Supporting Online Material for

Size: px
Start display at page:

Download "Supporting Online Material for"

Transcription

1 Supporting Online Material for Earthquake Rupture Stalled by a Subducting Fracture Zone D. P. Robinson,* S. Das, A. B. Watts This PDF file includes: *To whom correspondence should be addressed. David.Robinson@earth.ox.ac.uk Materials and Methods Figs. S1 to S5 References Published 26 May 2006, Science 312, 1203 (2006) DOI: /science Other Supporting Online Material for this manuscript includes the following: (available at Movie S1

2 Earthquake rupture stalled by a subducting fracture zone Supporting Online Materials Submitted to Science, 5th April 2006 D. P. Robinson, S. Das, A B. Watts Materials and Methods Relocated Aftershocks Using the Joint Hypocenter Determination method (S1, S2), we have relocated the aftershocks for the 6-month period following the earthquake using seismic phase arrival times reported by the International Seismological Centre. The aftershocks are plotted in Figs. S1 and S2. The aftershocks delineate a km zone. Aftershock zones define the extent of rupture in an earthquake and the fact that the epicenter is located at the landwardmost and northern side of this rectangle, indicates that the earthquake originated at depth, and ruptured upwards and southeastwards. The CMT Solution: Inversion of Mantle Waves The seismic moment M 0 of an earthquake is defined as the product of the modulus of rigidity of the rocks through which the earthquake ruptures, the fault area and the average slip on the fault. It is used to define earthquake magnitude, M w. The Centroid Moment Tensor (CMT) solution of the main shock was recalculated by inverting mantle waves. Mantle waves are the long period traces, typically of duration 4 hours, which contain the very long period fundamental mode Rayleigh and Love waves generated by the earthquake, together with their overtones. The data are low-pass filtered with cutoff period 135 s, and normally contain both the minor and major arc arrivals. Due to the long period of these waves, the earthquake can be treated as a point source and hence seismic moment and the four-dimensional centroid location can be determined (S3). Additional data is reported by remote stations after the publication of the Harvard CMT solution (S4) and by using these data we are able to recalculate the CMT solution 1

3 and investigate its robustness. For our inversions, data from 86 stations and 256 channels are used (compared with the 68 stations and 170 channels used in the Harvard solution). Initially, we use the same inversion method (S3) for determination of the CMT solution and find a solution (strike 311,dip12,rake68, M 0 = Nm) in broad agreement with that found in (S4) (strike 310,dip18,rake63, M 0 = Nm). Next, we impose the pure-double couple constraint on our solution (S5) and investigate the solution space. We find a best fitting pure-double couple solution (strike 301,dip15,rake44, M 0 = N m) which has only a marginally larger misfit value than the full deviatoric solution. Then we carry a grid search of the solution space around our optimum pure-double couple solution. We fix strike, dip, rake and centroid depth and invert for centroid time and moment to determine the optimum misfit value that can be obtained for a given mechanism. By carrying out over 3000 of these inversions we can conclude that there are a number of solutions with mechanisms close to our optimum pure-double couple solution that have comparable misfit values, and hence cannot be dismissed. Method of analysis of body wave seismograms to obtain rupture history We use the method developed by Das and Kostrov (S6, S7) to invert broadband body wave seismograms to recover the details of the slip history and distribution over the fault.the fault area, source time and the integral equation relating seismograms to the fault slip rate (S6, S7) are discretized, leading to a system of linear equations Ax b, wherex is the vector of unknown fault slip rates at each grid and at each time step, b is the vector of the digitally recorded seismograms, and the matrix A is the impulse response of Earth medium (the Green s function) and depends on Earth structure. Additional physically based conditions such as causality, and not allowing the fault to slip backwards ( positivity ), are used to improve the stability of the solution. The positivity constraint means that the system of equations cannotbe solved using theusual least-squares method. We use the method of linear programming, and minimize the l 1 -norm of the vector of residuals r = b Ax. Theseismic moment, obtained from our long period mantle waves inversion, is used as an additional constraint. All grids behind the P -wave causal front from the epicenter are permitted to slip 2

4 at all times, if required by the data. We invert pure SH displacement seismograms at 19 stations, as well distributed in azimuth as possible, in the 2- to 120-s period range, at epicentral distances from 35 to 85. Beyond these distance, unmodeled phases such as core-reflections (ScS) orwaveswithmul- tiple bounces off Earth s free surface (SS) arrive very soon after the S-wave making the usable part of the seismogram very short. At distances where no such phase arrives, we terminate the seismogram at 150 s. The source time is found to be 120 s and 12 of the 19 stations have seismograms substantially longer than 120 s. SH waves are better able to fully model long-duration earthquakes than P waves. Due to their slower propagation speeds, the window during which the arrivals are pure waves, uncontaminated by ScS or SS, is longer allowing longer source durations to be studied. Grids are permitted to rupture behind a P - wave causal front from the hypocenter when required by the data, and once a grid ruptures, we have no a priori constraint on how how long slip can continue there. Thus, the earthquake rupture speed, the details of how each grid reaches its final slip, and the time it takes for this, are all obtained as part of the solution. We use the crustal model CRUST2.0 (S8) at the source, and one modified from CRUST5.1 (S9) or CRUST2.0 for each station, based on known local geological conditions to construct the required Green s functions. The spatial and temporal cell sizes for the discretization of the problem are 20 km and 6 s, respectively. The number of equations for this earthquake was 1989, and the number of unknowns was In order to find the best source mechanism we investigate the parameter space by carrying out many inversions around our CMT solution. We find no evidence to suggest that any mechanism provides a better broadband solution than that found by mantle waves and subsequently find a best fitting solution with strike 301,dip14 and rake 44. Hence we constrain the seismic moment in our body wave solution to that in our CMT solution ( Nm(M w 8.45)). Following Das and Kostrov (S6, S7), we then carry out further optimizations on this primary solution to obtain a smeared solution, by minimizing the maximum moment. We call this our preferred solution. The fit of the data to synthetics is shown (Fig. S3). 3

5 Two sets of robustness tests Following Das and Kostrov (S6, S7), we carry out further inversions to test if the main feature of our solution, namely, that the first initially unbroken barrier has low slip in the early part of the rupture history, is robust. To do this we carry out optimizations in which we try to increase the slip in this region (shown by the grey dashed trapezium in Fig. 3), keeping the fit to the data almost unchanged. We find that we cannot perceptibly increase the slip in this region and still fit the data. Since the spatial resolution of our solution is important for our interpretation of the results, we test this by inverting a large aftershock (2001/07/07, 09:39:01.8, M w 7.6), with similar mechanism to the main earthquake (strike 306,dip14,rake52 ) using a distribution of stations as similar as possible to that used in inverting the main shock. In these inversions, slip was permitted to have occurred on a plane much larger than is expected to have been ruptured by the aftershock. The inversions place large slip in a small ( km) region of the fault plane near the hypocenter, with only numerical noise in regions away from this. This confirms that the data and method used does not place slip spuriously in regions that have not slipped in the earthquake. Bathymetry east of the Nazca ridge and seaward of the Peru-Chile trench between 16 and 20 S. This is shown in Figures S4 and S5. The Seismic Cycle The area around the Arica Bend can be considered as two distinct seismic zones. To the north, in southern Peru, there is a good historical record with great earthquakes breaking similar areas to that broken by this earthquake in 1868, 1784 and 1604 (S15). Two large earthquakes in 1687 and 1715 are also thought to have ruptured the whole of this zone when combined. The historical record to the south, in northern Chile, is far less complete, especially prior to the middle of the 19th Century. Despite this, it is clear that a great 4

6 earthquake ruptured a zone at least 400 km in length in Further major earthquakes are noted in this area in 1615 and some time before 1768 although the records for these are incomplete, especially their southern extent. This pattern shows that at least twice in the last 400 years, a great earthquake in southern Peru has been followed by an extremely large earthquake in northern Chile approximately ten years later, clearly indicating the potential for a major earthquake in this area in the near future. Online Movies and Animations Movie S1. References 1. J. W. Dewey, Seismic studies with the method of joint hypocenter determination Ph.D. Thesis, Berkeley, University of California (1971). 2. J. W. Dewey, Relocation of instrumentally recorded pre-1974 earthquakes in the South Carolina region Studies related to the Charleston, South Carolina, earthquake of 1886 tectonics and seismicity, USGS Prof. papers, Q1 (1983). 3. A. M. Dziewonski, J.H. Woodhouse, Proc. Int. Sch. Phys. Enrico Fermi, LXXXV, 45 (1983). 4. Harvard CMT solutions can be accessed at 5. C. Henry, J. H. Woodhouse, S. Das, Tectonophysics, 356, special issue, ed. C. Trifu, 115 (2002). 6. S. Das, B.V. Kostrov, J. Geophys. Res., 95, 6899 (1990). 7. S. Das, B. V. Kostrov, Phys. Earth Planet. Inter., 85, 293 (1994). 8. G. Laske, G. Masters, C. Reif, (2001). 9. W. Mooney, G. Laske, G. Masters, J. Geophys. Res., 103, 727 (1998). 10. British Oceanographic Data Centre, The GEBCO digital atlas, centenary edition (CD-ROM), Liverpool (2003). 11. S. C. Cande, J. L. LaBrecque, R. L. Larson, W. C. Pitman III, Golovchenko, W. F. 5

7 Haxby, Magnetic lineations of the World s ocean basins, scale 1:27,400,000, Am. Assoc. Pet. Geol (AAPG map), Tulsa, Oklahoma (1989). 12. C. DeMets, R.G. Gordon, D.F. Argus, and S. Stein, Geophys. J. Int., 101, 425 (1990). 13. R. D. Müller, W.R. Roest, J.-Y. Royer, L.M. Gahagan, and J.G. Sclater, J. Geophys. Res., 102, 3211 (1997). 14. B. E. Parsons, J.G. Sclater, J. Geophys. Res., 82, 803 (1977). 15. D. Comte, M. Pardo, Nat. Hazards, 4, 23 (1991). 6

8 FIGURE CAPTIONS. Fig. S1. Aftershocks, relocated for this study, are shown for the 24 hours following the main earthquake. The main shock (red star), together with the centroid-moment tensor solution recalculated for this study (see below), is shown. The ISC reports 249 aftershocks in this time period. We relocated 233 of these successfully, with 155 having 90% confidence ellipse < 30 km (shown in grey). Relocated epicenters are shown as circles, the size of the circle scaling with magnitude and color coded in depth (< 50 km in red, between 50 to 150 km in green). Fig. S2. Same as Fig. S1 but for the 6 month period following the main shock with the addition of earthquakes > 150 km depth colored blue. The ISC reports 967 aftershocks in this time period, 28 of which were large enough to have CMT solutions. We relocated all earthquakes with CMT solutions and 891 of the smaller earthquakes successfully, 551 of which had 90% confidence error ellipses < 30 km. Fig. S3. Comparison of the SH wave data (black) with the solution synthetics (red), for our preferred solution. The amplitude at each station is reduced to a constant distance of 60, and the maximum amplitude in microns is shown at the the beginning of each trace. Tick marks are placed at 10 second intervals along each trace. The SH nodal planes are shown on the focal sphere. Fig. S4. Bathymetry map in the region of the 2001, Peru, earthquake. The map has been constructed from a GEBCO 1 1 grid (S10). The shading shows the slope of the bathymetry in the direction (azimuth = 160 ) of an artificial sun (dark shades = gentle slopes, light shades = steep slopes). Solid black lines show magnetic lineations C7 through C22 (S11). Red lines locate the bathymetry profiles [1-9] plotted in Fig. S5. Unfilled triangles show volcanoes active during the past 10 ka. The filled green arrow shows the motion of the Nazca Plate (NP) relative to the South American Plate (SAMP) (S12). Filled star shows the location of the earthquake epicenter. FZ = Fracture Zone. WC = Western Cordillera. EC = Eastern Cordillera. A = Altiplano. The Peru-Chile trench is characterised by an absence of ponded axial sediments, a network of horst and graben structures on the 7

9 seaward wall, and an outer flexural rise. The subducting feature that stalled the rupture in this earthquake has a different azimuthal trend than the Nazca Fracture Zone (50 compared to 60 ), and, unlike the fracture zone, has little or no age offset across it. Fig. S5. Bathymetry profiles 1-7 (Fig. S4). The cruise identification is indicated to the right of each profile. The data have been projected along a profile sub-parallel to the along-strike extent of the fault plane. The profiles show the morphology of the oceanic crust between the northernmost Nazca Ridge and the Peru-Chile trench. The most striking features of the profiles is a ridge and trough that appears to be an extension of the NE- SW trending Nazca Fracture Zone (narrow grey dashed lines). The red dashed lines show the expected seafloor depth based on an age model (S13) and the cooling plate model (S14). Comparison of the observed and expected depth shows that the ridge is up to 700 m shallower than the expected depth while the trough is up to 300 m deeper. The ridge and, less clearly, the trough are flanked by a region of gradual deepening and shallowing respectively, morphological features typical of many oceanic fracture zones. Movie S1. The animated rupture history for this earthquake from our preferred solution. Slip on the fault is projected on Earth s surface at each discrete time-step. The evolving moment-rate function is shown on the right hand side. 8

10 = 01/06/23 Fig. S1

11 = 01/11/27 01/10/26 01/06/25 01/06/23 01/08/10 01/12/04 01/08/09 01/06/29 01/12/08 01/08/09 01/06/25 01/07/05 01/08/07 01/06/26 01/11/04 01/07/03 01/06/25 01/12/23 01/11/01 01/08/11 01/06/27 01/06/26 01/07/01 01/07/07 01/06/30 01/07/27 01/06/28 01/09/02 01/06/26 Fig. S2

12 Fig. S3

13 Mendana F.Z. SAMP cm/yr Nazca F.Z Z. NP 18 Per u-c hile Trench EC Nazca Ridg e WC 1 A Topography (m) Fig. S4

14 Nazca Fracture Zone mw853 2 yq737 3 kk021 4 kk029 5 c23b4 6 ggl35 7 yq736 0 km fd773 ggl70 0 m 1000 Fig. S5

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Teleseismic waveform modelling of the 2008 Leonidio event

Teleseismic waveform modelling of the 2008 Leonidio event The 6 January 2008 (Mw6.2) Leonidio (southern Greece) intermediate depth earthquake: teleseismic body wave modelling Anastasia Kiratzi and Christoforos Benetatos Department of Geophysics, Aristotle University

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

Earthquake Focal Mechanisms and Waveform Modeling

Earthquake Focal Mechanisms and Waveform Modeling Earthquake Focal Mechanisms and Waveform Modeling Rengin Gök Lawrence Livermore National Laboratory USA RELEMR Workshop İstanbul 2008 Gudmundar E. Sigvaldason The Dynamic Earth, USGS The size of the event

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES Rey M. Lumbang MEE12608 Supervisor: Nobuo Hurukawa ABSTRACT We relocated large magnitude (Mw 7.0) earthquakes that

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Edmond Sze, M. Nafi Toksöz, and Daniel R. Burns Earth Resources Laboratory Dept. of Earth, Atmospheric and Planetary Sciences

More information

Rupture Process of the Great 2004 Sumatra-Andaman Earthquake

Rupture Process of the Great 2004 Sumatra-Andaman Earthquake Rupture Process of the Great 2004 Sumatra-Andaman Earthquake Supporting Online Materials Submitted to Science, March 12, 2005 Charles J. Ammon 1, Ji Chen 2, Hong-Kie Thio 3, David Robinson 5, Sidao Ni

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake

Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake PAGEOPH, Vol. 144, Nos. 3/4 (1995) 0033-4553/95/040823-1551.50 + 0.20/0 9 1995 Birkh/iuser Verlag, Basel Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake YUICHIRO TANIOKA, 1 KENJI

More information

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage.

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage. A magnitude 7.0 earthquake occurred in southeastern Peru on Friday about 27 kilometers northeast of the town of Azángaro, Peru, near the border with Bolivia. The earthquake occurred at a depth of 257.4

More information

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

Geo736: Seismicity along mid-ocean ridges

Geo736: Seismicity along mid-ocean ridges Geo736: Seismicity along mid-ocean ridges Course Notes: S. G. Wesnousky Spring 2018 Bathymetric maps show the ocean basins of the world are characteristically divided by a bathymetric ridge. The bathymetric

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE An 8.2-magnitude earthquake struck off the coast of northern Chile, generating a local tsunami. The USGS reported the earthquake was centered 95 km (59 miles) northwest of Iquique at a depth of 20.1km

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES Synopses of Master Papers Bulletin of IISEE, 47, 25-30, 2013 RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES Biana Rahayu Wulandari MEE11605 Supervisor: Nobuo HURUKAWA ABSTRACT

More information

Source of the July 2006 West Java tsunami estimated from tide gauge records

Source of the July 2006 West Java tsunami estimated from tide gauge records GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L24317, doi:10.1029/2006gl028049, 2006 Source of the July 2006 West Java tsunami estimated from tide gauge records Yushiro Fujii 1 and Kenji Satake 2 Received 13

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/326/5949/112/dc1 Supporting Online Material for Global Surface Wave Tomography Using Seismic Hum Kiwamu Nishida,* Jean-Paul Montagner, Hitoshi Kawakatsu *To whom correspondence

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Magnitude 7.1 SOUTH SANDWICH ISLANDS

Magnitude 7.1 SOUTH SANDWICH ISLANDS A magnitude 7.1 earthquake occurred at a depth of 164.7 km (102 miles) in the South Sandwich Islands, an uninhabited British territory off the coast of Argentina in the southern Atlantic Ocean. Antarctica

More information

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes... CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY Earth Formation... 1-2 Plate Tectonics... 1-2 Sources of Earthquakes... 1-3 Earth Faults... 1-4 Fault Creep... 1-5 California Faults... 1-6 Earthquake

More information

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Japan was rattled by a strong aftershock and tsunami warning Thursday night nearly a month after a devastating earthquake and tsunami flattened the northeastern coast. This earthquake can be considered

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Dynamic Crust Practice

Dynamic Crust Practice 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Magnitude 7.6 & 7.6 PERU

Magnitude 7.6 & 7.6 PERU Two deep 7.6 magnitude earthquakes have shaken a sparsely populated jungle region near the Peru-Brazil border in southeast Peru. There were no immediate reports of injuries or damage. The second M 7.6

More information

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks LETTER Earth Planets Space, 63, 519 523, 2011 Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström,

More information

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets P. Banerjee, 1 F. F. Pollitz, 2 R. Bürgmann 3 * 1 Wadia Institute of Himalayan Geology, Dehra Dun, 248001, India. 2

More information

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure Chapter 1 Introduction Historically, highly destructive large magnitude (M w >7.0) underthrusting earthquakes nucleate along the shallow segment of subduction zone megathrust fault, and this region of

More information

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane. The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 28: Preliminary identification of the fault plane. J. Zahradnik 1, E. Sokos 2, A.Serpetsidaki 2, and G A.Tselentis 2 1 Charles University in

More information

Data Repository Item

Data Repository Item Data Repository Item 2009003 An abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea Donna J. Shillington, Caroline L. Scott, Timothy A. Minshull, Rosemary A. Edwards, Peter

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA Siti Norbaizura MAT SAID Supervisor: Tatsuhiko HARA MEE10505 ABSTRACT Since November 30, 2007, small local earthquakes have been observed

More information

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES Sheila Yauri Supervisor: Yushiro FUJII MEE10521 Bunichiro SHIBAZAKI ABSTRACT

More information

STUDY ON APPROPRIATE MODELING OF TSUNAMIS IN MALAYSIA FOR RISK EVALUATION

STUDY ON APPROPRIATE MODELING OF TSUNAMIS IN MALAYSIA FOR RISK EVALUATION STUDY ON APPROPRIATE MODELING OF TSUNAMIS IN MALAYSIA FOR RISK EVALUATION Zaty Aktar binti Mokhtar* Supervisor: Fumihiko Imamura** MEE06025 Shunichi Koshimura** ABSTRACT In order to design a tsunami warning

More information

2. Tsunami Source Details

2. Tsunami Source Details 2. Tsunami Source Details The Northland area faces a range of potential tsunamigenic sources that include several local and distant fault systems and underwater landslides. A NIWA study (Goff et al. 2006)

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

Science Starter. Describe in your own words what an Earthquake is and what causes it. Answer The MSL

Science Starter. Describe in your own words what an Earthquake is and what causes it. Answer The MSL Science Starter Describe in your own words what an Earthquake is and what causes it. Answer The MSL WHAT IS AN EARTHQUAKE AND HOW DO WE MEASURE THEM? Chapter 8, Section 8.1 & 8.2 Looking Back Deserts Wind-shaped

More information

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles).

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles). A magnitude 8.2 earthquake occurred 364.8 km (226.7 mi) E of Suva, Fiji at a depth of 563.4 km (350 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google The

More information

Magnitude 7.8 SCOTIA SEA

Magnitude 7.8 SCOTIA SEA A magnitude 7.8 earthquake has occurred in the South Orkney Island region in the Scotia Sea. According to the USGS, this earthquake is the latest in a series of moderate-tolarge earthquakes to strike this

More information

Magnitude 7.6 HONDURAS

Magnitude 7.6 HONDURAS A magnitude 7.6 earthquake has occurred in the Caribbean between Honduras and the Cayman Islands approximately 125 miles (202 km) north-northeast of Barra Patuca, Honduras, and 188 miles (303 km) southwest

More information

Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake

Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake Gareth Funning 1, Yukitoshi Fukahata 2, Yuji Yagi 3 & Barry Parsons 4 1 University

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaao4915/dc1 Supplementary Materials for Global variations of large megathrust earthquake rupture characteristics This PDF file includes: Lingling Ye, Hiroo

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

Magnitude 7.5 PALU, INDONESIA

Magnitude 7.5 PALU, INDONESIA A magnitude 7.5 earthquake occurred 80.8 km (50.2 mi) north of Palu, Indonesia at a depth of 10 km (6.2 miles). This earthquake triggered a tsunami with wave heights up to 2 m (6.6 ft) that an official

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger, Barbara Romanowicz, and Jeffry Stevens* Seismological Laboratory 281 McCone Hall University of

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together.

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together. Chapter 15 Earthquakes and Plate Tectonics what s the connection? As with volcanoes, earthquakes are not randomly distributed over the globe At the boundaries friction causes plates to stick together.

More information

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults?

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? What are some of the key parameters which we describe faults? GEOMETRICAL PROPERTIES

More information

Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b

Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli

More information

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24619, doi:10.1029/2004gl021228, 2004 An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake Changjiang

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge GSA Data Repository Item: 2007183 Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge Brian J. demartin 1*, Robert

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core.

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core. Tutorial Problems 1. Where Do Earthquakes Happen? 2. Where do over 90% of earthquakes occur? 3. Why Do Earthquakes Happen? 4. What are the formulae for P and S velocity 5. What is an earthquake 6. Indicate

More information

Magnitude 7.0 NEW CALEDONIA

Magnitude 7.0 NEW CALEDONIA A magnitude 7.0 earthquake has occurred 82km ENE of Maré Island, the secondlargest of the Loyalty Islands in the archipelago of New Caledonia. The initial report of the magnitude and shallow 10km depth

More information

Plate Tectonics on a Plane. Observations related to plate tectonics " " Plate tectonic theory types of plate boundaries!

Plate Tectonics on a Plane. Observations related to plate tectonics   Plate tectonic theory types of plate boundaries! Plate Tectonics on a Plane Scripps Inst. Of Oceanography" Observations related to plate tectonics " Ocean and continent topography, hypsometry, and crustal thickness. Global seismicity, Benioff zones,

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

Magnitude 7.2 OAXACA, MEXICO

Magnitude 7.2 OAXACA, MEXICO A magnitude 7.2 earthquake has occurred in Oaxaca, Mexico at a depth of 24.6 km (15 miles). It was felt as far away as Guatemala. There have been no reported deaths directly linked to the earthquake. Emergency

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1131692/dc1 Supporting Online Material for Localized Temporal Change of the Earth s Inner Core Boundary This PDF file includes: Materials and Methods Figs. S1 to S3

More information

Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source

Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source E. Sokos 1) and J. Zahradník 2) 1) University of Patras, Greece 2) Charles University, Prague, Czech Republic Report sent to EMSC on 21/06/2017

More information

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION A magnitude 7.4 earthquake occurred in the South Georgia Island Region. South Georgia Island is a British territory in the South Atlantic Ocean that lies about 800 miles east of the Falkland Islands. It

More information

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 1965-36 9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 22 September - 4 October, 2008 Tomography and Active Tectonics in Kanto, Japan Francis T.

More information

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Polina Berezina 1 Institute of Geology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Supervisor: Prof. Kenji Satake Earthquake

More information

Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture mechanism and focal depth

Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture mechanism and focal depth JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 4, No 4, November 2001, p. 69-90, 14 figs. Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture

More information

Seismic Source Mechanism

Seismic Source Mechanism Seismic Source Mechanism Yuji Yagi (University of Tsukuba) Earthquake Earthquake is a term used to describe both failure process along a fault zone, and the resulting ground shaking and radiated seismic

More information

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 1266-1271, August 1994 Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake by Charles J. Ammon,*

More information

1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata

1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata 1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata We give a brief review about observations and preliminary results regarding the 2004 great

More information

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured.

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured. A magnitude 7.1 earthquake has occurred offshore Peru. The earthquake struck just after 4 a.m. local time and was centered near the coast of Peru, 40 km (25 miles) south-southwest of Acari, Peru at a depth

More information

Magnitude 7.0 PAPUA, INDONESIA

Magnitude 7.0 PAPUA, INDONESIA A 7.0 magnitude earthquake struck eastern Indonesia's mountainous West Papua province on Saturday but there were no immediate reports of casualties or damage. The region is sparsely populated. According

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies GROUND TRUTH OF AFRICAN AND EASTERN MEDITERRANEAN SHALLOW SEISMICITY USING SAR INTERFEROMETRY AND GIBBS SAMPLING INVERSION Benjamin A. Brooks 1, Francisco Gomez 2, Eric A. Sandvol 2, and Neil Frazer 1

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI

SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI Paper No. TS-4-1 SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI Bruno Adriano 1, Shunichi Koshimura 2 and Yushiro Fujii 3 ABSTRACT The

More information

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code.

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. J. Zahradnik 1), F. Gallovic 1), E. Sokos 2) G-A. Tselentis 2) 1) Charles University

More information

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles).

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles). A magnitude 7.8 earthquake has occurred 101.8 km (63.3 mi) ESE of Suva, Fiji at a depth of 608.6 km (378 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google

More information

Plate tectonics - 3. Homework 1: Due Monday. Hot Spots Magnetic Reversals Isostasy Continental Tectonics. EESC 2200 The Solid Earth System.

Plate tectonics - 3. Homework 1: Due Monday. Hot Spots Magnetic Reversals Isostasy Continental Tectonics. EESC 2200 The Solid Earth System. 2500 EESC 2200 The Solid Earth System Plate tectonics - 3 17 Sep 08 Hot Spots Magnetic Reversals Isostasy Continental Tectonics Depth (m) 6000 0 9 36 100 155 Homework 1: Due Monday Review: Fracture zone

More information

OUTER RISE SEISMICITY OF THE SUBDUCTING NAZCA PLATE: PLATE STRESS DISTRIBUTION, FAULT ORIENTATION AND PLATE HYDRATION. Louisa Barama, B.S.

OUTER RISE SEISMICITY OF THE SUBDUCTING NAZCA PLATE: PLATE STRESS DISTRIBUTION, FAULT ORIENTATION AND PLATE HYDRATION. Louisa Barama, B.S. OUTER RISE SEISMICITY OF THE SUBDUCTING NAZCA PLATE: PLATE STRESS DISTRIBUTION, FAULT ORIENTATION AND PLATE HYDRATION Louisa Barama, B.S. An Abstract Presented to the Graduate Faculty of Saint Louis University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo739 Supplementary Information to variability and distributed deformation in the Marmara Sea fault system Tobias Hergert 1 and Oliver Heidbach 1,* 1 Geophysical

More information

Magnitude 8.3 SEA OF OKHOTSK

Magnitude 8.3 SEA OF OKHOTSK A powerful earthquake in Russia's Far East was felt as far away as Moscow, about 7,000 kilometers (4,400 miles) west of the epicenter, but no casualties or damage were reported. The epicenter was in the

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES Joan Cruz SALCEDO Supervisor: Tatsuhiko HARA MEE09186 ABSTRACT We have made a set of earthquake source

More information

A reassessment of the rupture characteristics of oceanic transform earthquakes

A reassessment of the rupture characteristics of oceanic transform earthquakes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B5, 2225, doi:10.1029/2001jb000814, 2003 A reassessment of the rupture characteristics of oceanic transform earthquakes Rachel E. Abercrombie 1 and Göran

More information

INTRODUCTION TO EARTHQUAKES

INTRODUCTION TO EARTHQUAKES INTRODUCTION TO EARTHQUAKES Seismology = Study of earthquakes Seismologists = Scientists who study earthquakes Earthquake = Trembling or shaking of the earth s surface, usually as a result of the movement

More information

SPATIAL RELATION BETWEEN MAIN EARTHQUAKE SLIP AND ITS AFTERSHOCK DISTRIBUTION

SPATIAL RELATION BETWEEN MAIN EARTHQUAKE SLIP AND ITS AFTERSHOCK DISTRIBUTION SPATIAL RELATION BETWEEN MAIN EARTHQUAKE SLIP AND ITS AFTERSHOCK DISTRIBUTION S. Das and C. Henry 1 Department of Earth Sciences, University of Oxford, Oxford, UK Received 16 October 2002; revised 12 May

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Synopses of Master Papers Bulletin of IISEE, 47, 19-24, 2013 SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Fabricio Moquete Everth* Supervisor:

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

Seismic structure in southern Peru: Evidence for a smooth contortion between flat and normal subduction of the Nazca plate

Seismic structure in southern Peru: Evidence for a smooth contortion between flat and normal subduction of the Nazca plate Chapter 4 Seismic structure in southern Peru: Evidence for a smooth contortion between flat and normal subduction of the Nazca plate 4.1 Abstract Rapid changes in slab geometry are typically associated

More information

Scaling Relations for Seismic Cycles on Mid-Ocean Ridge

Scaling Relations for Seismic Cycles on Mid-Ocean Ridge Scaling Relations for Seismic Cycles on Mid-Ocean Ridge Transform Faults Margaret S. Boettcher University of New Hampshire, Dept. of Earth Sciences, Durham, NH 03824 Jeffrey J. McGuire Woods Hole Oceanographic

More information

INTERPRETATION OF SEISMOGRAMS

INTERPRETATION OF SEISMOGRAMS INTERPRETATION OF SEISMOGRAMS INTRODUCTION 2 SEISMIC ONSETS 3 PROPERTIES 3 NOMENCLATURE 4 BODY WAVES 4 CRUSTAL PHASES 4 DEPTH PHASES 4 CORE PHASES 4 SURFACE WAVES 5 SURFACE WAVE RECURRENCE 6 TRAVEL TIME

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information