Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b

Size: px
Start display at page:

Download "Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b"

Transcription

1 Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b a Berkeley Seismological Laboratory, Berkeley, California b Air Force Research Laboratory, Albuquerque, New Mexico Abstract For small magnitude events (<M4) the signal-to-noise levels (SNR) decreases rapidly with increasing epicentral distance in the intermediate- to long-period ranges. Therefore to increase nuclear explosion monitoring capabilities using regional moment tensor analysis, we need to increase the SNR for regional distance stations, especially in sparse monitoring situations. In this study we investigate the use of phase matched filtering to increase the SNR of surface waves by separating out individual modes from background noise. We applied the technique to well-recorded naturally occurring and possibly induced earthquakes at the Geysers Enhanced Geothermal Field in Northern California. We obtained similar moment tensor solutions using phase matched filtered data compare to local solutions by Guilhem at al., (2013), and solutions from the Berkeley Seismological Laboratory (BSL) moment tensor catalog. Based on our preliminary analysis, we found that phase matched filtering is a promising technique to enhance SNR for small magnitude and sparse monitoring situations. Introduction Seismic source discrimination using intermediate- to long-period, complete waveform at regional distances has been well demonstrated for earthquakes, underground explosions and mine collapses in the western United States, North Korea, eastern Kazakhstan and northwestern China (Dreger et al., 2008; Ford et al., 2008; Ford et al., 2009a; Ford et al., 2009b; Ford et al., 2010; Chiang et al., 2013). The regional distance moment tensor inversion, coupled with Network Sensitivity Solutions (NSS) analysis, and the characterization of sensitivities and uncertainties due to random errors and systematic velocity model errors enables the discrimination of source-type in conditions of relatively sparse regional distance monitoring. However, previous studies have focused

2 on moderate-sized events (~M4 or greater). For smaller events the signal-to-noise levels (SNR) decreases rapidly with increasing distance in the intermediate- to long-period ranges. Stations with low SNR cannot be included in the moment tensor analysis because the noise in the data maps into the waveform inversion, resulting in incorrect source mechanism with very low goodness of fit between the actual data and synthetics. Therefore to increase monitoring capabilities for smaller events, specifically for this study ~M3 events recorded approximately km away, we need to increase the SNR for regional distance stations. Phase matched filtering has been used in seismology to minimize multipathing effect and identify primary surface wave arrivals for M s :m b discrimination (Herrin and Goforth, 1977; Stevens and McLaughlin, 2001). Previous studies have observed improvement in SNR after phase matched filtering is applied. In this study, we investigate the use of phase matched filtering on regional surface waves to enhance SNR in the Geysers Enhanced Geothermal Field in Northern California (Fig. 1). We have 13 earthquakes well recorded by the local and regional networks between , some possibly induced by water injections in the Geysers based on local and regional moment tensor solutions (Guilhem et al., 2013). Our goal of this study is to apply the phase matched filtering technique to regional waveform data, invert the phase matched filtered data for moment tensors, compare and validate our findings to local network moment tensor solutions.

3 Figure 1. Map of the Berkeley Digital Seismic Network (BDSN). Black squares are stations, black lines are faults, and red outlines the Geysers geothermal field. Inset shows seismicity in the Geysers between (gray dots) and the earthquakes analyzed in this study (black stars). Data and Methods Regional waveform data were downloaded from the Northern California Earthquake Data Center (NCEDC). The dataset consists of small (~M3) naturally occurring and possibly induced earthquakes from the Geysers. These earthquakes are recorded by both the Berkeley Digital Seismic Network (BDSN) operated by the Berkeley Seismological Laboratory (BSL) and partially supported by the U.S. Geological Survey (USGS), and a local network comprise of short-period instruments maintained by the Lawrence Berkeley National Laboratory (LBNL). Larger magnitude events of M4 or

4 and greater are recorded by the BDSN but not by the LBNL local network. The local network s close proximity caused the short period instrument to clip for these larger magnitude events. Prior to phase matched filtering and moment tensor inversion, the broadband waveform data was instrument corrected, integrated to displacement, and rotated to radial and tangential components. Phase matched filters are linear filters in which the Fourier phase of the filter is the same as the Fourier phase of the signal, and can be used to improve SNR by compressing the dispersed signal (Herrin and Goforth, 1977). Using Computer Programs in Seismology 3.30 developed at Saint Louis University Earthquake Center ( we derive the phase matched filter from Love and Rayleigh wave group velocity dispersions for each station and component (Fig. 2). We applied phase matched filter on regional surface waves to extract the fundamental surface wave, minimizing noise, higher modes and any possible multipathing effect. We then used the phase matched filtered waveform data to invert for the seismic moment tensor Figure 2. Vertical component Rayleigh wave group velocity curve at PACP for the 2010 earthquake. The figure is generated from Computers Programs in Seismology The seismic moment tensor consists of nine force couples that represent the equivalent body forces for seismic sources of different geometries (Jost and Herrmann, 1989), that due to conservation of angular momentum reduce to six independent couples

5 and dipoles. The data is represented by the convolution of Green s functions for a given Earth model, source terms and the moment tensor elements. The individual moment tensor elements are obtained using a generalized least square inversion and the goodness of fit between the data and synthetics is measured by the variance reduction (VR). The Green s functions used for the phase matched filter data are computed using modal summation and we used the regional Earth model GIL7 for Northern California (Dreger and Romanowicz, 1994), and Earth models derived directly by inverting the surface wave group velocities for each station and component. Preliminary Analysis The LBNL local deviatoric and full moment tensor solutions for the January 30 th, 2010 Geysers earthquake are predominantly double-couple (DC) with small contributions from compensated linear vector dipole (CLVD) and isotropic mechanisms (Guilhem et al., 2013). The earthquake is ~M w 3.5 from the local moment tensor solution, and we have data from a total of 31 BDSN broadband stations in which 12 of them have been phase matched filtered. The 12 processed stations are distributed between km from the epicenter and 5 of the 12 stations are located at very similar azimuths relative to the source. We applied phase matched filter to noisy stations where we observe dispersion and have confidence in our fundamental surface wave group velocity measurements. We often have less difficulty picking group velocities for the vertical and tangential components but not the radial component. Radial components are often nosier than the other two components, and have little long period energy in the frequency band we are interested for moment tensor inversion, which is between seconds. We aimed for the longer period surface waves to minimize errors from incorrect Earth model since longer period waves are less sensitive to the details of the velocity model. For stations with very noisy waveforms on the radial component that inhibits us to pick out the Rayleigh wave group velocity, we used the phase matched filtered defined from the vertical Rayleigh wave group velocity measurements. As will be discussed later, the ability to pick group velocities can be used as a quality control metric. The phase matched filter does a good job enhancing the SNR of noisy stations. Figure 3 compares

6 non-phase matched data versus phase matched data, we see good improvements in all three components Figure 3. Waveform comparison of non-phase matched filtered data (black) and phase matched filtered data (green, brown). We see improvement in SNR for all stations and components. Using 2-component (tangential and vertical), phase matched filtered data from three stations > 200 km with good azimuthal coverage, we obtained a deviatoric solution that is predominantly a normal mechanism (Fig. 4) and similar to the local solution but a slightly larger M w of 3.7 (Fig. 5). The full moment tensor solution has a greater CLVD component and M w of 3.9 compare to the local solution (Fig. 5). The improvement in VR between the full and deviatoric moment tensor solutions is ~1%, which is statistically insignificant, suggesting the non-dc components may not be real. Including the radial component gave us incorrect source mechanisms for both the deviatoric and full moment tensor inversions. We were not able to pick a clean Rayleigh wave group velocity on the

7 radial component for the three stations used in the inversion, instead we used the phase matched filter derived from the vertical component to compress the signal on the radial. Since including the radial component resulted in incorrect source mechanism, the phase matched filtered signal may still contain noise and other higher modes. Therefore we propose the ability to pick group velocity dispersion as a quality control metric to identify potential phase matched filtered signals that may still be contaminated by noise, higher modes and multipathing Figure 4. Deviatoric moment tensor for the 2010 earthquake using two-component, phase matched filtered waveforms. Variance reduction (VR) measures the goodness of fit between data (solid black lines) and synthetics (dashed red lines). Note Mw shown here is calculated using Dziewonski and Woodhouse (1983) s method, which is lower than the values computed using Bowers and Hudson (1999) s method as shown in Fig 4.

8 Discussion To understand what additional constraints is needed to obtain a stable moment tensor solution close to the LBNL solution, we used a combination of 2-component, phase matched filtered data and two additional stations at 30 and 77 km from the source that already have good SNR without phase matched filtering, and obtain deviatoric and full moment tensor solutions more similar to the local solutions in Guilhem et al. (2013). Compare to the three-station solution using only phase matched filtered data, the fivestation moment tensor inversion gave a result with high percent DC and low percent CLVD for both deviatoric and full moment tensor solutions (Fig. 5) Figure 5. Deviatoric and full moment tensor solutions for the January 30 th, 2010 Geysers earthquake. LBNL local solutions from Guilhem et al. (2013), BSL cataloged solutions using stations < 100 km from the source, and BSL solutions from this study using phase matched filtered data (PMF) and a combination of non-phase matched filtered and phase matched filtered data (COMB). Our preliminary examination suggests phase matched filtering does have a potential in increasing our monitoring capabilities at regional distances for events < M4, but further analysis is needed to fully document the effect of phase matched filtered signal on the moment tensor inversion using different station combination and geometry, the limitations of phase matched filtering on improving the SNR, and more quality control on the phase matched filtered waveforms. From our preliminary analysis we

9 found filtering long period drifts in the data prior to computing the dispersion increases our ability to observe and pick group velocity dispersion. Often times the group velocity curve is masked by the strong signal from the long period drift because the drift has much higher amplitude compare to the fundamental surface waves we are interested. Future studies on the application of phase matched filtering will include events of different source mechanisms in the Geysers. Examining the application of phase matched filtering on various source types is crucial in developing methods to improve regional moment tensor monitoring capabilities for small magnitude events. References Bowers, D. and J. A. Hudson (1999). Defining the scalar moment of a seismic source with a general moment tensor, Bull. Seismol. Soc. Am. 89, Chiang, A., D. S. Dreger, S. R. Ford, and W. R. Walter (2013). Source characterization of underground explosions from combined regional moment tensor and first motion analysis, in preparation. Dreger, D. S., S. R. Ford, and W. R. Walter (2008). Source analysis of the Crandall Canyon, Utah, mine collapse, Science 321, 217. Dreger, D. S and B. Romanowicz (1994). Source characteristics of events in the San Francisco Bay Region, USGS Open-file report, , Dziewonski, A. M. and J. H. Woodhouse (1983). An experiment in the systematic study of global seismicity: centroid-moment solutions for 201 moderate and large earthquakes, J. Geophys. Res. 88, Ford, S. R., D. S. Dreger, and W. R. Walter (2008). Source characterization of the 6 August 2007 Crandall Canyon mine seismic event in Central Utah, Seismol. Res. Lett. 79, Ford, S. R., D. S. Dreger, and W. R. Walter (2009). Source analysis of the Memorial Day explosion, Kimchaek, North Korea, Geophys. Res. Lett. 36, L21304, doi: /2009gl Ford, S. R., D. S. Dreger, and W. R. Walter (2009). Identifying isotropic events using a regional moment tensor inversion, J. Geophys. Res. 114, B Ford, S. R., D. S. Dreger, and W. R. Walter (2010). Network sensitivity solutions for

10 regional moment-tensor inversions, Bull. Seismol. Soc. Am. 100, Ford, S. R., W. R. Walter, and D. S. Dreger (2012). Event discrimination using regional moment tensors, Bull. Seismol. Soc. Am. 102, Guilhem, A, L. Hutchings, D. S. Dreger, and L. R. Johnson (2013). Moment tensor inversions of ~M3 earthquakes in the Geysers Geothermal Fields, California, under review. Herrin, E. and T. Goforth (1977). Phase-matched filters: applications to the study of Rayleigh waves, Bull. Seismol. Soc. Am. 67, Stevens, J. and K. L. McLaughlin (2001). Optimization of surface wave identification and measurement, Pure Appl. Geophys. 158,

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger, Barbara Romanowicz, and Jeffry Stevens* Seismological Laboratory 281 McCone Hall University of

More information

Source analysis of the Memorial Day explosion, Kimchaek, North Korea

Source analysis of the Memorial Day explosion, Kimchaek, North Korea GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L21304, doi:10.1029/2009gl040003, 2009 Source analysis of the Memorial Day explosion, Kimchaek, North Korea Sean R. Ford, 1 Douglas S. Dreger, 2 and William R. Walter

More information

Improved Full Moment Tensor Inversions

Improved Full Moment Tensor Inversions Improved Full oment Tensor Inversions Sarah E. inson and Douglas S. Dreger bstract The seismic moment tensors for certain types of sources, such as volcanic earthquakes and nuclear explosions, are expected

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION GSA DATA REPOSITORY 2013310 A.M. Thomas et al. MOMENT TENSOR SOLUTIONS SUPPLEMENTAL INFORMATION Earthquake records were acquired from the Northern California Earthquake Data Center. Waveforms are corrected

More information

A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field, California

A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field, California Bulletin of the Seismological Society of America, Vol. 105, No. 6, pp. 2969 2986, December 2015, doi: 10.1785/0120140285 E A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field,

More information

Earthquake Focal Mechanisms and Waveform Modeling

Earthquake Focal Mechanisms and Waveform Modeling Earthquake Focal Mechanisms and Waveform Modeling Rengin Gök Lawrence Livermore National Laboratory USA RELEMR Workshop İstanbul 2008 Gudmundar E. Sigvaldason The Dynamic Earth, USGS The size of the event

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies IDENTIFYING ISOTROPIC EVENTS USING AN IMPROVED REGIONAL MOMENT TENSOR INVERSION TECHNIQUE Sean R. Ford 1, Douglas S. Dreger 1, and William R. Walter 2 University of California, Berkeley 1 and Lawrence

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger 1, Barbara Romanowicz 1, G. Clitheroe 1, Peggy Hellweg 1, Jeffry Stevens 2 University of California,

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies IDENTIFYING ISOTROPIC EVENTS USING A REGIONAL MOMENT TENSOR INVERSION Sean R. Ford 1,2, Douglas S. Dreger 1, and William R. Walter 2 Berkeley Seismological Laboratory 1 and Lawrence Livermore National

More information

Automatic Moment Tensor Analyses, In-Situ Stress Estimation and Temporal Stress Changes at The Geysers EGS Demonstration Project

Automatic Moment Tensor Analyses, In-Situ Stress Estimation and Temporal Stress Changes at The Geysers EGS Demonstration Project PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212 Automatic Moment Tensor Analyses, In-Situ Stress Estimation and

More information

Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique

Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique UCRL-CONF-232584 Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique S. R. Ford, D. S. Dreger, W. R. Walter July 9, 2007 Monitoring Research Review Denver, CO, United

More information

Microearthquake Focal Mechanisms

Microearthquake Focal Mechanisms Microearthquake Focal Mechanisms A Tool for Monitoring Geothermal Systems By Bruce R. Julian (U. S. Geological Survey - Menlo Park, CA) and Gillian R. Foulger (University of Durham - Durham, United Kingdom)

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

REGIONAL MOMENT TENSOR SOURCE-TYPE DISCRIMINATION ANALYSIS

REGIONAL MOMENT TENSOR SOURCE-TYPE DISCRIMINATION ANALYSIS AFRL-RV-PS- TR-2016-0014 AFRL-RV-PS- TR-2016-0014 REGIONAL MOMENT TENSOR SOURCE-TYPE DISCRIMINATION ANALYSIS Douglas S. Dreger, et al. University of California, Berkeley 215 McCone Hall University of California

More information

Regional distance seismic moment tensors of nuclear explosions

Regional distance seismic moment tensors of nuclear explosions Tectonophysics 356 (2002) 139 156 www.elsevier.com/locate/tecto Regional distance seismic moment tensors of nuclear explosions Douglas Dreger a, *, Bradley Woods b a UC Berkeley, Seismological Laboratory,

More information

Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source

Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source E. Sokos 1) and J. Zahradník 2) 1) University of Patras, Greece 2) Charles University, Prague, Czech Republic Report sent to EMSC on 21/06/2017

More information

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane. The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 28: Preliminary identification of the fault plane. J. Zahradnik 1, E. Sokos 2, A.Serpetsidaki 2, and G A.Tselentis 2 1 Charles University in

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING Donald V. Helmberger 1, Arthur J. Rodgers 2, Sidao Ni 1,3, Shengji Wei 1, and Jeroen Tromp 1 California Institute of Technology 1, Lawrence Livermore

More information

Microseismic Monitoring: Insights from Moment Tensor Inversion

Microseismic Monitoring: Insights from Moment Tensor Inversion Microseismic Monitoring: Insights from Moment Tensor Inversion Farshid Forouhideh and David W. Eaton ABSTRACT This paper reviews the mathematical tools used for describing microseismic source mechanisms.

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies APPLICATION OF A TIME-DOMAIN, VARIABLE-PERIOD SURFACE WAVE MAGNITUDE MEASUREMENT PROCEDURE AT REGIONAL AND TELESEISMIC DISTANCES Jessie Bonner 1, David Russell 2, David Harkrider 1, Delaine Reiter 1, and

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara LONG-PERIOD (3 TO 10 S) GROUND MOTIONS IN AND AROUND THE

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (013) 194, 839 843 Advance Access publication 013 April 8 doi: 10.1093/gji/ggt137 EXPRESS LETTER Parametrization of general seismic potency and moment

More information

LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić

LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić *** N.B. The material presented in these lectures is from the principal textbooks, other books on similar subject, the research and lectures of my colleagues

More information

EPICENTRAL LOCATION OF REGIONAL SEISMIC EVENTS BASED ON LOVE WAVE EMPIRICAL GREEN S FUNCTIONS FROM AMBIENT NOISE

EPICENTRAL LOCATION OF REGIONAL SEISMIC EVENTS BASED ON LOVE WAVE EMPIRICAL GREEN S FUNCTIONS FROM AMBIENT NOISE EPICENTRAL LOCATION OF REGIONAL SEISMIC EVENTS BASED ON LOVE WAVE EMPIRICAL GREEN S FUNCTIONS FROM AMBIENT NOISE Anatoli L. Levshin, Mikhail P. Barmin, and Michael H. Ritzwoller University of Colorado

More information

High-precision location of North Korea s 2009 nuclear test

High-precision location of North Korea s 2009 nuclear test Copyright, Seismological Research Letters, Seismological Society of America 1 High-precision location of North Korea s 2009 nuclear test Lianxing Wen & Hui Long Department of Geosciences State University

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SEISMIC SOURCE AND PATH CALIBRATION IN THE KOREAN PENINSULA, YELLOW SEA, AND NORTHEAST CHINA Robert B. Herrmann 1, Young-Soo Jeon 1, William R. Walter 2, and Michael E. Pasyanos 2 Saint Louis University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA Ali Fatehi and Keith D. Koper Saint Louis University Sponsored by the Air Force Research Laboratory ABSTRACT Contract No. FA8718-06-C-0003 We have used data

More information

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 1266-1271, August 1994 Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake by Charles J. Ammon,*

More information

Locating earthquakes with surface waves and centroid moment tensor estimation

Locating earthquakes with surface waves and centroid moment tensor estimation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jb008501, 2012 Locating earthquakes with surface waves and centroid moment tensor estimation Shengji Wei, 1 Zhongwen Zhan, 1 Ying Tan, 1 Sidao

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies REGIONAL DEPTH-PHASE DETECTION AND FOCAL DEPTH ESTIMATION: APPLICATION TO EVENTS IN SOUTHEAST ASIA Anastasia Stroujkova and Delaine Reiter Weston Geophysical Corporation Sponsored by National Nuclear Security

More information

Properties of three seismic events in September in the northern Korean Peninsula from moment tensor

Properties of three seismic events in September in the northern Korean Peninsula from moment tensor Properties of three seismic events in September 2017 in the northern Korean Peninsula from moment tensor inversion Libo Han, Zhongliang Wu, Changsheng Jiang*, Jie Liu Institute of Geophysics, China Earthquake

More information

Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone

Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone Geophys. J. Int. (2000) 140, 63 70 Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone Z. Hossein Shomali and Ragnar Slunga Department of Earth Sciences,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1131692/dc1 Supporting Online Material for Localized Temporal Change of the Earth s Inner Core Boundary This PDF file includes: Materials and Methods Figs. S1 to S3

More information

The Unique Source Mechanism of an Explosively Induced Mine Collapse

The Unique Source Mechanism of an Explosively Induced Mine Collapse The Unique Source Mechanism of an Explosively Induced Mine Collapse Xiaoning Yang, Brian W. Stump, W. Scott Phillips Geophysics Group - EES-3, Los Alamos National Laboratory Contract No. W-7405-ENG-36

More information

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DEVELOPING AND EXPLOITING A UNIQUE DATASET FROM SOUTH AFRICAN GOLD MINES FOR SOURCE CHARACTERIZATION AND WAVE PROPAGATION Jordi Julià 1, Andrew A. Nyblade 1, Rengin Gök 2, William R. Walter 2, Lindsay

More information

Identifying isotropic events using a regional moment tensor inversion

Identifying isotropic events using a regional moment tensor inversion JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jb005743, 2009 Identifying isotropic events using a regional moment tensor inversion Sean R. Ford, 1,2 Douglas S. Dreger, 1 and William R. Walter

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS Won-Young Kim, Paul G. Richards, David P. Schaff, Felix Waldhauser, and Jian Zhang Lamont-Doherty Earth

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies GROUND TRUTH LOCATIONS USING SYNERGY BETWEEN REMOTE SENSING AND SEISMIC METHODS-APPLICATION TO CHINESE AND NORTH AFRICAN EARTHQUAKES C. K. Saikia 1, H. K. Thio 2, D. V. Helmberger 2, G. Ichinose 1, and

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS

IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS Final Technical Report Award number: 05HQGR0062 IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS Lupei Zhu Saint Louis University Department

More information

Geophysical Research Letters. Supporting Information for

Geophysical Research Letters. Supporting Information for Geophysical Research Letters Supporting Information for A P-wave based, on-site method for earthquake early warning S. Colombelli(1), A. Caruso(1), A. Zollo(1), G. Festa(1) and H. Kanamori(2) (1) Department

More information

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty

More information

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges 2017 SCEC Proposal Report #17133 Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges Principal Investigator Zhongwen Zhan Seismological Laboratory, California

More information

Long-period regional wave moment tensor inversion for earthquakes in the western United States

Long-period regional wave moment tensor inversion for earthquakes in the western United States JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 9853-9864, JUNE 10, 1995 Long-period regional wave moment tensor inversion for earthquakes in the western United States Jeroen Ritsema and Thorne

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies GROUND TRUTH OF AFRICAN AND EASTERN MEDITERRANEAN SHALLOW SEISMICITY USING SAR INTERFEROMETRY AND GIBBS SAMPLING INVERSION Benjamin A. Brooks 1, Francisco Gomez 2, Eric A. Sandvol 2, and Neil Frazer 1

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA Dun Wang ( ) In collaboration with: Hitoshi Kawakatsu, Jim Mori, Kazuki Koketsu, Takuto Maeda, Hiroshi Tsuroka, Jiancang Zhunag, Lihua Fang, and Qiang Yao School of Geosciences, China University of Geosciences

More information

Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake

Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 33,, doi:10.1029/2006gl026744, 2006 Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake Zhigang Peng, 1,2 John E. Vidale, 1 and

More information

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315 27 2 207 ~ 214 2011 6 EARTHQUAKE RESEARCH IN CHINA Vol. 27 No. 2 Jun. 2011 2011 CAP 4. 8 27 2 207 ~ 214 CAP 4. 8 1 2 1 2 3 1 1 1 558 230031 2 96 230026 3 100081 CAP 2011 1 19 M S 4. 8 M W = 4. 1 I 16 74

More information

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks LETTER Earth Planets Space, 63, 519 523, 2011 Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström,

More information

Overview of moment-tensor inversion of microseismic events

Overview of moment-tensor inversion of microseismic events Overview of moment-tensor inversion of microseismic events Thomas S. Eyre 1 and Mirko van der Baan 1 Downloaded 08/11/15 to 142.244.191.52. Redistribution subject to SEG license or copyright; see Terms

More information

SURFACE WAVE GROUP VELOCITY MEASUREMENTS ACROSS EURASIA

SURFACE WAVE GROUP VELOCITY MEASUREMENTS ACROSS EURASIA SURFACE WAVE GROUP VELOCITY MEASUREMENTS ACROSS EURASIA A. L. Levshin, M. H. Ritzwoller, and L. I. Ratnikova Department of Physics, University of Colorado at Boulder -Contract Number F49620-95-1-0139 Sponsored

More information

DUBAI SEISMIC NETWORK (DSN)

DUBAI SEISMIC NETWORK (DSN) DUBAI SEISMIC NETWORK (DSN) Eman Al Khatibi 1, Kamal Abou Elenean 1 1 Dubai Municipality, Survey Department, P.O. Box: 67 Dubai U.A.E. 8 th Gulf Seismic Forum, 3-6 March 2013, Muscat-Sultanate of Oman

More information

DETERMINATION OF EARTHQUAKE PARAMETERS USING SINGLE STATION BROADBAND DATA IN SRI LANKA

DETERMINATION OF EARTHQUAKE PARAMETERS USING SINGLE STATION BROADBAND DATA IN SRI LANKA DETERMINATION OF EARTHQUAKE PARAMETERS USING SINGLE STATION BROADBAND DATA IN SRI LANKA S.W.M. SENEVIRATNE* MEE71 Supervisors: Yasuhiro YOSHIDA** Tatsuhiko HARA*** ABSTRACT We determined epicenters and

More information

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION

More information

Location uncertainty for a microearhquake cluster

Location uncertainty for a microearhquake cluster Analysis of location uncertainty for a microearhquake cluster: A case study Gabriela Melo, Alison Malcolm, Oleg Poliannikov, and Michael Fehler Earth Resources Laboratory - Earth, Atmospheric, and Planetary

More information

Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa

Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L15302, doi:10.1029/2007gl030359, 2007 Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa A. Barth, 1,2 F.

More information

Performance of the GSN station KONO-IU,

Performance of the GSN station KONO-IU, Performance of the GSN station KONO-IU, 1991-2009 A report in a series documenting the status of the Global Seismographic Network WQC Report 2010:9 February 28, 2010 Göran Ekström and Meredith Nettles

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies TRANSITION ZONE WAVE PROPAGATION: CHARACTERIZING TRAVEL-TIME AND AMPLITUDE INFORMATION Peter M. Shearer and Jesse F. Lawrence University of California San Diego, Institute of Geophysics and Planetary Physics

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies BASIC RESEARCH ON SEISMIC AND INFRASONIC MONITORING OF THE EUROPEAN ARCTIC Frode Ringdal, Tormod Kværna, Svein Mykkeltveit, Steven J. Gibbons, and Johannes Schweitzer NORSAR Sponsored by Army Space and

More information

SOURCE AND PROPAGATION CHARACTERISTICS OF EXPLOSIVE AND OTHER SEISMIC SOURCES

SOURCE AND PROPAGATION CHARACTERISTICS OF EXPLOSIVE AND OTHER SEISMIC SOURCES SOURCE AND PROPAGATION CHARACTERISTICS OF EXPLOSIVE AND OTHER SEISMIC SOURCES Xiaoxi Ni 1, Winston Chan 1, Robert Wagner 1, William Walter 2, and Eric Matzel 2 Multimax, Inc. 1 and Lawrence Livermore National

More information

F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring

F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring A. De La Pena* (Microseismic Inc.), L. Eisner (Microseismic Inc.), M.P. Thornton (Microseismic

More information

Seismic Analysis of Spatio-Temporal Fracture Generation at The Geysers EGS Demonstration Project

Seismic Analysis of Spatio-Temporal Fracture Generation at The Geysers EGS Demonstration Project PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Seismic Analysis of Spatio-Temporal Fracture Generation at The

More information

Crustal Velocity Structure from Surface Wave Dispersion Tomography in the Indian Himalaya

Crustal Velocity Structure from Surface Wave Dispersion Tomography in the Indian Himalaya Crustal Velocity Structure from Surface Wave Dispersion Tomography in the Indian Himalaya Warren Caldwell Stanford University Page 33 in Extended Abstracts volume Partial Melt in the Mid-Crust of the Northwest

More information

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Edmond Sze, M. Nafi Toksöz, and Daniel R. Burns Earth Resources Laboratory Dept. of Earth, Atmospheric and Planetary Sciences

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi: /2007gl031077, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi: /2007gl031077, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi:10.1029/2007gl031077, 2007 2 Magnitude scaling relations from P-waves in southern California 3 Louisa L. H. Tsang, 1,2 Richard

More information

Independent Component Analysis (ICA) for processing seismic datasets: a case study at Campi Flegrei

Independent Component Analysis (ICA) for processing seismic datasets: a case study at Campi Flegrei Independent Component Analysis (ICA) for processing seismic datasets: a case study at Campi Flegrei De Lauro E. 1 ; De Martino S. 1 ; Falanga M. 1 ; Petrosino S. 2 1 Dipartimento di Ingegneria dell'informazione

More information

EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS

EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS Won-Young Kim, David P. Schaff, Jian Zhang, Felix Waldhauser, and Paul G. Richards Columbia University

More information

MONITORING ROUTINE MINE SEISMICITY IN THE CONTERMINOUS UNITED STATES

MONITORING ROUTINE MINE SEISMICITY IN THE CONTERMINOUS UNITED STATES MONITORING ROUTINE MINE SEISMICITY IN THE CONTERMINOUS UNITED STATES James W. Dewey and Alena L. Leeds Adjunct US National Data Center at U.S. Geological Survey (USGS) Sponsored by U.S. Department of Defense

More information

Theory. Summary. Introduction

Theory. Summary. Introduction Waveform similarity for quality control of event locations, time picking and moment tensor solutions Fernando Castellanos, University of Alberta. Edmonton, AB. Mirko van der Baan, University of Alberta.

More information

CONTENTS PREFACE. VII 1. INTRODUCTION VARIOUS TOPICS IN SEISMOLOGY TECTONICS PERTAINING TO EQ PREDICTION 5

CONTENTS PREFACE. VII 1. INTRODUCTION VARIOUS TOPICS IN SEISMOLOGY TECTONICS PERTAINING TO EQ PREDICTION 5 CONTENTS PREFACE. VII 1. INTRODUCTION.... 1 2. VARIOUS TOPICS IN SEISMOLOGY TECTONICS PERTAINING TO EQ PREDICTION 5 2.1. Spatial distribution of strong EQs. 5 2.1.1. Mapping of major seismic fracture zones

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SMALL-EVENT YIELD AND SOURCE CHARACTERIZATION USING LOCAL P AND S-WAVE CODA SOURCE SPECTRA Kevin Mayeda Weston Geophysical Corporation Sponsored by Air Force Research Laboratory Contract No. FA8718-07-C-0010

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TOMOGRAPHIC ESTIMATION OF SURFACE-WAVE GROUP VELOCITY

More information

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring Bruce R. Julian U. S. Geological Survey, Menlo Park, CA 94025 USA julian@usgs.gov Gillian R. Foulger Dept. Earth

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TUNING THE DEEP VELOCITY STRUCTURE MODEL OF THE TOKYO

More information

Supporting Information for An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy

Supporting Information for An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy GEOPHYSICAL RESEARCH LETTERS Supporting Information for An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy Eric Debayle 1, Fabien Dubuffet 1 and Stéphanie

More information

Delayed triggering of microearthquakes by multiple surface waves circling the Earth

Delayed triggering of microearthquakes by multiple surface waves circling the Earth GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2010gl046373, 2011 Delayed triggering of microearthquakes by multiple surface waves circling the Earth Zhigang Peng, 1 Chunquan Wu, 1 and Chastity Aiken

More information

The Math, Science and Computation of Hydraulic Fracturing

The Math, Science and Computation of Hydraulic Fracturing The Math, Science and Computation of Hydraulic Fracturing 03/21/2013 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence

More information

Dealing with Hard-to-Identify Seismic Events Globally and Those near Nuclear Test Sites

Dealing with Hard-to-Identify Seismic Events Globally and Those near Nuclear Test Sites Dealing with Hard-to-Identify Seismic Events Globally and Those near Nuclear Test Sites Lynn R. Sykes 1 and Meredith Nettles 2 Lamont-Doherty Earth Observatory and Department of Earth and Environmental

More information

TOMOGRAPHY S VELOCITY STRUCTURE BETWEEN WASHINGTON S EARTHQUAKE C022801L AND OBSERVATIONAL STATION TUC THROUGH SEISMOGRAM ANALYSIS

TOMOGRAPHY S VELOCITY STRUCTURE BETWEEN WASHINGTON S EARTHQUAKE C022801L AND OBSERVATIONAL STATION TUC THROUGH SEISMOGRAM ANALYSIS 70 TOMOGRAPHY S VELOCITY STRUCTURE BETWEEN WASHINGTON S EARTHQUAKE C022801L AND OBSERVATIONAL STATION TUC THROUGH SEISMOGRAM ANALYSIS Bagus Jaya Santosa Jurusan Fisika, FMIPA, Institut Teknologi Sepuluh

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS ABSTRACT ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS Don V. Helmberger 1, Jeroen Tromp 1, and Arthur J. Rodgers 2 California Institute of Technology 1 and Lawrence Livermore National Laboratory

More information

Locating nonvolcanic tremors beneath the San Andreas Fault using a station pair double difference location method

Locating nonvolcanic tremors beneath the San Andreas Fault using a station pair double difference location method Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl043577, 2010 Locating nonvolcanic tremors beneath the San Andreas Fault using a station pair double difference location

More information

Local Magnitude Scale for the Philippines: Preliminary Results

Local Magnitude Scale for the Philippines: Preliminary Results Local Magnitude Scale for the Philippines: Preliminary Results Johnlery Pino Deximo 1 and Tatsuhiko Hara 2 1. Corresponding Author. Science Research Analyst, Philippine Institute of Volcanology and Seismology,

More information

Discrimination of blasts in mine seismology

Discrimination of blasts in mine seismology Deep Mining 2012 Y. otvin (ed) 2012 Australian Centre for Geomechanics, erth, IBN 978-0-9806154-8-7 https://papers.acg.uwa.edu.au/p/1201_11_malovichko/ Discrimination of blasts in mine seismology D. Malovichko

More information

Mid-Period Rayleigh Wave Attenuation Model for Asia

Mid-Period Rayleigh Wave Attenuation Model for Asia Mid-Period Rayleigh Wave Attenuation Model for Asia Anatoli L. Levshin 1, Xiaoning Yang 2, Mikhail P. Barmin 1, and Michael H. Ritzwoller 1 1 University of Colorado at Boulder 2 Los Alamos National Laboratory

More information

INTEGRATING DIVERSE CALIBRATION PRODUCTS TO IMPROVE SEISMIC LOCATION

INTEGRATING DIVERSE CALIBRATION PRODUCTS TO IMPROVE SEISMIC LOCATION INTEGRATING DIVERSE CALIBRATION PRODUCTS TO IMPROVE SEISMIC LOCATION ABSTRACT Craig A. Schultz, Steven C. Myers, Jennifer L. Swenson, Megan P. Flanagan, Michael E. Pasyanos, and Joydeep Bhattacharyya Lawrence

More information

The effect of location error on microseismic mechanism estimation: synthetic and real field data examples

The effect of location error on microseismic mechanism estimation: synthetic and real field data examples The effect of location error on microseismic mechanism estimation: synthetic and real field data examples Michael Kratz 1 and Michael Thornton 1 present an issue that is of primary concern for all basins

More information

Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA. F C-0046 Sponsored by AFOSR ABSTRACT

Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA. F C-0046 Sponsored by AFOSR ABSTRACT The Portability of Some Regional Seismic Discriminants And Related Broadband Waveform Modeling Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA F49620-94-C-0046 Sponsored

More information

Locating and modeling regional earthquakes with two stations

Locating and modeling regional earthquakes with two stations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jb003775, 2006 Locating and modeling regional earthquakes with two stations Ying Tan, 1 Lupei Zhu, 2 Donald V. Helmberger, 1 and Chandan K. Saikia

More information

Source of the July 2006 West Java tsunami estimated from tide gauge records

Source of the July 2006 West Java tsunami estimated from tide gauge records GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L24317, doi:10.1029/2006gl028049, 2006 Source of the July 2006 West Java tsunami estimated from tide gauge records Yushiro Fujii 1 and Kenji Satake 2 Received 13

More information

High Resolution Imaging of Fault Zone Properties

High Resolution Imaging of Fault Zone Properties Annual Report on 1998-99 Studies, Southern California Earthquake Center High Resolution Imaging of Fault Zone Properties Yehuda Ben-Zion Department of Earth Sciences, University of Southern California

More information

DR

DR DR2003071 0 0 270 0 30 0 90 0 60 0 120 0 150 0 90 0 180 0 180 0 A) RadialReceiverFunctions B ackazimuth (in degrees relative to north) -135-90 -45 0 45 90 135 180-5.0-2.5 Tangential R eceiver Functions

More information

STUDY OF BROADBAND Lg/P AND ITS APPLICATION TO SOURCE DISCRIMINATION

STUDY OF BROADBAND Lg/P AND ITS APPLICATION TO SOURCE DISCRIMINATION STUDY OF BRODBND Lg/P ND ITS PPLICTION TO SOURCE DISCRIMINTION Indra N. Gupta Multimax, Inc. 1441 McCormick Drive, Landover, Maryland 20785 Contract No. F 19628-95-C-0 176 Sponsored by DOE (Start Date

More information