Fig History of Life on Earth

Size: px
Start display at page:

Download "Fig History of Life on Earth"

Transcription

1 Fig History of Life on Earth

2 Spontaneous Generation Prevailing theory before Pasteur Life arises spontaneously from nonlife

3 Redi disproves Spontaneous Generation Conclusion: flies from eggs from other flies

4 Lazzaro Spallanzani s 1700 s Experiment Why not widely supported? Others got bad results (contamination) Boiling destroyed vital principle for spont. Gen.

5 1860 s Pasteur Experiment

6

7 Early Earth Conditions Possible for: Abiotic organic molecule synthesis Macromolecule formation Protobionts formation Origins of self-replication First atmosphere: Water vapor nitrogen CO 2 CH NH3 H 2 H 2 S

8 Oparin & Haldane 1920 s Reducing atmosphere Energy from: Lighting Sunlight UV radiation Volcanoes Primitive soup

9 Fig. 4-2 Miller & Urey (1953) EXPERIMENT Water vapor CH 4 Atmosphere Electrode Condenser Cooled water containing organic molecules Cold water Jeffery Bada, Scripps 22 AA, 10 more H 2 O sea Sample for chemical analysis

10 Fig Aquatic vs atmospheric synthesis Water temperature (50C cooler ~ 100C) Stephan Fox (2009) salt crust

11 Relative turbidity, an index of vesicle number Protobionts Precursor molecules plus montmorillonite clay Precursor molecules only Time (minutes) 60 (a) Self-assembly 10 µm Vesicle boundary 1 µm (b) Reproduction (c) Absorption of RNA

12 Fig Protobionts 20 µm Glucose-phosphate Glucose-phosphate Phosphatase Phosphate Starch Maltose Amylase (a) Simple reproduction by liposomes Maltose (b) Simple metabolism What metabolic pathway does not require oxygen?

13 Cech & Altman (1980 s) Ribozymes genetic info & catalyzes different reactions RNA world hypothesis Ribozymes complementary RNA copies (short) How stable? How quickly replicated? RNA in vesicles protocells Template for DNA

14 Fossil Record (sedimentary layers) Limitations Dating & origins of new groups Present 100 mya 1 m Figure 25.5 Rhomaleosaurus victor Dimetrodon 0.5 m Tiktaalik Coccosteus cuspidatus 4.5 cm Hallucigenia 1 cm Stromatolites cm Dickinsonia costata 1,500 3,500 Tappania

15 Fig / 2 Accumulating daughter isotope Remaining parent isotope 1 / 4 1 / 8 1 / Time (half-lives)

16 OTHER TETRA- PODS Synapsids Therapsids Synapsid (300 mya) Dimetrodon Cynodonts Reptiles (including Figure 25.7 dinosaurs and birds) Very late (nonmammalian) cynodonts Mammals Key to skull bones Articular Quadrate Early cynodont (260 mya) Temporal fenestra (partial view) Hinge Later cynodont (220 mya) Dentary Squamosal Temporal fenestra Hinge Therapsid (280 mya) Original hinge New hinge Very late cynodont (195 mya) Temporal fenestra Hinge Hinge

17 Synapsid (300 mya) Temporal fenestra Figure 25.7b Key to skull bones Articular Quadrate Dentary Squamosal Hinge Therapsid (280 mya) Temporal fenestra Hinge

18 Early cynodont (260 mya) Temporal fenestra (partial view) Hinge Later cynodont (220 mya) Figure 25.7c Key to skull bones Articular Quadrate Dentary Squamosal Original hinge New hinge Very late cynodont (195 mya) Hinge

19 Table 25.1

20 Figure Origin of solar system and Earth Hadean 4 Archaean 3 Prokaryotes Atmospheric oxygen

21 Fig. 25-4i Stromatolites 3.5 BYA, earliest prokaryotes

22 Fig. 25-4j Fossilized stromatolite

23 Fig 25-UN Atmospheric oxygen

24 (percent of present-day levels; log scale) 1,000 Figure 25.9 Atmospheric O Oxygen revolution Time (billions of years ago) 1 0

25 Photosynthesis and the Oxygen Revolution Most atmospheric oxygen (O 2 ) is of biological origin Source of O 2? Cyanobacteria like bacteria Reacted with Fe oxides Posed a challenge for life Provided opportunity to gain energy from light Allowed organisms to exploit new ecosystems

26 Fig 25-UN Multicellular eukaryotes

27 Ancestral prokaryote Plasma membrane Cytoplasm DNA Endoplasmic reticulum Nuclear envelope Nucleus Autogenous Model for Eukaryotes Figure

28 Ancestral prokaryote Plasma membrane Cytoplasm DNA Endoplasmic reticulum Nucleus Engulfed aerobic bacterium Endosymbiosis & Eukaryotic Origins Nuclear envelope Figure

29 Ancestral prokaryote Plasma membrane Cytoplasm DNA Endoplasmic reticulum Nucleus Engulfed aerobic bacterium Endosymbiosis & Eukaryotic Origins Nuclear envelope Mitochondrion Ancestral heterotrophic eukaryote Figure

30 Cytoplasm DNA Endosymbiosis & Eukaryotic Origins Ancestral prokaryote Plasma membrane Endoplasmic reticulum Nuclear envelope Nucleus Engulfed aerobic bacterium Serial endosymbiosis Engulfed photosynthetic bacterium Mitochondrion Ancestral heterotrophic eukaryote 5 Evidence? Inner membrane similar plasma DNA structure Cell division Protein synthesis Ribosomes Ancestral photosynthetic eukaryote Mitochondrion Plastid Figure

31 Figure Animals Origin of solar system and Earth 1 Proterozoic 4 Hadean Archaean Multicellular eukaryotes Single-celled eukaryotes 2 3 Prokaryotes Atmospheric oxygen

32 Figure Humans Colonization of land Animals Origin of solar system and Earth 1 Proterozoic 4 Hadean Archaean Multicellular eukaryotes Single-celled eukaryotes 2 3 Prokaryotes Atmospheric oxygen

33 Fig 25-UN4 1 4 Singlecelled eukaryotes 2 3

34 Millions of years ago Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods Fig Cambrian Explosion 500 Gould & Eldridge Punctuated Equilibrium Early Paleozoic era (Cambrian period) 542 Late Proterozoic eon

35 Cambrian Explosion Gould & Eldridge Punctuated Equilibrium Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods PROTEROZOIC PALEOZOIC Ediacaran Cambrian Time (millions of years ago) Figure 25.11

36 Fig Embryonic Cleavage? (a) Two-cell stage 150 µm (b) Later stage 200 µm

37 Fig 25-UN7 Colonization of land

38 Rise & Fall of Organisms 1) Continental drift 2) Mass extinctions 3) Adaptive radiation (speciation)

39 Fig & ) Continental drift Crust Mantle Inner core Outer core (a) Cutaway view of Earth Juan de Fuca Plate Cocos Plate Pacific Plate North American Plate Caribbean Plate Nazca Plate South American Plate Scotia Plate (b) Major continental plates Arabian Plate African Plate Eurasian Plate Antarctic Plate Indian Plate Philippine Plate Australian Plate

40 Cenozoic Mesozoic Paleozoic Figure Present 1) Continental drift Changes habitat 45 mya Collision of India with Eurasia Reduction in shallow water habitat Climatic changes on land Oceanic circulation 65.5 mya South America Eurasia Africa India Madagascar Present-day continents Allopatric speciation Antarctica 135 mya Laurasia Laurasia and Gondwana landmasses 251 mya The supercontinent Pangaea

41 Figure Relative extinction rate of marine animal genera 3 Mass extinctions Cooler Warmer Relative temperature

42 Total extinction rate (families per million years): Number of families: Fig Major Mass Extinctions Era Period 542 Volcanoes eruptions Global warming Ocean acidification Decrease O2 in oceans Paleozoic Mesozoic E O S D C P Tr J Time (millions of years ago) Cenozoic C P N Meteors? Iridium 0

43 Fig Cretaceous mass extinction Yucatán Peninsula NORTH AMERICA Chicxulub crater

44 Predator genera (percentage of marine genera) Fig Mass Extinctions (alters ecological niches available) Adaptive radiation (especially predators) competition & selection Era Paleozoic Mesozoic Cenozoic Period E O S D C P Tr J C P N Time (millions of years ago)

45 Dinosaurs gone adaptive radiation of mammals Following mass extinctions Novel characteristics Colonization of new regions Ancestral mammal ANCESTRAL CYNODONT Monotremes (5 species) Marsupials (324 species) Eutherians (placental mammals; 5,010 species) Millions of years ago 0 Fig

46 Fig Adaptive Radiation - colonization Close North American relative, the tarweed Carlquistia muirii Dubautia laxa KAUAI 5.1 million years MOLOKAI 1.3 MAUI million years OAHU 3.7 LANAI million years HAWAII 0.4 million years Argyroxiphium sandwicense Dubautia waialealae Dubautia scabra Dubautia linearis

47 Fig Major changes in body form: 1) Heterochrony developmental rate or timing Newborn Age (years) (a) Differential growth rates in a human Adult Chimpanzee fetus Chimpanzee adult Human fetus Human adult (b) Comparison of chimpanzee and human skull growth

48 Fig Major changes in body form 2) Paedomorphosis Timing (repro rate faster than body development Gills

49 Fig Major changes in body form 3) Spatial Pattern Homeotic genes (placement & organization of body parts) HOX genes (positional information) Hypothetical vertebrate ancestor (invertebrate) with a single Hox cluster First Hox duplication Hypothetical early vertebrates (jawless) with two Hox clusters Second Hox duplication Vertebrates (with jaws) with four Hox clusters

50 Figure Changes in Spatial Pattern Homeotic genes (HOX)

51 Fig Changes in genes and gene regulation (timing & location) Hox gene 6 Hox gene 7 Hox gene 8 Ubx About 400 mya Drosophila Artemia

52 Fig Changes in genes regulation RESULTS Test of Hypothesis A: Differences in the coding sequence of the Pitx1 gene? Test of Hypothesis B: Differences in the regulation of expression of Pitx1? Marine stickleback embryo Result: No Result: Yes The 283 amino acids of the Pitx1 protein are identical. Pitx1 is expressed in the ventral spine and mouth regions of developing marine sticklebacks but only in the mouth region of developing lake stickbacks. Lake stickleback embryo Close-up of mouth Close-up of ventral surface

53 Figure Evolutionary Novelties (a) Patch of pigmented cells (b) Eyecup Pigmented cells (photoreceptors) Epithelium Pigmented cells Nerve fibers Nerve fibers (c) Pinhole camera-type eye (d) Eye with primitive lens (e) Complex camera lens-type eye Epithelium Fluid-filled cavity Cellular mass (lens) Cornea Cornea Lens Optic nerve Example: Nautilus Pigmented layer (retina) Optic nerve Example: Murex, a marine snail Optic nerve Example: Loligo, a squid Retina

54 Eocene Oligocene Miocene Propalaeotherium Orohippus Pachynolophus Palaeotherium Epihippus Haplohippus Millions of years ago Miohippus Parahippus Sinohippus Megahippus Hypohippus Archaeohippus Hipparion Neohipparion Nannippus Hippidion and close relatives Callippus Holocene 0 Pleistocene Figure Equus Pliocene 5 10 Pliohippus 15 Anchitherium 20 Merychippus Mesohippus Grazers Browsers Hyracotherium relatives Hyracotherium

55 Millions of years ago Eocene Propalaeotherium Orohippus Pachynolophus Palaeotherium Epihippus Haplohippus Oligocene Miohippus Figure 25.29a Grazers Browsers Mesohippus Hyracotherium relatives Hyracotherium

56 Miohippus Millions of years ago Parahippus Miocene Sinohippus Megahippus Hypohippus Archaeohippus Hipparion Neohipparion Holocene 0 Pleistocene Pliocene 5 Figure 25.29b Equus Grazers Browsers 10 Pliohippus 15 Anchitherium 20 Merychippus 25

57 Table 25-1

100 mya Hallucigenia 1,500 3,500

100 mya Hallucigenia 1,500 3,500 1 1 m Dimetrodon 0.5 m 100 mya 175 200 Rhomaleosaurus victor 270 300 Tiktaalik 4.5 cm Coccosteus cuspidatus 375 400 Hallucigenia 1 cm Stromatolites 500 510 560 600 2.5 cm Dickinsonia costata 1,500 3,500

More information

The History of Life on Earth

The History of Life on Earth Chapter 25 The History of Life on Earth PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The History of Life on Earth

The History of Life on Earth LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 25 The History of Life on Earth

More information

BIOLOGY. The History of Life on Earth CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The History of Life on Earth CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 25 The History of Life on Earth Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lost Worlds Past organisms were

More information

The History of Life on Earth

The History of Life on Earth LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 25 The History of Life on Earth

More information

The History of Life on Earth

The History of Life on Earth Chapter 25 The History of Life on Earth PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The History of Life on Earth

The History of Life on Earth LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 25 The History of Life on Earth

More information

The History of Life on Earth

The History of Life on Earth LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 25 The History of Life on Earth

More information

The History of Life on Earth

The History of Life on Earth Chapter 25 The History of Life on Earth PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Unit 4.5. Broad Patterns of Evolution CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

Unit 4.5. Broad Patterns of Evolution CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece Unit 4.5 Broad Patterns of Evolution Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lost Worlds Past organisms

More information

The History of Life on Earth

The History of Life on Earth LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 25 The History of Life on Earth

More information

Mechanisms of Evolution. Macroevolution. Speciation. The punctuated equilibrium model has stimulated research on the tempo of speciation

Mechanisms of Evolution. Macroevolution. Speciation. The punctuated equilibrium model has stimulated research on the tempo of speciation Mechanisms of Evolution Macroevolution Speciation The punctuated equilibrium model has stimulated research on the tempo of speciation Traditional evolutionary trees - diagram the descent of species from

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species Overview: The Mystery of Mysteries Darwin explored the Galápagos Islands And discovered plants and animals found nowhere else on Earth PowerPoint Lectures for Biology,

More information

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another sparked by just the right combination of physical events & chemical processes Origin of Life 500 Paleozoic 1500 2000 2500 3000 3500 ARCHEAN Millions of years ago 1000 PROTEROZOIC Cenozoic Mesozoic 4000

More information

HISTORY OF LIFE ON EARTH

HISTORY OF LIFE ON EARTH HISTORY OF LIFE ON EARTH EARTH S HISTORY Earth s age: - about 4.6 billion years old (big bang) First life forms appeared ~3.5 billion years ago How did life arise? 1. Small organic molecules were synthesized

More information

Tracing Evolutionary History (Outline)

Tracing Evolutionary History (Outline) Tracing Evolutionary History (Outline) Four stages leading to emergence of living cells Geophysical conditions impact on biodiversity: - continental drift and volcanism, earthquakes and meteorites Living

More information

Phylogeny & Systematics

Phylogeny & Systematics Phylogeny & Systematics Phylogeny & Systematics An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics has revealed that despite

More information

sparked by just the right combination of physical events & chemical processes Origin of Life

sparked by just the right combination of physical events & chemical processes Origin of Life sparked by just the right combination of physical events & chemical processes Origin of Life 2010-2011 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic Mesozoic Paleozoic Colonization

More information

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20)

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) 2007-2008 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic

More information

Ch. 25/26 Warm-Up. 2. List 3 pieces of evidence to support the endosymbiont theory.

Ch. 25/26 Warm-Up. 2. List 3 pieces of evidence to support the endosymbiont theory. Ch. 25/26 Warm-Up 1. Answer the following using the diagram below: A B C 3 4 2 D 1 a. a common ancestor for D & F b. most closely related species c. least related species d. new species C arises at this

More information

Origins of Life and Extinction

Origins of Life and Extinction Origins of Life and Extinction What is evolution? What is evolution? The change in the genetic makeup of a population over time Evolution accounts for the diversity of life on Earth Natural selection is

More information

Chapter 15 Tracing Evolutionary History

Chapter 15 Tracing Evolutionary History Chapter 15 Tracing Evolutionary History PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey 2012 Pearson Education, Inc. Lecture by Edward

More information

First, an supershort History of the Earth by Eon

First, an supershort History of the Earth by Eon HISTORY OF LIFE WRITTEN IN THE ROCKS (geological record): notice how at first no life, very simple if for billions of years, complex life only recently 600 mya In these chapters, two primary themes: History

More information

8/23/2014. The History of Life on Earth

8/23/2014. The History of Life on Earth The History of Life on Earth Chapter 25 Objectives Define radiometric dating, serial endosymbiosis, Pangaea, snowball Earth, exaptation, heterochrony, and paedomorphosis Describe the contributions made

More information

Outline. Origin and History of Life

Outline. Origin and History of Life Origin and History of Life Chapter 19 Primitive Earth Origin of First Cells Fossils The Precambrian The Paleozoic The Mesozoic The Cenozoic Continental Drift Mass Extinctions Outline 1 2 The Primitive

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life 1. Conditions on early earth 2. Abiogenic synthesis organic molecules 3. Hot rocks

More information

SPECIES SPECIES. CHAPTERS 14 & 15: BASICS OF EVOLUTION Honors Biology Fig. 14.1

SPECIES SPECIES. CHAPTERS 14 & 15: BASICS OF EVOLUTION Honors Biology Fig. 14.1 CHAPTERS 4 & 5: BASICS OF EVOLUTION Honors Biology 202 SPECIES Group of organisms whose members can breed and produce fertile offspring, but who can not produce fertile offspring with members of other

More information

Bio 2 Plant and Animal Biology

Bio 2 Plant and Animal Biology Bio 2 Plant and Animal Biology Evolution Evolution as the explanation for life s unity and diversity Darwinian Revolution Two main Points Descent with Modification Natural Selection Biological Species

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Adapted from Holt Biology 2008 Chapter 19 Section 3: Evolution of Life Key Vocabulary Terms Adapted from Holt Biology 2008 Cyanobacteria Photosynthetic prokaryotes Adapted

More information

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Chapter Study Guide Section 17-1 The Fossil Record (pages ) Name Class Date Chapter Study Guide Section 17-1 The Fossil Record (pages 417-422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils?

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils? What

More information

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17 Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

More information

Chapter 15 Tracing Evolutionary o History

Chapter 15 Tracing Evolutionary o History Chapter 15 Tracing Evolutionary o History PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Joan Sharp Introduction: On the Wings

More information

The History of Life on Earth

The History of Life on Earth 25 The History of Life on Earth EVOLUTION K E Y C O N C E P T S Figure 25.1 What does fossil evidence say about where these dinosaurs lived? 25.1 Conditions on early Earth made the origin of life possible

More information

Chapter 25: The Origin and Evolutionary History of Life on Earth

Chapter 25: The Origin and Evolutionary History of Life on Earth Chapter 25: The Origin and Evolutionary History of Life on Earth Chemical conditions of the early Earth A model for the first cells First life Life changes the planet: oxygenating Earth s oceans and atmosphere

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life - Issues i. Conditions on early earth ii. iii. iv. Abiogenic synthesis organic

More information

History of Life on Earth

History of Life on Earth Macroevolution Broad pattern of evolution at and above the species level (in contrast to microevolution) History of Life on Earth Chapter 25 Early earth Miller and Urey Experiments ~4.5 billion years old

More information

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle. Chapter 17 The History of Life Chapter Vocabulary Review Crossword Puzzle Use the clues below to complete the puzzle. 1 2 3 4 5 6 7 8 9 10 11 Across 2. time span shorter than an era, such as Quaternary

More information

Chapter 26. Origin of Life

Chapter 26. Origin of Life Chapter 26. Origin of Life 1 The history tree of life can be documented with evidence as already discussed. The Origin of Life on Earth is another story 2 Origin of Life hypothesis Abiotic synthesis of

More information

History of Life on Earth The Geological Time- Scale

History of Life on Earth The Geological Time- Scale History of Life on Earth The Geological Time- Scale Agenda or Summary Layout The Geological Time-Scale 1 2 3 The Geological Time-Scale The Beginning of Life Cambrian Explosion The Geological Time-Scale

More information

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26 Origins of Life The Tree of Life Cell is the basic unit of life Today all cells come from pre-existing cells Earth formed ~4.5 billion years ago (BYA) Chapter 26 As it cooled, chemically-rich oceans were

More information

Philippine Plate. Arabian. Plate. South American. Plate. Plate. Scotia Plate. Continental Drift: movement in the liquid mantle causes plates to bump,

Philippine Plate. Arabian. Plate. South American. Plate. Plate. Scotia Plate. Continental Drift: movement in the liquid mantle causes plates to bump, 10/13/2015 1 THEORY OF PLATE TECTONICS The thought that Earth s crust is divided into irregularly shaped plates that float on the liquid mantle Zones of violent tectonic activity Direction of movement

More information

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes. Unit 1B Lesson 4 History of Life on Earth How do we learn about ancient life? Paleontologists scientists that studies fossils Fossil- a trace or imprint of a living thing that is preserved by geological

More information

AP Biology Notes Outline Enduring Understanding 1.D. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.D. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.D Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.D: The origin of living systems is explained by

More information

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale evolutionary changes such as speciation events, origin of

More information

Chapter 25. The History of Life on Earth

Chapter 25. The History of Life on Earth Chapter 25 The History of Life on Earth Lecture Outline Overview: Lost Worlds The largest fully terrestrial animal in Antarctica is a 5-mm-long fly. Five hundred million years ago, Antarctica was surrounded

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Name Class Date Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time

More information

Revision Based on Chapter 19 Grade 11

Revision Based on Chapter 19 Grade 11 Revision Based on Chapter 19 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most fossils are found in rusty water. volcanic rock. sedimentary

More information

Chapter 25. The History of Life on Earth

Chapter 25. The History of Life on Earth Chapter 25 The History of Life on Earth Lecture Outline Overview: Lost Worlds The largest fully terrestrial animal in Antarctica is a 5-mm-long fly. Five hundred million years ago, Antarctica was surrounded

More information

Chapter 25. The History of Life on Earth

Chapter 25. The History of Life on Earth Chapter 25 The History of Life on Earth Lecture Outline Overview: Lost Worlds The largest fully terrestrial animal in Antarctica is a 5-mm-long fly. Five hundred million years ago, Antarctica was surrounded

More information

Chapter 14 The History of Life

Chapter 14 The History of Life Section 1: Fossil Evidence of Change Section 2: The Origin of Life Click on a lesson name to select. 14.1 Fossil Evidence of Change Land Environments Earth formed about 4.6 billion years ago. Gravity pulled

More information

UNIT 4: History Of Biological Diversity

UNIT 4: History Of Biological Diversity UNIT 4: History Of Biological Diversity CHAPTER 14: The History of Life PAST NOW FUTURE? What is this? Earth s Early history Approximately 4.6 billion years ago, the Earth was formed when many pieces of

More information

Chapters 25 and 26. Searching for Homology. Phylogeny

Chapters 25 and 26. Searching for Homology. Phylogeny Chapters 25 and 26 The Origin of Life as we know it. Phylogeny traces evolutionary history of taxa Systematics- analyzes relationships (modern and past) of organisms Figure 25.1 A gallery of fossils The

More information

Saturday, August 24, Speciation

Saturday, August 24, Speciation Speciation New Species Can Emerge Darwin called the first appearance of new beings on earth the mystery of mysteries. The origin of species or speciation is central to evolutionary theory because the appearance

More information

Cell Biology 1.5- The Origin of Cells

Cell Biology 1.5- The Origin of Cells Essential idea: There is an unbroken chain of life from the first cells on Earth to all cells in organisms alive today. Cell Biology 1.5- The Origin of Cells Nature of Science: Testing the general principles

More information

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Earth s History Video Clip Earth s History Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Scientists have put together a timeline of Earth s history

More information

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14 Name Date Class Study Guide CHAPTER 14 Section 1: Fossil Evidence of Change In your textbook, read about Earth s early history. For each statement below, write true or false. 1. Solid Earth formed about

More information

I. History of Life on Earth

I. History of Life on Earth Evolution I. History of Life on Earth I. History of Life A. Early History of Earth I. Early earth was inhospitable hot, with many volcanoes little free oxygen and lots of carbon dioxide other gases present:

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall Biology 1 of 36 2 of 36 Formation of Earth Formation of Earth Hypotheses about Earth s early history are based on a relatively small amount of evidence. Gaps and uncertainties make it likely that scientific

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

.Biology Chapter 14 Test: The History of Life

.Biology Chapter 14 Test: The History of Life Class: Date:.Biology Chapter 14 Test: The History of Life True/False Indicate whether the statement is true or false. 1. On the geologic time scale, an eon is longer than an era. 2. The oblong shape of

More information

Summary The Fossil Record Earth s Early History. Name Class Date

Summary The Fossil Record Earth s Early History. Name Class Date Name Class Date Chapter 17 Summary The History of Life 17 1 The Fossil Record Fossils are preserved traces and remains of ancient life. Scientists who study fossils are called paleontologists. They use

More information

Evolution and diversity of organisms

Evolution and diversity of organisms Evolution and diversity of organisms Competency Levels - 7 3.1.1 Uses the theories of origin of life and natural selection to analyze the process of evolution of life 3.2.1 Constructs hierarchy of taxa

More information

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras 542 mya Present The Phanerozoic Eon Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras The ends of the Paleozoic and Mesozoic Eras were marked by mass extinctions The Cenozoic Era is still

More information

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti CHAPTER 19 THE HISTORY OF LIFE Dr. Bertolotti Essential Question: HOW DO FOSSILS HELP BIOLOGISTS UNDERSTAND THE HISTORY OF LIFE ON EARTH? WHAT DO FOSSILS REVEAL ABOUT ANCIENT LIFE? FOSSILS AND ANCIENT

More information

Fossils Biology 2 Thursday, January 31, 2013

Fossils Biology 2 Thursday, January 31, 2013 Fossils Biology 2 Evolution Change in the genetic composition of a group of organisms over time. Causes: Natural Selection Artificial Selection Genetic Engineering Genetic Drift Hybridization Mutation

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Chapter 1: Life on Earth R E V I E W Q U E S T I O N S

Chapter 1: Life on Earth R E V I E W Q U E S T I O N S Chapter 1: Life on Earth R E V I E W Q U E S T I O N S Chapter 1: Review Name three characteristics that define something as Alive. Chapter 1: Review Name three characteristics that define something as

More information

The history of Life Section 19.1: The fossil record

The history of Life Section 19.1: The fossil record The history of Life Section 19.1: The fossil record Fossils and Ancient Life Fossils provide information about extinct species Fossils can vary greatly Different sizes, types and degrees of preservation

More information

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 11 A Brief History of Life on Earth Chapter Overview The Ever-Changing Earth Early Life Evolution and the Fossil Record Life in the Phanerozoic

More information

AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species.

AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species. AP Biology Chapter 24 Guided Reading Assignment Ms. Hall Name AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species. 2. How do the patterns of speciation differ? a. anagenesis b. cladogenesis

More information

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis 18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis An organism arises from a fertilized egg cell as the result of three interrelated processes: cell division, cell

More information

The Evolution of Microbial Life

The Evolution of Microbial Life 1 Chapter 15 The Evolution of Microbial Life Chapter 15 Outline: The Evolution of Microbial Life Major Episodes in the History of Life The Origin of Life Prokaryotes Protists 2 PowerPoint Lectures for

More information

Chapter Fourteen (Evolution)

Chapter Fourteen (Evolution) 1 SECTION ONE: BIOGENESIS Chapter Fourteen (Evolution) The principle of biogenesis states that all living things come from other living things. Even though this seems like common sense to people today,

More information

SPECIATION. SPECIATION The process by which once species splits into two or more species

SPECIATION. SPECIATION The process by which once species splits into two or more species SPECIATION SPECIATION The process by which once species splits into two or more species Accounts for the diversity of life on earth If no speciation, there would only be species that was continuously evolving

More information

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes The geologic time scale holds secrets to the life that has existed on Earth since the beginning of time. It is time for you to take a journey through the history of Earth. 1 Click on each of the segments

More information

~22.5 MYA ~2500 MYA ~3000MYA ~3500 MYA ~1000 MYA ~2100 MYA. Early apes are found. Savannas expand

~22.5 MYA ~2500 MYA ~3000MYA ~3500 MYA ~1000 MYA ~2100 MYA. Early apes are found. Savannas expand Early apes are found. Savannas expand ~22.5 MYA Photosynthesis by blue-green bacteria. Oxygen forms in the atmosphere but immediately reacts with molecules in the ocean and crust of the Earth. The actual

More information

Earth s Formation: 4.6 Billion Years ago

Earth s Formation: 4.6 Billion Years ago Earth s Formation: 4.6 Billion Years ago Formed from interstellar gas & dust into molten planet Earth s early atmosphere was hostile, made of carbon monoxide, methane, ammonia, nitrogen, nitrogen, sulfur,

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

The Origins and evolution of life

The Origins and evolution of life The Origins and evolution of life The Origins and evolution of life Geologic time scale The geologic time scale provides a system of chronologic measurement used by geologists, paleontologists and other

More information

The History of Life. Before You Read. Read to Learn

The History of Life. Before You Read. Read to Learn 14 The History of Life section 1 Fossil Evidence of Change Before You Read Throughout Earth s history, many species have become extinct. On the lines below, name some organisms that have become extinct.

More information

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent SECTION 14-1 REVIEW BIOGENESIS VOCABULARY REVIEW Define the following terms. 1. biogenesis 2. spontaneous generation 3. vital force MULTIPLE CHOICE Write the correct letter in the blank. 1. One of the

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

Chapter 14. The History of the Earth and the Beginning of Life

Chapter 14. The History of the Earth and the Beginning of Life Chapter 14 The History of the Earth and the Beginning of Life Hypothesis of early Earth Very hot surface from colliding meteorites Very hot planet core from radioactive materials Volcanoes spewing lava

More information

Earth s Evolution Through Time

Earth s Evolution Through Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Earth s Evolution Through Time Earth 9 th edition Chapter 22 Earth s evolution: summary in haiku form Super-continents have come and gone many times: giant bumper cars.

More information

X The evolution of life on Earth.

X The evolution of life on Earth. X The evolution of life on Earth http://sgoodwin.staff.shef.ac.uk/phy229.html 10.0 Introduction A combination of the fossil record, biology and genetics allows us to examine the evolution of life on Earth.

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. Origin

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. 1 Origin

More information

Page 143: Geologic Time

Page 143: Geologic Time Page 143: Geologic Time Divide pages 144-147 in 6 One for each box: Hadeon Eon Archeon Eon Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Mississipian Period Pennsylvanian

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways UNIT IV Chapter 12 The History Of Life UNIT 4: EVOLUTION Chapter 12: The History of Life I. The Fossil Record (12.1) A. Fossils can form in several ways 1. Permineralization- minerals carried by water

More information

dition-test-bank

dition-test-bank Link download full: Biology Exploring the Diversity of Life 2nd Edition Test Bank https://digitalcontentmarket.org/download/biology-exploring-the-diversity-of-life-2nd-e dition-test-bank CHAPTER 3 Defining

More information

Chapter 22 Descent with Modification: A Darwinian View of Life. 1. Evolution by Natural Selection. Darwin s Voyage 12/8/2016

Chapter 22 Descent with Modification: A Darwinian View of Life. 1. Evolution by Natural Selection. Darwin s Voyage 12/8/2016 Andes Mtns. 12/8/2016 Chapter 22 Descent with Modification: A Darwinian View of Life 1. Evolution by Natural Selection 2. Evidence for the Evolutionary Process 1. Evolution by Natural Selection Chapter

More information

Evolution Problem Drill 09: The Tree of Life

Evolution Problem Drill 09: The Tree of Life Evolution Problem Drill 09: The Tree of Life Question No. 1 of 10 Question 1. The age of the Earth is estimated to be about 4.0 to 4.5 billion years old. All of the following methods may be used to estimate

More information

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle Oceans: the cradle of life? Highest diversity of life, particularly archae, bacteria, and animals Will start discussion of life in the ocean with prokaryote microorganisms Prokaryotes are also believed

More information

3. The diagram below shows how scientists think some of Earth's continents were joined together in the geologic past.

3. The diagram below shows how scientists think some of Earth's continents were joined together in the geologic past. 1. The map below shows the present-day locations of South America and Africa. Remains of Mesosaurus, an extinct freshwater reptile, have been found in similarly aged bedrock formed from lake sediments

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Abiotic Origins of Life on Earth Prof. Geller Some Thoughts on Life s Origins Searching for the origin Functional beginnings of life From chemistry to biology at the molecular level

More information

General Biology 1004 Chapter 15 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 15 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 15 The Evolution of Microbial Life PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Neil Campbell,

More information

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by I. Diversification of Life A. Review 1. Hadean Eon a. b. 2. Archaean Eon a. Earliest fossils of b. Establishment of three major domains B. Proterozoic Eon (2.5 bya - 543 mya) 1. Emergence of the a. Rock

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Abiotic Origins of Life on Earth Prof. Geller 1 Some Thoughts on Life s Origins Searching for the origin Functional beginnings of life From chemistry to biology at the molecular level

More information