakiroglou 1

K.A. Terzi 1,2, I. Bountas 1,2 C.A. Aggelopoulos 1, C.D. Tsakiroglou 1 K.A. Terzi 1,2, I. Bountas 1,2 C.A. Aggelopoulos 1, C.D. Tsakiroglou 1 1 Foundation for Research and Technology Hellas Institute of Chemical Engineering Sciences 2 Department of Chemical Engineering, Univ.

More information

Advancing Geoscientific Capability. Geological Survey of Finland

Advancing Geoscientific Capability. Geological Survey of Finland Advancing Geoscientific Capability Geological Survey of Finland GTK in brief The Geological Survey of Finland (GTK) is one of the largest European centres of excellence in assessment, research and the

More information

Geological information for Europe : Towards a pan-european Geological Data Infrastructure

Geological information for Europe : Towards a pan-european Geological Data Infrastructure Geological information for Europe : Towards a pan-european Geological Data Infrastructure Integrating geoscientific information for EU competitiveness Co-funded by the European Union European societal

More information

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Available online at  ScienceDirect. Energy Procedia 114 (2017 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 114 (2017 ) 2772 2780 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne,

More information

WP 4.1. Site selection criteria and ranking methodology. Karen Kirk

WP 4.1. Site selection criteria and ranking methodology. Karen Kirk WP 4.1 Site selection criteria and ranking methodology Karen Kirk 1 Basic site selection criteria Sufficient depth and storage capacity supercritical CO 2 below 700-800 m (rule of thumb) 2 Variation of

More information

Estimation of Pore Pressure from Well logs: A theoretical analysis and Case Study from an Offshore Basin, North Sea

Estimation of Pore Pressure from Well logs: A theoretical analysis and Case Study from an Offshore Basin, North Sea P-217 Estimation of Pore Pressure from Well logs: A theoretical analysis and Case Study from an Offshore Basin, North Sea Pritam Bera Final Year, M.Sc.Tech. (Applied Geophysics) Summary This paper concerns

More information

Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments from Ulleung Basin, East Sea, Korea

Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments from Ulleung Basin, East Sea, Korea The 212 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-3, 212 Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments

More information

Challenges of CCS in developing economics

Challenges of CCS in developing economics Challenges of CCS in developing economics A comparison of CCS projects in China and South Africa Ceri Vincent Challenges in South Africa and China Approach to CCS in China and South Africa Projects and

More information

Presentation on CCS Opportunities in Cambodia

Presentation on CCS Opportunities in Cambodia The Cambodian National Petroleum Authority (CNPA) Presentation on CCS Opportunities in Cambodia By Houy Vutha Prepared by Mr. Le Sambath & Dr. Seng Cheaseth Geological Resources for CO2 Storage Potential

More information

Prepared for Members and Committees of Congress

Prepared for Members and Committees of Congress Prepared for Members and Committees of Congress Œ œ Ÿ This report answers frequently asked questions about the geologic sequestration of carbon dioxide (CO 2 ). The questions are broadly representative

More information

Mallik 2002 Gas Hydrate Production Research Well Program

Mallik 2002 Gas Hydrate Production Research Well Program 1 Mallik 2002 Gas Hydrate Production Research Well Program Gas hydrates are a naturally occurring ice-like combination of natural gas and water that have the potential to provide an immense resource of

More information

Recommendations for Injection and Storage Monitoring

Recommendations for Injection and Storage Monitoring Energy and Environmental Systems Group Institute for Sustainable Energy, Environment and Economy (ISEEE) Recommendations for Injection and Storage Monitoring WABAMUN AREA CO 2 SEQUESTRATION PROJECT (WASP)

More information

PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource

PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource Contents PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource Chapter 1 Serendipity A Brief History of Events Leading to the Hot Dry Rock Geothermal

More information

3D Time-lapse Seismic Modeling for CO2 Sequestration

3D Time-lapse Seismic Modeling for CO2 Sequestration 3D Time-lapse Seismic Modeling for CO2 Sequestration Jintan Li Advisor: Dr. Christopher Liner April 29 th, 2011 1 Outline Background/Introduction Methods Preliminary Results Future Work 2 Goal Flow simulation

More information

IODP drilling and core storage facilities

IODP drilling and core storage facilities 4 IODP drilling and core storage facilities Neville Exon As the knowledge obtainable from ocean drilling is various and extensive, its end-users are similarly various and extensive. Scientific ocean drilling

More information

Geochemical Exploration in Mature Basins: New Applications for Field Development and Production

Geochemical Exploration in Mature Basins: New Applications for Field Development and Production Page No. 011-1 Geochemical Exploration in Mature Basins: New Applications for Field Development and Production Dietmar Schumacher* and Daniel C. Hitzman Geo-Microbial Technologies, Inc., Ochelata, Oklahoma,

More information

Sustainable Energy Science and Engineering Center GEOTHERMAL ENERGY. Sustainable Energy Sources. Source:

Sustainable Energy Science and Engineering Center GEOTHERMAL ENERGY. Sustainable Energy Sources. Source: Sustainable Energy Sources GEOTHERMAL ENERGY Earth s Temperature Profile GEOTHERMAL ENERGY Plate Tectonics Earth's crust is broken into huge plates that move apart or push together at about the rate our

More information

Modelling and simulation of CO 2 leakage mechanisms from geological storage

Modelling and simulation of CO 2 leakage mechanisms from geological storage 1 Modelling and simulation of CO 2 leakage mechanisms from geological storage Sorin Georgescu (sorin.georgescu@iku.sintef.no) Alv-Arne Grimstad (alv-arne.grimstad@iku.sintef.no) 2 Introduction Capture

More information

Risk Evaluation. Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT

Risk Evaluation. Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT Risk Evaluation Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT Risk Management Approach to Induced Seismicity Establishing

More information

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Denis S. Goldobin (University of Leicester), et al. ( Quaternary Hydrate Stability ) MethaneNet Early Career Workshop Milton Keynes

More information

Land subsidence due to groundwater withdrawal in Hanoi, Vietnam

Land subsidence due to groundwater withdrawal in Hanoi, Vietnam Land Subsidence (Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, October 1995). 1AHS Publ. no. 234, 1995. 55 Land subsidence due to groundwater withdrawal in Hanoi, Vietnam

More information

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research Exploration _Advanced geophysical methods * Research Challenges Séverine Pannetier-Lescoffit and Ute Mann SINTEF Petroleum Research 1 Exploration and Reservoir Characterization * Research Challenges 29%

More information

WESTCARB Phase I Results Review

WESTCARB Phase I Results Review WESTCARB Phase I Results Review Arizona Geologic Characterization Errol Montgomery Principal Errol L. Montgomery & Associates (520) 881-4912 emontgomery@elmontgomery.com November 9, 2005 Site Characterization

More information

SACCCS Test Injection Workshop

SACCCS Test Injection Workshop SACCCS Test Injection Workshop The Atlas on Geological Storage of CO2 in South Africa Project Team J Viljoen, F Stapelberg and M Cloete 24/10/2011, Gallagher Estates, Midrand CO 2 geological storage atlas

More information

Geo-scientific Studies on Methane Gas Hydrates. Osamu MATSUBAYASHI Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST

Geo-scientific Studies on Methane Gas Hydrates. Osamu MATSUBAYASHI Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST [METHANE HYDRATE] Geo-scientific Studies on Methane Gas Hydrates Osamu MATSUBAYASHI Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST Abstract It has become recognized that

More information

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT (415) 527 9876 CABLE ADDRESS- GEOTHERMEX TELEX 709152 STEAM UD FAX (415) 527-8164 Geotherm Ex, Inc. RICHMOND. CALIFORNIA 94804-5829 GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION

More information

Does the SDCP need inputs from geology?

Does the SDCP need inputs from geology? The British Geological Survey s Experience and Expertise in Supporting Projects such as the Sirte Depression Connection Project David Ovadia Director of International Kingsley Dunham Centre Keyworth Nottingham

More information

Unconventional Natural Gas A Brief Review for Instituto Petroquimica Argentina

Unconventional Natural Gas A Brief Review for Instituto Petroquimica Argentina October 5, 2010 Unconventional Natural Gas A Brief Review for Instituto Petroquimica Argentina William L. Tittle Principal and Director of Strategy Americas and Asia Raul Arias Alvarez Senior Consultant

More information

Economic Geology Unconventional Energy Research

Economic Geology Unconventional Energy Research Bureau of Economic Geology Unconventional Energy Research Overview for CEE meeting December, 2011 QAd2349x BUREAU OF ECONOMIC GEOLOGY Oldest research unit of The University of Texas at Austin Geological

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

Storage: Deep Monitoring and Verification

Storage: Deep Monitoring and Verification Storage: Deep Monitoring and Verification IEA GHG Summer School, Austin, TX David White 7 th to 11 th July, 2014 www.slb.com/carbonservices CS1406-063-DW Why Monitor? Manage Risk Risk = (Impact of Undesirable

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Monitoring and Verification of CO 2 Storage in Geological Formations Sally M. Benson Lawrence Berkeley National Laboratory Berkeley, CA 94720

Monitoring and Verification of CO 2 Storage in Geological Formations Sally M. Benson Lawrence Berkeley National Laboratory Berkeley, CA 94720 Monitoring and Verification of CO 2 Storage in Geological Formations Sally M. Benson Lawrence Berkeley National Laboratory Berkeley, CA 94720 Global Climate & Energy Project (GCEP) International Workshop

More information

Appendix 10: Non-Potential of Natural Gas Hydrate Occurrence in Queen Charlotte Basin8

Appendix 10: Non-Potential of Natural Gas Hydrate Occurrence in Queen Charlotte Basin8 British Columbia Offshore Hydrocarbon Development Appendix 10: Non-Potential of Natural Gas Hydrate Occurrence in Queen Charlotte Basin8 Natural gases such as methane, ethane, propane typically occur as

More information

Groundwater Rebound in the South Yorkshire Coalfield: A review of initial modelling

Groundwater Rebound in the South Yorkshire Coalfield: A review of initial modelling Groundwater Rebound in the South Yorkshire Coalfield: A review of initial modelling 1 S. P. Burke, 1 H. A.B. Potter and 2 A. Jarvis 1 Environment Agency: Science Group, Olton Court, Olton,Solihull UK 2

More information

The RECOPOL project Netherlands Institute of Applied Geoscience TNO - National Geological Survey

The RECOPOL project Netherlands Institute of Applied Geoscience TNO - National Geological Survey CO 2 storage in coal The RECOPOL project Netherlands Institute of Applied Geoscience TNO - National Geological Survey Outline of presentation Introduction Geology Reservoir Modelling Laboratory Work Monitoring

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway 4D seismic feasibility study for enhanced oil recovery (EOR) with CO2 injection in a mature North Sea field Amini, Hamed; Alvarez, Erick Raciel;

More information

Monitoring of CO2 Leakage Using High-Resolution 3D Seismic Data Examples from Snøhvit, Vestnesa Ridge and the Western Barents Sea

Monitoring of CO2 Leakage Using High-Resolution 3D Seismic Data Examples from Snøhvit, Vestnesa Ridge and the Western Barents Sea Monitoring of CO2 Leakage Using High-Resolution 3D Seismic Data Examples from Snøhvit, Vestnesa Ridge and the Western Barents Sea Bellwald, B. 1, Waage, M. 2, Planke, S. 1,3,4, Lebedeva-Ivanova, N. 1,

More information

A BOOKLET ON. T Rangasamy, A R Leach and A P Cook. Facilitating safety and health research in the South African mining industry

A BOOKLET ON. T Rangasamy, A R Leach and A P Cook. Facilitating safety and health research in the South African mining industry A BOOKLET ON THE HYDRAULIC DESIGN OF COAL BARRIER PILLARS T Rangasamy, A R Leach and A P Cook Facilitating safety and health research in the South African mining industry A BOOKLET ON THE HYDRAULIC DESIGN

More information

CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach

CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach Ane E. Lothe, Benjamin U. Emmel & Per Bergmo NORDICCS Conference Contribution D 6.1.1407 (4) August 2014

More information