Appendix I: Derivation of the Toy Model

Size: px
Start display at page:

Download "Appendix I: Derivation of the Toy Model"

Transcription

1 SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION Thermdynamic Parameters Appendix I: Derivatin f the Ty Mdel The ty mdel is based upn the thermdynamics f an isbaric twcmpnent (A and B) phase diagram. The definitin f quantities is given in Table 1 in the text. Figure 1 gives the ty mdel phase diagram. X is the mass fractin f cmpnent B and Y is the mass fractin f cmpnent A such that X+Y=1 in any phase. There are three pssible phases in this system: crystals f, crystals f β, r liquid (L). Melt f eutectic cmpsitin is represented by Le fr which X=Xe. There are five pssible phase assemblages in this system: L, +L, β+l, Le++β r the crystalline assemblage +β. The phase diagram and thermchemistry are defined by specificatin f Xe, Te, the fusin enthalpies f ( Δh ) and β ( Δh β ) at their respective melting temperatures f T β and T and a single cnstant isbaric specific heat fr crystals f either r β (CS) and fr melt (CL). The liquidii f the ty mdel are linearized in T-X space. This apprximatin makes little difference t any f the basic insights gained by study f the ty mdel regarding magma hybridizatin. The characteristic cncave-dwn shape f liquidii culd easily be captured using fusin entrpies and taking accunt f the entrpy, vlume and enthalpy f mixing (i.e., nn ideality) as in a standard liquidus curve calculatin. Hwever, the algebra becmes mre cumbersme and nthing new is gained cnceptually. Hence the tw branches f the liquidii in T-X space are linearized such that fr X< Xe, T liquidus = T T e X e X + T (A1) whereas fr X > Xe, T liquidus = T T β e Y e Y + T β. (A2) 1

2 SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION Characterizatin f the initial state f M and magmas Once the phase diagram, magma thermchemical prperties and Φ are defined, five additinal parameters are required t initialize the magma hybridizatin. The initial state f M and are defined by specifying their bulk cmpsitins ( X M, X ), temperatures ( T M,T ) and the fractin f M magma in the magma mixture (f). Given bulk cmpsitins and initial temperatures f M and, phase assemblages in each can be determined frm the phase diagram (lever rule) and liquidii T-X relatins. Once the phase assemblage and liquid cmpsitins (if applicable) fr M and are knwn, the specific enthalpy f each can be calculated and, by apprpriate weighting, the specific enthalpy f the mixture cmputed. When magma hybridizatin is isenthalpic (-hybridizatin), the final enthalpy f the hybrid magma is identical t the sum f the mass weighted specific enthalpies f M and. When the prcess is diabatic (FC-hybridizatin), then the specific enthalpy f H magma is Φ times the initial enthalpy f M+, the remainder (1-Φ) being dissipated externally. The starting assemblage f M and depend n their bulk cmpsitin and initial temperature and hence expressins fr the specific enthalpy take int accunt phase state and prprtins. The relevant expressins are cllected in Table A1, which give the cntributins that M and make t the specific enthalpy f the mixture. As ne example f many initial pssibilities, cnsider initial M magma f bulk cmpsitin X M < X e is just at its liquidus (all melt) and that magma f cmpsitin X > X e lies at a temperature between the β-saturated liquidus and the eutectic. In this case, is a tw-phase assemblage f β + L whereas M is a crystal-free liquid dented by the subscript L in Table A1. In this case, the initial specific enthalpy f the mixture is given by h = h M L is: + h β+l which frm Table A1 2

3 SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION ( ) h = f # C S T M + Δh + X M (Δh β Δh )+ ΔC X M $ (T T β )+ (T M T ) % & # ' + (1 f ) C S T + - ) $ - ( * ',Δh β + Y (Δh Δh β )+ ΔC Y β ) (T + ( ' )+ ) ( (A3) * *%,(T β ),. + + &. Any cmbinatin f states f M and can be cnstructed using apprpriate pairs frm Table A1. The cmpsitin f the melt alng the liquidus in eq (A3) is fund frm eq (A2) by setting Tliquidus equal t T and slving fr Y, the cmpsitin f melt alng the β-saturated liquidus. As a secnd example, cnsider a β-saturated M magma that receives stped whlly crystalline blcks f f assemblage (+β) In this case, the initial specific enthalpy f the mixed magma is: )! f C S T M + + # * + " M M $! &Δh β + Y M (Δh Δh β )+ ΔC Y M β # (T % " + (1 f )) * C S T, - (A5)! )+ # " M M $ $, &(T M β )&. % %-. which accunts fr the β-phase saturatin f M and the crystalline nature f. T cmplete initializatin f the system, the bulk cmpsitin f the hybrid magma is simply fund as the mass-weighted average f M and bulk cmpsitins accrding t: X H = f X M + (1 f )X (A4) This cmpletes characterizatin f the initial state when magmas M and are mixed and hybridized (i.e., reach thermdynamic equilibrium). Characterizatin f the final phase assemblage f hybrid (H) magma The specific (per unit mass) enthalpy h f the H magma is given by h H = Φ(h M + h ) (A5) The weighted cntributin f M and t the mixture are given in Table A2. The parameter Φ defines the type f hybridizatin. If Φ =ne, the mixing is isenthalpic 3

4 SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION (adiabatic) als called -hybridizatin. If 0 < Φ <1, the mixing is diabatic and termed FC-hybridizatin. There are five pssible state assemblage utcmes when M and hybridize. The final hybrid magma can cnsist f either Liquid (L), crystals + liquid (+L), β crystals + liquid (β+l), eutectic liquid+ crystals+β crystals (Le++β), r crystals f and β (+β). Slid phase identities, liquid cmpsitin and temperature are fund by cmparing the specific enthalpy f H magma cmputed frm Eq. (A5) t enthalpy limits defined a priri fr the five pssible utcmes. These phase assemblage limits in h-t space are depicted schematically in Figure 3 f the text. Once X H is given, the h-t diagram fr that cmpsitin can be determined using the expressins given in Table A2. The five pssible final state assemblages ccupy distinct regins n the h-t diagram. There are three special enthalpies n this diagram dented hmax, hmid and hmin. These values separate phase assemblages. Fr example, when the specific enthalpy f hybrid magma h H f bulk cmpsitin X H exceeds hmax, then the final hybridized magma must lie in the L field n the phase diagram. Similarly, if X H > Xe and hmid < h H < hmax, then hybrid magma will cnsist f β+l r if X H < Xe, and hmid < h H <hmax, the H magma assemblage is +L. When the hybrid magma enthalpy lies in the range hmin < h H < hmid, then the assemblage is Le++β and the amunt f eutectic liquid is determined by enthalpy balance. In this case, the temperature is identically equal t Te, the eutectic temperature. Finally, if h H < hmin, the assemblage is a mixture f and β crystals in prprtins dictated by the lever rule and the temperature is less than Te. In summary, in rder t find the final state f the hybrid magma, the value f h H is cmpared t the ranges given in Table A2 t discver which f the five pssible assemblage utcmes is relevant. Characterizatin f the temperature and phase cmpsitin(s) f hybrid (H) magma Once the phase state r utcme is knwn by cmparing h H t the limits specified in Table A2 (see Figure 3), the final state f hybrid magma can be determined. The state depends first n cmparisn f X H with Xe and then n the value f h H. The cnditins and final state values are given in Table A3 when X H < Xe, 4

5 SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION Table A4 is valid when X H > Xe and Table A5 is valid when X H =Xe (exactly). Nte that in the latter case, the +L r β+l fields are nt pssible. As a summary example, cnsider the pssibilities when X H <Xe. Frm the phase diagram, the state f H magma can be ne f fur states (L, L+, Le++β, +β). If h H > hmax, then H is a single phase melt f cmpsitin equal t the bulk cmpsitin and its temperature is given frm the expressin in the first rw f Table A3. If instead, hmid <h H <hmax then the H magma cnsists f liquid plus crystals. Simultaneus slutin f the tw expressins in rw three f Table A3 gives T H and the cmpsitin f melt in H magma ( X H = X H ) in the L+ field, thereby defining the apprpriate tie line. If hmin < h H < hmid, the state is defined by the invariant pint assemblage f Le++β. In this case, T H = Te and X H = X e. The mass fractins f Le, and β crystals are given in rw 4 f Table A3. Finally, when h H <hmin, the assemblage is whlly crystalline (+β crystals) in prprtins given in the fifth rw f Table A3. Table A4 gives analgus slutins when X H >Xe and Table A5 is apprpriate when X H =Xe, exactly. Table A6 cllects thermdynamic parameters that apprximately mdel the system CaMgSi2O6-CaAl2Si2O8 at 10 5 Pa (1-bar). The ty cde can be fund at the fllwing UL Once dwnladed, a user is free t change any f the thermdynamic parameters and run cmputatins fr any binary eutectic system with knwn parameters. 5

American Mineralogist: March 2016 Deposit AM SPERA ET AL.: DYNAMICS AND THERMODYNAMICS OF MAGMA HYBRIDIZATION ( ) ( o. T m.p. m.p.

American Mineralogist: March 2016 Deposit AM SPERA ET AL.: DYNAMICS AND THERMODYNAMICS OF MAGMA HYBRIDIZATION ( ) ( o. T m.p. m.p. Table A1: Enthalpy cntributin expressins fr and magmas h Lα T + Δh α + X (Δh Δh α + ΔC X α ( + (T h L h α+l h +L h α+ h Lα h L h α+l h +L h α+ T + Δh + Y (Δh α Δh + ΔC Y + (T T + X X Δhα + X (Δh Δh α +

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. Editors. December13-15, , 1978 SGP - TR - 30 CONF

SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. Editors. December13-15, , 1978 SGP - TR - 30 CONF SGP - TR - 30 SGP - TR - 30 CON-781222-26 PROCEEDINGS OURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING Paul Paul Krugerand and Henry.. Ramey, Ramey., r. r. Editrs December13-15, 13-15., 1978 DISTRIBUTION

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

5 th grade Common Core Standards

5 th grade Common Core Standards 5 th grade Cmmn Cre Standards In Grade 5, instructinal time shuld fcus n three critical areas: (1) develping fluency with additin and subtractin f fractins, and develping understanding f the multiplicatin

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

NAME TEMPERATURE AND HUMIDITY. I. Introduction

NAME TEMPERATURE AND HUMIDITY. I. Introduction NAME TEMPERATURE AND HUMIDITY I. Intrductin Temperature is the single mst imprtant factr in determining atmspheric cnditins because it greatly influences: 1. The amunt f water vapr in the air 2. The pssibility

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013 CHEM-443, Fall 2013, Sectin 010 Student Name Midterm 2 Nvember 4, 2013 Directins: Please answer each questin t the best f yur ability. Make sure yur respnse is legible, precise, includes relevant dimensinal

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)? THESE ARE SAMPLE QUESTIONS FOR EACH OF THE STUDENT LEARNING OUTCOMES (SLO) SET FOR THIS COURSE. SLO 1: Understand and use the cncept f the limit f a functin i. Use prperties f limits and ther techniques,

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26. CM ROSE-HULMAN INSTITUTE OF TECHNOLOGY Name Circle sectin: 01 [4 th Lui] 02 [5 th Lui] 03 [4 th Thm] 04 [5 th Thm] 05 [4 th Mech] ME301 Applicatins f Thermdynamics Exam 1 Sep 29, 2017 Rules: Clsed bk/ntes

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th, Phys. 344 Ch 7 Lecture 8 Fri., April. 0 th, 009 Fri. 4/0 8. Ising Mdel f Ferrmagnets HW30 66, 74 Mn. 4/3 Review Sat. 4/8 3pm Exam 3 HW Mnday: Review fr est 3. See n-line practice test lecture-prep is t

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures?

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures? Name: Perid: Unit 11 Slutins- Guided Ntes Mixtures: What is a mixture and give examples? What is a pure substance? What are allys? What is the difference between hetergeneus and hmgeneus mixtures? Slutins:

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Session #22: Homework Solutions

Session #22: Homework Solutions Sessin #22: Hmewrk Slutins Prblem #1 (a) In the cntext f amrphus inrganic cmpunds, name tw netwrk frmers, tw netwrk mdifiers, and ne intermediate. (b) Sketch the variatin f mlar vlume with temperature

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

B. Definition of an exponential

B. Definition of an exponential Expnents and Lgarithms Chapter IV - Expnents and Lgarithms A. Intrductin Starting with additin and defining the ntatins fr subtractin, multiplicatin and divisin, we discvered negative numbers and fractins.

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P Thermchemistry The study energy changes that ccur during chemical : at cnstant vlume ΔU = q V n at cnstant pressure = q P nly wrk Fr practical reasns mst measurements are made at cnstant, s thermchemistry

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Biocomputers. [edit]scientific Background

Biocomputers. [edit]scientific Background Bicmputers Frm Wikipedia, the free encyclpedia Bicmputers use systems f bilgically derived mlecules, such as DNA and prteins, t perfrm cmputatinal calculatins invlving string, retrieving, and prcessing

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

v , Michael E. Hanyak, Jr., All Rights Reserved Page 7-18

v , Michael E. Hanyak, Jr., All Rights Reserved Page 7-18 v07.08.04 007, Michael E. Hanyak, Jr., All Rights Reserved age 7-8 Energy Balance Intrductin Functinal frm: Hw t evaluate hmix,,? [ X H 0.60* + 0.40* + Δ () mix Ĥ is mlar enthalpy (kj/gml) f mixture at

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

A solution of certain Diophantine problems

A solution of certain Diophantine problems A slutin f certain Diphantine prblems Authr L. Euler* E7 Nvi Cmmentarii academiae scientiarum Petrplitanae 0, 1776, pp. 8-58 Opera Omnia: Series 1, Vlume 3, pp. 05-17 Reprinted in Cmmentat. arithm. 1,

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects Pressure And Entrpy Variatins Acrss The Weak Shck Wave Due T Viscsity Effects OSTAFA A. A. AHOUD Department f athematics Faculty f Science Benha University 13518 Benha EGYPT Abstract:-The nnlinear differential

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES CHEMICAL REACTION RATES Dr M. BROUARD Trinity Term 2003 A. Bimlecular Reactins 5 Lectures 1. Intrductin Simple cllisin thery. Ptential energy curves and surfaces. The reactin crdinate and barriers t reactin.

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

arxiv:hep-ph/ v1 2 Jun 1995

arxiv:hep-ph/ v1 2 Jun 1995 WIS-95//May-PH The rati F n /F p frm the analysis f data using a new scaling variable S. A. Gurvitz arxiv:hep-ph/95063v1 Jun 1995 Department f Particle Physics, Weizmann Institute f Science, Rehvt 76100,

More information

Entropy. Chapter The Clausius Inequality and Entropy

Entropy. Chapter The Clausius Inequality and Entropy Chapter 7 Entrpy In the preceding chapter we btained a number f imprtant results by applying the secnd law t cyclic prcesses assciated with heat engines and reversed heat engines perating with ne and tw

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

ROUNDING ERRORS IN BEAM-TRACKING CALCULATIONS

ROUNDING ERRORS IN BEAM-TRACKING CALCULATIONS Particle Acceleratrs, 1986, Vl. 19, pp. 99-105 0031-2460/86/1904-0099/$15.00/0 1986 Grdn and Breach, Science Publishers, S.A. Printed in the United States f America ROUNDING ERRORS IN BEAM-TRACKING CALCULATIONS

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

Autumn 2012 CHEM452B Bruce H. Robinson 322 Gould Hall HW 10(A) Homework 10A KEY (there will not be a 10B) 2

Autumn 2012 CHEM452B Bruce H. Robinson 322 Gould Hall HW 10(A) Homework 10A KEY (there will not be a 10B) 2 Autumn 0 CHEM45B Bruce H. Rbinsn Guld Hall HW 0(A) Hmewrk 0A KEY (there will nt be a 0B) QA) Let c be the speed f sund in air. he square f the speed f sund, () f the gas with respect t the change in the

More information

Introduction to Quantitative Genetics II: Resemblance Between Relatives

Introduction to Quantitative Genetics II: Resemblance Between Relatives Intrductin t Quantitative Genetics II: Resemblance Between Relatives Bruce Walsh 8 Nvember 006 EEB 600A The heritability f a trait, a central cncept in quantitative genetics, is the prprtin f variatin

More information

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB.

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB. Intelligent Pharma- Chemical and Oil & Gas Divisin Page 1 f 7 Intelligent Pharma Chemical and Oil & Gas Divisin Glbal Business Centre. 120 8 Ave SE, Calgary, AB T2G 0K6, AB. Canada Dr. Edelsys Cdrniu-Business

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

Engineering Decision Methods

Engineering Decision Methods GSOE9210 vicj@cse.unsw.edu.au www.cse.unsw.edu.au/~gs9210 Maximin and minimax regret 1 2 Indifference; equal preference 3 Graphing decisin prblems 4 Dminance The Maximin principle Maximin and minimax Regret

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Ray tracing equations in transversely isotropic media Cosmin Macesanu and Faruq Akbar, Seimax Technologies, Inc.

Ray tracing equations in transversely isotropic media Cosmin Macesanu and Faruq Akbar, Seimax Technologies, Inc. Ray tracing equatins in transversely istrpic media Csmin Macesanu and Faruq Akbar, Seimax Technlgies, Inc. SUMMARY We discuss a simple, cmpact apprach t deriving ray tracing equatins in transversely istrpic

More information

SYNTHESIS OF ASPIRIN SYNTHESIS PURIFICATION CHARACTERIZATION

SYNTHESIS OF ASPIRIN SYNTHESIS PURIFICATION CHARACTERIZATION SYNTHESIS F ASPIRIN SYNTHESIS PURIFICATIN CHARACTERIZATIN ASPIRIN: SME BACKGRUND PATENTED BY BAYER IN 1893 NE F THE LDEST DRUGS NE F THE MST CNSUMED DRUGS (PRDUCTIN IN THE US IS 10 MILLIN KG/YEAR) ASPIRIN:

More information

ζ a = V ζ a s ζ a φ p = ω p V h T = p R θ c p Derivation of the Quasigeostrophic Height Tendency and Omega Equations

ζ a = V ζ a s ζ a φ p = ω p V h T = p R θ c p Derivation of the Quasigeostrophic Height Tendency and Omega Equations Derivatin f the Quasigestrphic Height Tendency and Omega Equatins Equatins Already Derived (x, y, p versins) Equatin f Cntinuity (Dines Cmpensatin): = ω Hypsmetric Equatin: T = p R φ Vrticity Equatin (natural

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCurseWare http://cw.mit.edu 5.60 Thermdynamics & Kinetics Spring 2008 Fr infrmatin abut citing these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. 5.60 Spring 2008 Lecture #17 page

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

Lifting a Lion: Using Proportions

Lifting a Lion: Using Proportions Overview Students will wrk in cperative grups t slve a real-wrd prblem by using the bk Hw D yu Lift a Lin? Using a ty lin and a lever, students will discver hw much wrk is needed t raise the ty lin. They

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem A Generalized apprach fr cmputing the trajectries assciated with the Newtnian N Bdy Prblem AbuBar Mehmd, Syed Umer Abbas Shah and Ghulam Shabbir Faculty f Engineering Sciences, GIK Institute f Engineering

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information