Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Size: px
Start display at page:

Download "Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?"

Transcription

1 NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic reactins: absrb energy in the frm f heat; shw a psitive value fr quantity f heat (q > 0) exthermic reactins: release energy in the frm f heat; shw a negative value fr quantity f heat (q < 0) Magnitude f Heat Flw: Units f heat energy: Fr a pure substance f mass m, the expressin f q can be written as: where, q = m = c = t = Specific heat = the amunt heat that must be added t raise the temp. f 1 g f a substance by 1 C, with n change in state. Specific heat values (in J / g C): Examples: 1. Hw much heat is given ff by a 50.0 g sample f cpper when it cls frm 80.0 t 50.0 C?

2 2. Irn has a specific heat f J/g C. When a 7.55 g piece f irn absrbs J f heat, what is the change in temperature? If it was riginally at rm temp. (22.0 C), what is the final temperature? 3. The specific heat f cpper is J/g C. Hw much heat is absrbed by a cpper plate with a mass f g t raise its temperature frm 25.0 C t ven temperature (420 F)? Thermchemistry Part 2 - Calrimetry Q: If yu leave yur keys and yur chemistry bk sitting in the sun n a ht summer day, which ne is htter? Q: Why is there a difference in temperature between the tw bjects? Heat required t melt ice (a.k.a. latent heat f fusin) cannt be measured directly, but calrimetry prvides an experimental methd allwing this heat transfer t be measured indirectly. Calrimetry: measurement f the amunt f heat evlved r absrbed in a chemical reactin, change f state r frmatin f a slutin. The enthalpy change assciated with a chemical reactin r prcess can be determined experimentally. Measure the during a reactin at CONSTANT pressure. A is a device used t measure the heat absrbed r released during a chemical r physical prcess Simple/Cffee Cup Calrimeter The cup is filled with water, which absrbs the heat evlved (r given ff) by the reactin. Picture f cffee cup calrimeter: q rxn = -q cal

3 What happens in a calrimeter? One bject will, and the ther will the heat System lses heat t surrundings = System absrbs heat frm surrundings = When a ht chunk f metal is drpped in a cl glass f water, the metal cls ff. Where did the heat frm the metal g? Did the metal lse mre heat than the water gained? Magnitude f = (ALWAYS!) T d calrimetry prblems First, make a chart - Example 1 : A small pebble is heated and placed in a fam cup calrimeter cntaining 25.0 g f water at 25.0 C. The water reaches a maximum temperature f 26.4 C. Hw many jules f heat were released by the pebble? The specific heat f water is J/g C. Measurement Water (cal) Pebble (rxn) Heat (q) Mass (m) Specific Heat (c) Final Temp (T f) Initial Temp (T i) Example 2: When 1.00 g f ammnium nitrate, NH 4NO 3, is added t 50.0 g f water in a cffee cup calrimeter, it disslves, NH 4NO 3 (s) NH 4+ (aq) + NO 3- (aq), and the temperature f the water drps frm C t C. Calculate q fr the reactin system. Example 3: Suppse that g f water at 22.4 C is placed in a calrimeter. A g sample f Al is remved frm biling water at a temperature f 99.3 C and quickly placed in a calrimeter. The substances reach a final temperature f 32.9 C. Determine the SPECIFIC HEAT f the metal.the specific heat f water is J/g C.

4 Bmb Calrimeter NOTE: In a bmb calrimeter, heat is transferred frm the sample t the xygen-enriched chamber, t the metal that makes up the chamber, t the water thus we cannt just use the specific heat f water; instead heat capacity f the calrimeter, Ccal, can be used r calculated. It is pssible t calculate the amunt f heat absrbed r evlved by the reactin if yu knw the heat capacity, Ccal, and the temp. change, Δt, f the calrimeter. Everything else is the same (remember, the heat lst frm the reactin ges int the calrimeter) Picture f bmb calrimeter: EXAMPLE 4: The reactin between hydrgen and chlrine, H 2 + Cl 2 2HCl, can be studied in a bmb calrimeter. It is fund that when a 1.00 g sample f H 2 reacts cmpletely, the temp. rises frm C t C. Taking the heat capacity f the calrimeter t be 9.33 kj/ C, calculate the amunt f heat evlved in the reactin. EXAMPLE 5: When 1.00 ml f caffeine (C 8H 10N 4O 2) is burned in air, 4.96 x 10 3 kj f heat is evlved. Five grams f caffeine is burned in a bmb calrimeter. The temperature is bserved t increase by C. What is the heat capacity f the calrimeter in J/ C? EXAMPLE 6: When twenty milliliters f ethyl ether, C 4H 10O. (d=0.714 g/ml) is burned in a bmb calrimeter, the temperature rises frm 24.7 C t 88.9 C. The calrimeter heat capacity is kj/ C. (a) What is q fr the calrimeter? (b) What is q when 20.0 ml f ether is burned? (c) What is q fr the cmbustin f ne mle f ethyl ether?

5 Thermchemistry Part 3 Enthalpy and Thermchemical Equatins Enthalpy Enthalpy = a type f chemical energy (thermdynamic ptential), smetimes referred t as heat cntent Enthalpies f Reactin ( H rxn): the enthalpy change (reprted in kj/ml) that accmpanies a chemical reactin is called the enthalpy f reactin. Als called heat f reactin If H rxn = negative Exthermic Heat is evlved, r given ff Under cnditins f cnstant pressure, q = ΔH < 0 (negative sign) If H rxn = psitive Endthermic Heat is absrbed Under cnditins f cnstant pressure, q = ΔH > 0 (psitive sign) Thermchemical Equatins Thermchemical equatins are balanced chemical equatins that shw the assciated enthalpy change ( H) balanced equatin enthalpy change (ΔH rxn) Rules f Themchemistry: Rule #1) The magnitude f H is directly prprtinal t the amunt f reactant cnsumed and prduct prduced. Example 1: H 2 + Cl 2 2Hcl H = kj Calculate H when 1.00 g f Cl 2 reacts. Example 2: When an ice cube weighing 24.6 g f ice melts, it absrbs 8.19 kj f heat. Calculate H when 1.00 ml f slid water melts. Example 3: Methanl burns t prduce carbn dixide and water: 2CH 3OH + 3O 2 2CO 2 + 4H 2O kj What mass f methanl is needed t prduce 1820 kj? Example 4: Hw much heat is prduced when 58.0 liters f hydrgen (at STP) are als prduced? Zn + 2HCl ZnCl 2 + H kj

6 Rule #2) H fr a reactin is equal in the magnitude but ppsite in sign t H fr the reverse reactin. (If 6.00 kj f heat absrbed when a mle f ice melts, then 6.00 kj f heat is given ff when 1.00 ml f liquid water freezes) Example: Given: H 2 + ½ O 2 H 2O H = kj Calculate H fr the equatin: 2H 2O 2H 2 + O 2 Rule #3) The value f H fr a reactin is the same whether it ccurs in ne step r in a series f steps. fr the verall equatin is the sum f the H s fr the individual equatins: Hess s Law: H = H 1 + H 2 + Example 1: Calculate H fr the reactin: C + ½ O 2 CO Given: C + O 2 CO 2 H = kj 2CO + O 2 2CO 2 H = kj Example 2: Find the heat f reactin (enthalpy) fr the fllwing reactin: NO + ½ O 2 NO 2 H =? Given the fllwing equatins. ½ N 2 + ½ O 2 NO H = kj ½ N 2 + O 2 NO 2 H = Thermchemistry Part 4 Phase Changes and Heats f Frmatin specific heat = the amt f heat that must be added t a stated mass f a substance t raise its temp by 1 C, with n change in state. Ex: Hw much heat is released by g f H 2O as it cls frm 85.0 C t 40.0 C? (specific heat f water = 4.18 J/g C)

7 Heat changes invlving phase changes LATENT HEAT OF FUSION, Hfus : the enthalpy change (energy absrbed) when a cmpund is cnverted frm a slid t a liquid withut a change in temperature. Latent means hidden; the heat absrbed/released during a phase change des nt cause the temperature t change. Nte: Hfus fr water is LATENT HEAT OF VAPORIZATION, liquid t a gas withut a change in temperature. Nte: Hvap - the enthalpy change (energy absrbed) when a cmpund is cnverted frm a Hvap fr water is When substances change state, they ften have different specific heats: c ice= 2.09 J/g C c water= 4.18 J/g C c steam= 2.03 J/g C Example 1: Hw much heat is released by g f H 2O as it cls frm C t C Five steps 1. Cl the steam m c steam T = 2. Cndense m(- H vap) = 3. Cl the liquid water m c water T = 4. Freeze m(- H fus) = 5. Cl the slid ice m c ice T = Example 2: Hw much heat energy is required t bring g f water at 55.0 C t its biling pint (100 C) and then vaprize it? Example 3: Hw much heat energy is required t cnvert 15.0 g f ice at 12.5 C t steam at C?

8 Enthalpies f Frmatin H f = enthalpy f frmatin usually exthermic see table fr H f values enthalpy f frmatin f an element in its stable state = these can be used t calculate H fr a reactin standard enthalpy change, H, fr a given thermchemical equatin is = t the sum f the standard enthalpies f frmatin f the prduct the standard enthalpies f frmatin f the reactants. elements in their standard states can be mitted: 2 Al (s) + Fe 2O 3(s) 2 Fe (s) + Al 2O 3(s) the cefficient f the prducts and reactants in the thermchemical equatin must be taken int accunt: 2 Al (s) + 3 Cu 2+ (aq) 2 Al 3+ (aq) + 3 Cu (s) Example: Calculate H fr the cmbustin f ne mle f prpane: C 3H 8 (g) + 5O 2 (g) 3CO 2 (g) + 4H 2O (l) Example: The thermchemical equatin fr the cmbustin f benzene, C 6H 6, is: C 6H 6 (l) + 15/2 O 2 (g) 6CO 2 (g) + 3H 2O (l) H = kj Calculate the standard heat f frmatin f benzene. Example: When hydrchlric acid is added t a slutin f sdium carbnate, carbn dixide gas is frmed. The equatin fr the reactin is: 2H + (aq) + CO 3 2- (aq) CO 2(g) + H 2O(l) Calculate H fr this thermchemical equatin.

9 Thermchemistry Part 5 Spntaneity THERMODYNAMICS = the study f energy changes that accmpany physical and chemical changes. Enthalpy (H): ): the ttal energy stred within a substance Enthalpy change ( H): a cmparisn f the ttal enthalpies f the prduct & reactants. Exthermic v. Endthermic: Exthermic reactins/changes: release energy in the frm f heat; have negative H values H 2O(g) H 2O(l) ΔH = kj Endthermic reactins/changes: absrb energy in the frm f ehat; have psitive H values. H 2O(l) H 2O(g) ΔH = kj Changes that invlve a decrease in enthalpy are favred! Reactin pathways: Entrpy (S): the measure f the degree f disrder in a system; in nature, things tend t increase in entrpy, r disrder. All physical & chemical changes invlve a change in entrpy, r S. (remember that high entrpy is favrable) Enthalpy and entrpy are DRIVING FORCES fr spntaneus reactins (rxns that happen at nrmal cnditins) It is the interplay f these 2 driving frces that determines whether r nt a physical r chemical change will actually happen. Free Energy (G): relates enthalpy and entrpy in a way that indicates which predminates; the quantity f energy that is available r stred t d wrk r cause change. where: G = H = T = S =

10 G: ps value means change is NOT spn. G: neg value means change IS spn. Relating Enthalpy and Entrpy t Spntaneity Example f reactin H S Spntaneity H 2O (g) H 2O (l) H 2O (s) H 2O (l) Examples: 1) Fr the decmpsitin f O 3 (g) t O 2(g): 2O 3(g) 3O 2(g) H = kj/ml and S = J/ml K at 25 C. a) Calculate G fr the reactin. b) Is the reactin spntaneus? c) Is H r S (r bth) favrable fr the reactin? 2) What is the minimum temperature (in C) necessary fr the fllwing reactin t ccur spntaneusly? Fe 2O 3 (s) + 3CO(g) 2Fe(s) + 3CO 2 (g) H = kj/ml; S = J/K ml (Hint: assume G = -0.1 kj/ml)

11 Standard Heats f Frmatin, Gibbs Free Energy, and Entrpy Substance (cmpunds at 1 atm, aqueus ins at 1M) H f ΔG f S at 25 C (J/ml K) at 25 C (kj/ml) at 25 C (kj/ml) Al 3+ (aq) Al2O3 (s) Br2 (g) Br2 (l) C (s, diamnd) C (s, graphite) CH4 (g) C3H8(g) CO (g) CO2 (g) CO3 2- (aq) CaCO3 (s) CaO (s) Cl2 (g) Cu (s) Cu + (aq) Cu 2+ (aq) F2 (g) Fe (s) Fe2O3 (s) H + (aq) H2 (g) H2O (g) H2O (l) H2O2 (l) HCl (g) H2S (g) I2 (g) I2(s) Mg(OH)2(s) N2 (g) NH3 (g) NO (g) NO2 (g) Na2CO3 (s) NaCl (s) O2 (g) O3 (g) P (s, white) P (s, Red) S (s, rhmbic) S (s, mnclinic) SO2 (g) SO3 (g)

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY CHEMICAL REACTIONS INVOLVE ENERGY The study energy and its transrmatins is knwn as thermdynamics. The discussin thermdynamics invlve the cncepts energy, wrk, and heat. Types Energy Ptential energy is stred

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

188 CHAPTER 6 THERMOCHEMISTRY

188 CHAPTER 6 THERMOCHEMISTRY 188 CHAPTER 6 THERMOCHEMISTRY 4. a. ΔE = q + w = J + 100. J = 77 J b. w = PΔV = 1.90 atm(.80 L 8.0 L) = 10.5 L atm ΔE = q + w = 50. J + 1060 = 1410 J c. w = PΔV = 1.00 atm(9.1 L11. L) = 17.9 L atm 101.

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj Chemistry 102 ANSWER KEY REVIEW QUESTIONS Chapter 18 1. Calculate the heat reactin ( H ) in kj/ml r the reactin shwn belw, given the H values r each substance: NH (g) + F 2 (g) NF (g) + HF (g) H (kj/ml)

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Name Chem 161, Sectin: Grup Number: ALE 28. Hess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 5 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

Thermochemistry Heats of Reaction

Thermochemistry Heats of Reaction hermchemistry Heats f Reactin aa + bb cc + dd hermchemical Semantics q V = Heat f Rxn at [V] = U = Energy (change) f Rxn q P = Heat f Rxn at [P] = H = Enthalpy (change) f Rxn Exthermic rxns: q < 0 Endthermic

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chapter 9 Chemical Reactions NOTES

Chapter 9 Chemical Reactions NOTES Chapter 9 Chemical Reactins NOTES Chemical Reactins Chemical reactin: Chemical change 4 Indicatrs f Chemical Change: (1) (2) (3) (4) Cnsist f reactants (starting materials) and prducts (substances frmed)

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

4 Fe + 3 O 2 2 Fe 2 O 3

4 Fe + 3 O 2 2 Fe 2 O 3 UNIT 7: STOICHIOMETRY NOTES (chapter 9) INTRO TO STOICHIOMETRY Reactin Stichimetry: Stichimetry is simply a way t shw f smething this is. Relatinship between a given and an unknwn: GIVEN UNKNOWN Type 1

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0 Thermochemistry Part 2: Calorimetry p p If you leave your keys and your chemistry book sitting in the sun on a hot summer day, which one is hotter? Why is there a difference in temperature between the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 (Nte: questins 1 t 14 are meant t be dne WITHOUT calculatrs!) 1.Which f the fllwing is prbably true fr a slid slute with a highly endthermic heat

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

GOAL... ability to predict

GOAL... ability to predict THERMODYNAMICS Chapter 18, 11.5 Study f changes in energy and transfers f energy (system < = > surrundings) that accmpany chemical and physical prcesses. GOAL............................. ability t predict

More information

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points +2 pints Befre yu begin, make sure that yur exam has all 7 pages. There are 14 required prblems (7 pints each) and tw extra credit prblems (5 pints each). Stay fcused, stay calm. Wrk steadily thrugh yur

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

Hess Law - Enthalpy of Formation of Solid NH 4 Cl Hess Law - Enthalpy f Frmatin f Slid NH 4 l NAME: OURSE: PERIOD: Prelab 1. Write and balance net inic equatins fr Reactin 2 and Reactin 3. Reactin 2: Reactin 3: 2. Shw that the alebraic sum f the balanced

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

CHE 105 EXAMINATION III November 11, 2010

CHE 105 EXAMINATION III November 11, 2010 CHE 105 EXAMINATION III Nvember 11, 2010 University f Kentucky Department f Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely imprtant that yu fill in the answer

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Heat is energy and is measured in joules (J) or kilojoules (kj). The symbol for heat is H.

Heat is energy and is measured in joules (J) or kilojoules (kj). The symbol for heat is H. Causes f Change Calrimetry Hw Des Energy Affect Change? Heat vs. Temerature HEAT TEMPERATURE Definitin: Deends n: Examles: Heat is energy and is measured in jules (J) r kiljules (kj). The symbl fr heat

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Advanced Chemistry Practice Prblems Thermdynamics: Gibbs Free Energy 1. Questin: Is the reactin spntaneus when ΔG < 0? ΔG > 0? Answer: The reactin is spntaneus when ΔG < 0. 2. Questin: Fr a reactin with

More information

CHAPTER 6 THERMOCHEMISTRY. Questions

CHAPTER 6 THERMOCHEMISTRY. Questions CHAPTER 6 THERMOCHEMISTRY Questins 11. Path-dependent functins fr a trip frm Chicag t Denver are thse quantities that depend n the rute taken. One can fly directly frm Chicag t Denver, r ne culd fly frm

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t eep this site up and bring yu even mre cntent cnsider dnating via the lin n ur site. Still having truble understanding the material? Chec ut ur Tutring

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures?

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures? Name: Perid: Unit 11 Slutins- Guided Ntes Mixtures: What is a mixture and give examples? What is a pure substance? What are allys? What is the difference between hetergeneus and hmgeneus mixtures? Slutins:

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

Unit 9: The Mole- Guided Notes What is a Mole?

Unit 9: The Mole- Guided Notes What is a Mole? Unit 9: The Mle- Guided Ntes What is a Mle? A mle is a name fr a specific f things Similar t a r a One mle is equal t 602 602,000,000,000,000,000,000,000 That s 602 with zers A mle is NOT an abbreviatin

More information

Entropy and Gibbs energy

Entropy and Gibbs energy 14 Entrpy and Gibbs energy Answers t wrked examples WE 14.1 Predicting the sign f an entrpy change (n p. 658 in Chemistry 3 ) What will be the sign f the value f S fr: (a) crystallizatin f salt frm a slutin;

More information

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions Chem 116 POGIL Wrksheet - Week 4 Prperties f Slutins Key Questins 1. Identify the principal type f slute-slvent interactin that is respnsible fr frming the fllwing slutins: (a) KNO 3 in water; (b) Br 2

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

BIT Chapters = =

BIT Chapters = = BIT Chapters 17-0 1. K w = [H + ][OH ] = 9.5 10 14 [H + ] = [OH ] =.1 10 7 ph = 6.51 The slutin is neither acidic nr basic because the cncentratin f the hydrnium in equals the cncentratin f the hydride

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

CHAPTER 6 THERMOCHEMISTRY. Questions

CHAPTER 6 THERMOCHEMISTRY. Questions CHAPTER 6 THERMOCHEMISTRY Questins 11. Path-dependent functins fr a trip frm Chicag t Denver are thse quantities that depend n the rute taken. One can fly directly frm Chicag t Denver, r ne culd fly frm

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermdynamics Objectives 1. Be capable f stating the First, Secnd, and Third Laws f Thermdynamics and als be capable f applying them t slve prblems. 2. Understand what the parameter entrpy means.

More information

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate.

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate. CEM1405 2007-J-2 June 2007 In the spaces prvided, explain the meanings f the fllwing terms. Yu may use an equatin r diagram where apprpriate. 5 (a) hydrgen bnding An unusually strng diple-diple interactin

More information

SPONTANEITY, ENTROPY, AND FREE ENERGY

SPONTANEITY, ENTROPY, AND FREE ENERGY CHAER 7 SONANEIY, ENROY, AND FREE ENERGY Questins. Living rganisms need an external surce f energy t carry ut these prcesses. Green plants use the energy frm sunlight t prduce glucse frm carbn dixide and

More information

Work and Heat Definitions

Work and Heat Definitions Wrk and eat Deinitins FL- Surrundings: Everything utside system + q -q + System: he part S the rld e are bserving. Wrk, : transer energy as a result unbalanced rces - eat, q: transer energy resulting rm

More information

Chemistry 132 NT. Electrochemistry. Review

Chemistry 132 NT. Electrochemistry. Review Chemistry 132 NT If yu g flying back thrugh time, and yu see smebdy else flying frward int the future, it s prbably best t avid eye cntact. Jack Handey 1 Chem 132 NT Electrchemistry Mdule 3 Vltaic Cells

More information

Solutions to the Extra Problems for Chapter 14

Solutions to the Extra Problems for Chapter 14 Slutins t the Extra Prblems r Chapter 1 1. The H -670. T use bnd energies, we have t igure ut what bnds are being brken and what bnds are being made, s we need t make Lewis structures r everything: + +

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

5.0 minutes. The temperature rose from

5.0 minutes. The temperature rose from QUESTION 1 The table belw describes features cmmn t a slutin calrimeter and a bmb calrimeter as well as differences. Features f Bth the Slutin and Bmb alrimeters W X Features f the Bmb alrimeter Only Y

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

Thermodynamics 1/16/2013. Thermodynamics

Thermodynamics 1/16/2013. Thermodynamics Thermdynamics http://www.chem.purdue.edu/gchelp/hwtslveit/hwtslveit.html 1 Thermdynamics Study f energy changes and flw f energy Answers several fundamental questins: Is it pssible fr reactin t ccur? Will

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)?

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)? NOTES Name: Date: Class: Lessn 15 Part 2: Binary II Inic Bnding, Plyatmic Ins Bx 1: 1. Ba 3N 2 is the frmula fr. (name) a. Hw many barium ins are there per frmula unit (cmpund)? b. Hw many nitride ins

More information

3. Review on Energy Balances

3. Review on Energy Balances 3. Review n Energy Balances Objectives After cmpleting this chapter, students shuld be able t recall the law f cnservatin f energy recall hw t calculate specific enthalpy recall the meaning f heat f frmatin

More information

Three Definitions of Acids/Bases Type Acid Base Problems with it Arrhenius Bronsted-Lowry Lewis. NH 3(aq) + H 2O(l)

Three Definitions of Acids/Bases Type Acid Base Problems with it Arrhenius Bronsted-Lowry Lewis. NH 3(aq) + H 2O(l) CP NT Ch 19: Acid and Bases An Intrductin Prperties f Acids 1. taste 2. Can prduce H + ( ) ins ( ) 3. Change the clr f litmus frm t 4. Reacts with such as Zn and Mg t prduce gas. Ba(s) + H 2SO 4 BaSO 4(aq)

More information

Review Material for Exam #2

Review Material for Exam #2 Review Material fr Eam # 1. a. Calculate the mlarity f a slutin made with 184.6 mg sample f ptassium dichrmate disslved in enugh water t give 500.0 ml f slutin. 1 g 184.6 mg K Cr O 1 mle K Cr O 7 7 1000

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

SCH4U: End of Year Review

SCH4U: End of Year Review SCH4U: End f Year Review Unit 1: Energy and Rates 2 1) When 13.4 g f ammnium chlride disslve int 2.00x10 g f water the temperature changes frm 20.0 C t 15.3 C. Determine the mlar enthalpy f slutin f ammnium

More information

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS CHPTER 6 / HRVEY. CHEMICL B. THERMODYNMICS ND C. MNUPULTING CONSTNTS D. CONSTNTS FOR CHEMICL RECTIONS 1. Precipitatin Reactins 2. cid-base Reactins 3. Cmplexatin Reactins 4. Oxidatin-Reductin Reactins

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions eat Effects f hemical Reactins Enthalpy change fr reactins invlving cmpunds Enthalpy f frmatin f a cmpund at standard cnditins is btained frm the literature as standard enthalpy f frmatin Δ (O (g = -9690

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information