NOTICE CONCERNING COPYRIGHT RESTRICTIONS

Size: px
Start display at page:

Download "NOTICE CONCERNING COPYRIGHT RESTRICTIONS"

Transcription

1 NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

2 203%/ Summary of the geology and isotope geochemistry of Steamboat Springs, Neuada DONALD E. WHITE 1, HARMON CRAIG 2 1 U.S. Geological Survey, Menlo Park, California 2 Department of Earth Sciences - University of California - La loila, California and FRED BEGEMANN 3 3 Max-Planc -Institat jar Chemie (Otto-Hahn-Institut), Mainz INTRODUCTION Some geothermal areas have had very complex geologic histories, and present-day.transfer of heat and mineral substances from depth to the surface may also be exceedingly complex in detail. The transferring medium, at least in the upper part of the systems, is predominantly water of surface origin ( CRAIG and others, ]:956), and the channels of migration are geologically controlled. Within a single spring system, multiple areas of recharge- having differing travel times, chemical and isotopic compositions, and other characteristics - are possible and even probable. A clear understanding of these complex relationship cannot be gained by any single approach. Geologic study, geophysical surveys, classical geochemistry of solid and fluid phases, and last but by no means least, isotope geochemistry of the pertinent stable and radioactive species each can contribute meaningful data, and integration of all the data can solve most of the outstanding problems. Many approaches have been applied, with varying degrees of success, at Steamboat Springs, Nevada. Publication authorized by the Director U.S. Geological Survey. 9

3 Donald E. White, Harmon Craig and Fred Begemann TOPOGRAPHIC AND HYDROLOGIC RELATIONSHIPS The Steamboat Springs area is in the western part of the Great Basin. The Carson Range, a few miles west of the springs, is a northward offshoot of the northwestward-trending Sierra Nevada Range. A chain of basins, including Washoe, Pleasant, and Steamboat Valleys and Truckee Meadows, separates the Carson Range from the adjacent range to the east, the semiarid Virginia Range. Altitudes range from :[0,778 feet at the summit of the Carson Range to 4,400 feet in Truckee Meadow; the thermal area is close to 4,600 feet. Annual precipitation is 50 to Ioo inches near the crest of the Carson Range, 20 to 40 inches in the Virginia Range, and Close to IO inches in the intervening basins and Steamboat Springs. Tributary drainage is eastward or westward from the bordering ranges toward the basins. The master stream of the area, Steamboat Creek, heads in Washoe Basin and flows northward along the axis of the chain of basins and the base of the hot spring terraces to the Truckee River, which in turn flows into Pyramid Lake, the undrained remnant of Pleistocene Lake Lahontan. The main streams from the Carson Range flow throughout the year; two of these, Galena Creek and Whites Creek, are of particular interest to the hydrology of Steamboat Springs. The principal streams of the Virginia Range, on the other hand, dry up or flow only feebly in their lower parts during the long dry summers, with no surface discharge reaching Steamboat Creek except during stages of unusually high runoff; normally the water sinks underground in permeable gravels near the western margin of the range. Summer temperatures and rates of evaporation are relatively high in the chain of basins traversed by Steamboat Creek, but are low in the adjacent ranges, particularly in the high Carson Range with its general cover of conifer forests. SUMMARY OF GEOLOGIC RELATIONSHIPS The rocks of the region consist of a deeply eroded crystalline basement overlain by thick Cenozoic volcanic rocks and lake and stream deposits (THOMPSON and WHITE, in press). The basement 10

4 Geology & isotope gechemistry of Steamboat Springs rocks are regionally and contact-metamorphosed volcanic and sedimentary rocks of probable Mesozoic age that are intruded by granitic rocks related to the Sierra Nevada batholithic complex of Cretaceous age. After deep erosion that exposed the granitic rocks, sporadic Cenozoic volcanism produced thick volcanic accumulations in the Virginia Range and generally lesser quantities elsewhere. During and after these eruptions, sedimentary rocks accumulated in structural basins that were forming between the volcanic mountains. In late Pliocene or early Pleistocene time, flows of basaltic andesite and domes of pumiceous rhyolite were extruded. Steamboat Hills, with Steamboat Springs at its northeastern end, is a relatively small structural and topographic high situated near the axis of the line of northward-trending structural basins between the two major ranges of the area. Pre-Tertiary basement rocks lie at or near the surface throughout most of the hills; Cenozoic volcanic and sedimentary rocks either did not accumulate to great thicknesses or were eroded away about as fast as they were deposited. A basaltic andesite volcano erupted lava flows that now" cap ridges in the northeastern part of Steamboat Hills near the springs. A pumiceous rhyolite dome essentially contemporaneous with the basaltic andesite was extruded near the southwestern end of the hills. Experimental geochemistry on the «granite» system and the proportions of normative feldspars to quartz in the obsidian of the domes indicate that the rhyolite magma evolved in an environment where the water-vapor pressure was between 2,000 and 3,000 bars (WHITE, THOMPSON, and SANDBERG, in press). The indicated water content was 6 to 8 percent, and the temperature immediately prior to eruption was probably close to 675 C. A minimum depth of burial of 6 to g km for the magma chamber is indicated by these data. Hydrothermal activity that probably was related to the rhyolitic magma chamber antedates the local basaltic andesite and rhyolite extrusions, and has been practically continuous up to the present time. Siliceous sinter of several different ages was deposited during each period of vigorous discharge of thermal springs. At other times, when topographic and ground water relations were such that springs did not discharge from the main sinter terraces, convection was probably still active in the thermal systems, but 11

5 Donald E. White, Harmon Craig and Fred Begemann the saline water escaped below the surface and was discharged directly into Steamboat Creek. At the present time, for example, less than IO percent of the thermal water of the system is discharged in measurable springs, and about 90 percent escapes underground directly into Steamboat Creek at the eastern bases of the spring terraces (WHITE, I957) Three well-defined systems of faults have been recognized in Steamboat Hills. An east-northeast system is parallel to the axis of the hills and is largely restricted to the basaltic andesite and older rocks. A set of northwest-striking faults is approximately contemporaneous with the more prominent east-northeast system. The most numerous faults in and near the thermal area strike northward; some of these are relatively old, bzit others displace sinter and alluvium of probable middle Pleistocene age and are the youngest faults in the area. The faults show no evidence of late Pleistocene and Recent displacement, although local earthquakes are relatively frequent. The Steamboat Springs fault system of the north-striking group is largely concealed by younger alluvium and spring deposits but it is evident from drill-hole data in and east of the Low and Main Terraces. Some evidence supports west-dipping reverse or thrust movement for the system, but the preponderant evidence favors east-dipping normal faults ( HITE, THOMPSON, and SANDBERG, in press). Structural control for the High Terrace is parallel to and west of the Steamboat Springs fault system; control for the older structurally deformed spring deposits southwest of the High Terrace is obscure. In summary, the regional geology indicates clearly that crystalline Pre-Tertiary igneous and metamorphic rocks occur at or near the surface throughout many square miles adjacent to Steamboat Springs. All deep circulation within these basement rocks must be controlled by permeable channels localized in faults and fractures. Artesian circulation of thetype that characterizes many areas of sedimentary rocks cannot exist in the spring system, except 10- cally in the shallow sedimentary cover. 12

6 Geology & isotope gechemistry of Steamboat Springs ISOTOPE GEOCHEMISTRY The isotopic composition of Steamboat Creek water shows only slight variations except from evaporational effects during the summer months. The heavy isotopes, D and 018, start to increase markedly in June, attain maximum values early in August, and are again nearly «normal» during and after October. The summer maximum is clearly related to high summer temperatures and extensive evaporation, particularly in the Washoe Lakes at the head of the creek (CRAIG and others, :[956). Evaporational effects are of the nonequilibrium kind that has been emphasized by CRAIG..aD of average creek water is about -90 per mil (SMOW) and 8018 is near-ii per mil, which is on the high -Ols side of the trend line of most surface waters. Galena Creek in the Carson Range, on the other hand, is isotopically very near this trend line (OD = IO; CRAIG, :[96:[), with 8D near -I]:3 per mil and 8018 «[5.3 per mil. Streams from the Virginia Range, like Steamboat Creek, are on the high -018 side of the trend line, probably because of evaporational effects; 6D is about -I]:5 per mil and 6018 is near -]:4.5 per mil. The deeper water of South Steamboat well near the southern limit of the thermal area consists, from chemical and physical evidence, of meteoric water migrating into the upper part of the hot Spring System (VVHITE and BRANNOCK, I950) Isotopically, water from this well is intermediate between the runoff of the Carson and the Virginia Ranges and is very unlike that of Steamboat Creek; average dd is -I]:5 and 8018 is -I5.0 per mil. The hot springs are virtually identical in deuterium content to that of South Steamboat well but range from 2.0 to 3.5 per mil higher in O18. This major shift in 018 content is best explained by exchange of oxygen between circulating meteoric water and silicate minerals that are being hydrothermally altered. Other small variations have several different explanations: direct near-surface dilution of the dominant meteoric water of deep circulation by water similar to that of South Steamboat well ( HITE and BRANNOCK, ]:950' and unpublished data) ; equilibrium boiling below the water table as hot water deep in the system and originally near :[70 C rises into lower hydrostatic pressures near the surface (WHITE, 13

7 Donald E. White, Harmon Craig and Fred Begemann :[96I) ; nonequilibrium evaporation at the surface of small pools of low discharge (CRAIG and others, :[956); and concentration of light isotopes in the upper part of water and vapor columns in capped thermal wells. The carbon of all CO Species in water of Galena Creek within the Carson Range is isotopically very similar to atmospheric CO (5( about per mil). Away from the range front, the CO, carbon increases in concentration but changes to 8-13 per mil, probably owing to influence of organic activity. Virginia Range samples are similarly low in C13 but are higher in total (02. The c 3 data from South Steamboat well support the D and 018 data in suggesting subsurface mixing of water that is recharged very near the flanks of the Virginia and Carson Ranges. The thermal chloride waters are very high in CO, with BC13 about -8.5 per mil. Separation of a vapor phase as water rises near the surface lowers the content of dissolved CO2 in the remaining water but increases the relative 8C13 content. Calcium carbonate precipitated in one erupting thermal well of normal high chloride content is completely lacking in detectable c 4, probably because of the considerable age of any atmospheric carbon that may be dissolved in the dominant meteoric water component, and probably even more to its very great dilution by «dead» volcanic carbon. Calcite from an erupting well at the Steamboat Resort, on the other hand, has 4.2 percent of the (14 content of modern carbonate, consistent with the known nearsurface entry of young meteoric water from the same aquifer that was tapped in the South Steamboat well. The prebomb tritium content of Steamboat Creek water is not known, but was probably between 4' and 8 T units. Water samples collected from South Steamboat well and two hot springs each prove the entry of some meteoric water of very short subsurface travel time, one month or less, but the greatly dominant meteoric component of almost constant stable isotope composition must be at least 50 years old. Chemical, isotopic, and physical evidence favors recharge of young meteoric water from at least three specific sources: (I) direct precipitation of rain and snow on the spring terraces; (2) precipitation in small drainage basins immediately west of the spring ter- 14

8 Geology & isotope gechemistry of Steamboat Springs races; and (3) at least in the Low Terrace, direct shallow inflow from Steamboat Creek. Most of the total water is also of meteoric origin, but has an age of at least 50 years. The isotopic evidence does not prove the existence of any water of direct magmatic origin (CRAIG and others, I956, P ) ; an upper limit of the quantity that could be present below the limit of detection is probably on the order of 5 percent, but the actual amount present is prob.ably closer to I percent. The latter also satisfies chemical relationships that are very difficult to reconcile in a system with no magmatic water. BANWELL (]:963), WHITE ( I957), and others have considered the serious heat-flow problems of thermal spring systems that demand either very large contributions of volcanic steam or very high thermal gradients to transmit the required heat through rocks of low conductivity, or some combination of these two modes of heat transfer. BANWELL (:[963) has suggested a very deep circulation and absorption of meteoric water into the magma, followed by regurgitation of this new magmatic water in high proportions Go percent or more of total) in the discharging springs. BANWELL'S mechanism neatly satisfies the heat-flow problem and also the observed similarities in deuterium content between spring waters and associated meteoric waters of many thermal areas (CRAIG and others, 2[956), but it does not explain how meteoric water under its own hydrostatic pressure can penetrate into or through a broad zone of very hot incompetent rocks characterized by lithostatic pressures that must normally surround a body of molten magma. Moreover, the Ols of the new magmatic water will have equilibrated with the very large reservoir of oxygen high in O18 in the magma body, (TAYLOR and EPSTEIN ]:962), imposing upper limits to the content of new magmatic (originally meteoric) water that can be present in any system. At Steamboat Springs, for example, this upper limit is about I5 percent, which is still far too low to solve the heatflow problem. REFERENCES BANWELL C. J. I963. Thermal energy from the earth's crust. Introduction and Pt. I. New Zealand Jour. Geology and Geophysics. 6:52. CRAIG H. I96I. Isotopic variations in meteoric waters. Science. I33, 3465 I

9 Donald E. White, Harmon Craig and Fred Begemann CRAIG H., BoATO G., WHITE E. I956. The isotopic geochemistry of thermal waters [Chap.] 5 of Nuclear processes in geologic settings. Natl. Research Council Comm. Nuclear Sci., Nuclear Sci. Ser. Rept. no. I9 : 29. TAYLOR P. jr., EPSTEIN S. I962. Relationships between 018/016 ratios in coexisting minerals of igneous and metamorphic rocks. Pt. I. Principles and experimental results. Ged. Soc. America Bull. 73, 4 :46I. THOMPSON A., WHITE D. E. In press. Geology of the Mount Rose Quadrangle and the regional setting of Steamboat Springs, Washoe County, Nevada. U.S. Geol. Survey P,of. Paper 458-A. WHITE D. E. I957 Thermal waters of volcanic origin. Geol. Soo. America Butt. 68, Ii:I637 WHITE D. E. Ig6I. Preliminary evaluation of geothermal areas by geochemistry, geology, and shallow drilling. United Nations Conf. on New Sources of Energy, Rome, Italy, I96]: (preprint), I2. WHITE D. E., BRANNOCK W. W. I950. The sources of heat and water supply of thermal springs, with particular reference to Steamboat Springs, Nevada. Am. Geophys. Union Trans. 3I, 4: 566. WHITE D. E., T OMPSON A., SANDBERG C. A. In press. The rocks, structure, and geologic history of the Steamboat Springs thermal area, Washoe County, Nevada. U.S. Ged. Survey prof Paper 458-B. 16

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials These materials have been made available for use in research, teaching, and private study, but may not be used for

More information

Continental Landscapes

Continental Landscapes Continental Landscapes Landscape influenced by tectonics, climate & differential weathering Most landforms developed within the last 2 million years System moves toward an equilibrium Continental Landscapes

More information

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain From Punchbowl to Panum: Leslie Schaffer E105 2002 Final Paper Long Valley Volcanism and the Mono-Inyo Crater Chain Figure 1. After a sequence of earthquakes during the late 1970 s to the early 1980 s

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTCE CONCERNNG COPYRGHT RESTRCTONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any

More information

GEOTHERMAL AND HOT SPRING WATER ORIGIN DETERMINATION USING OXYGEN AND HYDROGEN STABLE ISOTOPE IN THE TOYOHIRAKAWA CATCHMENT, HOKKAIDO, JAPAN

GEOTHERMAL AND HOT SPRING WATER ORIGIN DETERMINATION USING OXYGEN AND HYDROGEN STABLE ISOTOPE IN THE TOYOHIRAKAWA CATCHMENT, HOKKAIDO, JAPAN Special Issue on Science, Engineering & Environment, ISSN: 2186-2990, Japan DOI: https://doi.org/10.21660//2017.37.2625 GEOTHERMAL AND HOT SPRING WATER ORIGIN DETERMINATION USING OXYGEN AND HYDROGEN STABLE

More information

Geologic Trips San Francisco and the Bay Area

Geologic Trips San Francisco and the Bay Area Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part of this book may be reproduced without written permission in writing,

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

THE MAMMOTH "EARTHQUAKE FAULT" AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG

THE MAMMOTH EARTHQUAKE FAULT AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG THE MAMMOTH "EARTHQUAKE FAULT" AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG IN UNDERTAKING this work it was our intention to investigate the well-known "Earthquake Fault"

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Earth: The Water Planet

Earth: The Water Planet Earth: The Water Planet Water is essential for living things to grow, reproduce, and carry out important processes. About 97% of Earth s water is salt water found in the ocean, while the other 3% is fresh

More information

GEOLOGY CURRICULUM. Unit 1: Introduction to Geology

GEOLOGY CURRICULUM. Unit 1: Introduction to Geology Chariho Regional School District - Science Curriculum September, 2016 GEOLOGY CURRICULUM Unit 1: Introduction to Geology OVERVIEW Summary In this unit students will be introduced to the field of geology.

More information

Chapter 13. Groundwater

Chapter 13. Groundwater Chapter 13 Groundwater Introduction Groundwater is all subsurface water that completely fills the pores and other open spaces in rocks, sediments, and soil. Groundwater is responsible for forming beautiful

More information

Conceptual model for non-volcanic geothermal resources - examples from Tohoku Japan

Conceptual model for non-volcanic geothermal resources - examples from Tohoku Japan Conceptual model for non-volcanic geothermal resources - examples from Tohoku Japan S. Tamanyu 1 and K. Sakaguchi 2 1, 2 Geological Survey of Japan, National Institute of Advanced Industrial Science and

More information

GEOCHEMISTRY OF RWENZORI HOT SPRINGS. Vincent Kato Department of Geological Survey and Mines, Entebbe, Uganda

GEOCHEMISTRY OF RWENZORI HOT SPRINGS. Vincent Kato Department of Geological Survey and Mines, Entebbe, Uganda GEOCHEMISTRY OF RWENZORI HOT SPRINGS Vincent Kato Department of Geological Survey and Mines, Entebbe, Uganda RWENZORI Length of 115Km Width of central dome 48 64 km Highest peak >5105m SnowyMountain Lakes

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

Sacramento Valley Groundwater Basin, Sutter Subbasin

Sacramento Valley Groundwater Basin, Sutter Subbasin Sacramento Valley Groundwater Basin, Sutter Subbasin Groundwater Basin Number: 5-21.62 County: Sutter Surface Area: 234,400 acres (366 square miles) Boundaries and Hydrology The Sutter Subbasin lies in

More information

Japan Engineering Consultants, Inc., Energy and Industrial Technology Development Organization,Tokyo, Japan

Japan Engineering Consultants, Inc., Energy and Industrial Technology Development Organization,Tokyo, Japan DEEP GEOTHERMAL STRUCTURE AND THE HYDROTHERMAL SYSTEM THE GEOTHERMAL FIELD, JAPAN M. H. K. MATSUDA', T. K. Japan Engineering Consultants, Inc., Japan Energy and Industrial Technology Development Organization,Tokyo,

More information

Composition of the earth, Geologic Time, and Plate Tectonics

Composition of the earth, Geologic Time, and Plate Tectonics Composition of the earth, Geologic Time, and Plate Tectonics Layers of the earth Chemical vs. Mechanical Chemical : Mechanical: 1) Core: Ni and Fe 2) Mantle: Mostly Peridotite 3) Crust: Many different

More information

What Do You See? Learning Outcomes Goals Learning Outcomes Think About It Identify classify In what kinds of environments do igneous rocks form?

What Do You See? Learning Outcomes Goals Learning Outcomes Think About It Identify classify In what kinds of environments do igneous rocks form? Section 2 Igneous Rocks and the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section, you will Identify and classify

More information

The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho and Montana Robert L. Christenson, USGS PP 729-G

The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho and Montana Robert L. Christenson, USGS PP 729-G The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho and Montana Robert L. Christenson, USGS PP 729-G Three Volcanic Cycles of Yellowstone Three extraordinarily large explosive

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 17 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Vasey s Paradise, GCNP Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in

More information

Wind Mountain Project Summary Memo Feeder Program

Wind Mountain Project Summary Memo Feeder Program A Manex Resource Group Company Wind Mountain Project Summary Memo Feeder Program J.A. Kizis, Jr., February 07, 2018 Assays have been received for both holes drilled at Wind Mountain during late 2017 and

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research.

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research. Water Resources Division 345 Middlefield Road Menlo Park, California January 12, 1965 Memorandum To: Mr. Frank E. Clark, Chief, General Hydrology Branch Thru: Area Hydrologist PCA From: Valmore C. LaMarche

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Overview of Ch. 4. I. The nature of volcanic eruptions 9/19/2011. Volcanoes and Other Igneous Activity Chapter 4 or 5

Overview of Ch. 4. I. The nature of volcanic eruptions 9/19/2011. Volcanoes and Other Igneous Activity Chapter 4 or 5 Overview of Ch. 4 Volcanoes and Other Igneous Activity Chapter 4 or 5 I. Nature of Volcanic Eruptions II. Materials Extruded from a Volcano III.Types of Volcanoes IV.Volcanic Landforms V. Plutonic (intrusive)

More information

24. Ocean Basins p

24. Ocean Basins p 24. Ocean Basins p. 350-372 Background The majority of the planet is covered by ocean- about %. So the majority of the Earth s crust is. This crust is hidden from view beneath the water so it is not as

More information

Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin

Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin Page No. 004-1 Origin and Evolution of Formation Waters in the West-Central Part of the Alberta Basin Karsten Michael* University of Alberta, 1-26 ESB, Edmonton, AB T6G 2E3 karsten@ualberta.ca and Stefan

More information

Gravel Transport Can Determine Late Flood Tectonics

Gravel Transport Can Determine Late Flood Tectonics Chapter 23 Gravel Transport Can Determine Late Flood Tectonics The locations of all the quartzite gravel in the northwest states and adjacent Canada provide more information about the Flood than just reinforcing

More information

8 th Earth Science Chapter 4 Rocks Name Section 1 The Rock Cycle:

8 th Earth Science Chapter 4 Rocks Name Section 1 The Rock Cycle: 8 th Earth Science Chapter 4 Rocks Name Section 1 The Rock Cycle: Most rock used for stone contains one or more common minerals, called rock-forming minerals, such as, feldspar,, or. When you look closely,

More information

Heat (& Mass) Transfer. conceptual models of heat transfer. large scale controls on fluid movement. distribution of vapor-saturated conditions

Heat (& Mass) Transfer. conceptual models of heat transfer. large scale controls on fluid movement. distribution of vapor-saturated conditions Heat (& Mass) Transfer conceptual models of heat transfer temperature-pressure gradients large scale controls on fluid movement distribution of vapor-saturated conditions fluid flow paths surface manifestations

More information

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Report Prepared for the Skyline Corporation Lee M. Liberty Center for Geophysical Investigation of the Shallow Subsurface (CGISS)

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 2017-2016 Chapter (4) Volcanoes Chapter 4: Volcanoes and Other Igneous Activity cataclysmic relating to or denoting a violent natural even Eventually the entire

More information

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 13 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in fractures in rocks and

More information

Earthquakes. Earthquakes are caused by a sudden release of energy

Earthquakes. Earthquakes are caused by a sudden release of energy Earthquakes Earthquakes are caused by a sudden release of energy The amount of energy released determines the magnitude of the earthquake Seismic waves carry the energy away from its origin Fig. 18.1 Origin

More information

GEOL Introductory Geology: Exploring Planet Earth Fall 2010 Test #2 October 18, 2010

GEOL Introductory Geology: Exploring Planet Earth Fall 2010 Test #2 October 18, 2010 GEOL 101 - Introductory Geology: Exploring Planet Earth Fall 2010 Test #2 October 18, 2010 Name KEY ID# KEY Multiple choice questions (2 points each). 1. What type of metamorphic rock is formed over large

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Earth s Many Landforms. Earth s Many Landforms. Earth s Many Landforms. Crustal Deformation. Crustal Deformation 10/22/2014

Earth s Many Landforms. Earth s Many Landforms. Earth s Many Landforms. Crustal Deformation. Crustal Deformation 10/22/2014 Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 24 EARTH S SURFACE LAND AND WATER Earth s Many Landforms Earth consists of seven continents: Africa, Antarctica, Asia, Australia, Europe,

More information

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Tibetan Plateau and Himalaya -southern Asia 11.00.a VE 10X

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

Example Quiz on Earthquakes

Example Quiz on Earthquakes Example Quizzes, Tests, and Review Information A Example Quiz on Earthquakes Quizzes such as this one are given at the beginning of each lab. 1. The point beneath the Earth s surface at which an earthquake

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Bog Hot Valley. (updated 2012)

Bog Hot Valley. (updated 2012) Bog Hot Valley (updated 2012) Geologic setting: Bog Hot Valley is located along a major fault lineament between Soldier Meadows Hot Springs and Oregon (figure; Hose and Taylor, 1974). This lineament can

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

1.0 Introduction 1.1 Geographic Location 1.2 Topography 1.3 Climate and Rainfall 1.4 Geology and Hydrogeology 1.5 Water Availability 1.

1.0 Introduction 1.1 Geographic Location 1.2 Topography 1.3 Climate and Rainfall 1.4 Geology and Hydrogeology 1.5 Water Availability 1. 1.0 1.1 Geographic Location 1.2 Topography 1.3 Climate and Rainfall 1.4 Geology and Hydrogeology 1.5 Water Availability 1.6 Demography 1.0 1.1 Geographic Location St. Lucia forms part of an archipelago

More information

General Geology Lab #7: Geologic Time & Relative Dating

General Geology Lab #7: Geologic Time & Relative Dating General Geology 89.101 Name: General Geology Lab #7: Geologic Time & Relative Dating Purpose: To use relative dating techniques to interpret geological cross sections. Procedure: Today we will be interpreting

More information

Geophysical Surveys of The Geothermal System of The Lakes District Rift, Ethiopia

Geophysical Surveys of The Geothermal System of The Lakes District Rift, Ethiopia Geophysical Surveys of The Geothermal System of The Lakes District Rift, Ethiopia By: Befekadu Oluma By: Geophysics Department Geological Survey of Ethiopia The formation of the rift was preceded by a

More information

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions:

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions: Geology 101 Origin of Magma From our discussions of the structure of the interior of the Earth, it is clear that the upper parts of the Earth (crust and mantle) are mostly solid because s-waves penetrate

More information

GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS. Abstract

GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS. Abstract GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS Dr. Jutta L. Hager, Hager GeoScience, Inc., Waltham, MA Mario Carnevale, Hager GeoScience, Inc., Waltham, MA Abstract Hager GeoScience, Inc.

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

TAKE HOME EXAM 8R - Geology

TAKE HOME EXAM 8R - Geology Name Period Date TAKE HOME EXAM 8R - Geology PART 1 - Multiple Choice 1. A volcanic cone made up of alternating layers of lava and rock particles is a cone. a. cinder b. lava c. shield d. composite 2.

More information

Page One. GEOL 1030 Pre test S15. Please enter your rst and last name.

Page One. GEOL 1030 Pre test S15. Please enter your rst and last name. GEOL 1030 Pre test S15 Page One Please enter your rst and last name. First Name: Last Name: 1. The most common elements in the Earth's crust, in order of decreasing abundance, are: a. feldspar, quartz,

More information

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University Soils, Hydrogeology, and Aquifer Properties Philip B. Bedient 2006 Rice University Charbeneau, 2000. Basin Hydrologic Cycle Global Water Supply Distribution 3% of earth s water is fresh - 97% oceans 1%

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

GEOLOGICAL FEATURES OF THE BADGER SPRINGS TRAIL FOR HIKERS Rev. 3,

GEOLOGICAL FEATURES OF THE BADGER SPRINGS TRAIL FOR HIKERS Rev. 3, GEOLOGICAL FEATURES OF THE BADGER SPRINGS TRAIL FOR HIKERS Rev. 3, 12-3-02 http://ensayoes.com/docs/176/index-2111121.html Trail location The Badger Springs trail is just a short distance North of the

More information

GEOLOGY MEDIA SUITE Chapter 12

GEOLOGY MEDIA SUITE Chapter 12 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 12 Volcanoes 2010 W.H. Freeman and Company Plate tectonics explains the global pattern of volcanism. Key Figure 12.20 (page

More information

2. PHYSICAL SETTING FINAL GROUNDWATER MANAGEMENT PLAN. 2.1 Topography. 2.2 Climate

2. PHYSICAL SETTING FINAL GROUNDWATER MANAGEMENT PLAN. 2.1 Topography. 2.2 Climate FINAL GROUNDWATER MANAGEMENT PLAN 2. PHYSICAL SETTING Lassen County is a topographically diverse area at the confluence of the Cascade Range, Modoc Plateau, Sierra Nevada and Basin and Range geologic provinces.

More information

B. T. Brady, M. S. Bedinger, John Mikels, William H. Langer, and Deborah A. Mulvihill

B. T. Brady, M. S. Bedinger, John Mikels, William H. Langer, and Deborah A. Mulvihill DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY TO ACCOMPANY WRI REPORT 83-4121-B MAP SHOWING GROUND-WATER LEVELS, SPRINGS. AND DEPTH TO GROUND WATER, BASIN AND RANGE PROVINCE, TEXAS by B. T.

More information

Paso Robles Groundwater Basin: Effects of Geothermal Waters on Water Quality and Availability

Paso Robles Groundwater Basin: Effects of Geothermal Waters on Water Quality and Availability Paso Robles Groundwater Basin: Effects of Geothermal Waters on Water Quality and Availability Jim Rytuba and Daniel Goldstein U.S. Geological Survey, Menlo Park, CA Paso Robles Intake from Lake Nacimiento

More information

Michael Sorey. Water Resources Division. Menlo Park, CA 94025

Michael Sorey. Water Resources Division. Menlo Park, CA 94025 A MODEL OF THE HYDROTHERMAL SYSTEM OF LONG VALLEY CALDERA, CALFORNA Michael Sorey U. S. Geological Survey Water Resources Division 345 Middlefield Road Menlo Park, CA 94025 Long Valley caldera, an elliptical

More information

TEMPERATURE GEOTHERMAL SYSTEM *.BY. Roger F. Harrison Salt Lake City, Utah. C; K. Blair

TEMPERATURE GEOTHERMAL SYSTEM *.BY. Roger F. Harrison Salt Lake City, Utah. C; K. Blair - * f c * -6 9 -.I. lcal '. DEVELOPMENT AND TESTSNG OF A SMALL MODERATE TEMPERATURE GEOTHERMAL SYSTEM *.BY Roger F. Harrison Terra Tek, Inc. Salt Lake City, Utah C; K. Blair Terra Tek, Inc. - Salt Lake

More information

The Geology of Sebago Lake State Park

The Geology of Sebago Lake State Park Maine Geologic Facts and Localities September, 2002 43 55 17.46 N, 70 34 13.07 W Text by Robert Johnston, Department of Agriculture, Conservation & Forestry 1 Map by Robert Johnston Introduction Sebago

More information

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 9 Volcanism and Other Igneous Processes Volcanoes types and effects of eruption Chapter Overview Melting and cooling of rocks Geological

More information

Plate Tectonics. Chapter 17. Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet.

Plate Tectonics. Chapter 17. Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet. Plate Tectonics Chapter 17 Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet. 1 Chapter Outline The Dynamic Earth Plate Tectonics: A Unifying

More information

ENVI.2030L Geologic Time

ENVI.2030L Geologic Time Name ENVI.2030L Geologic Time I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt

More information

FIREPLACE GEOLOGY. Dining Hall

FIREPLACE GEOLOGY. Dining Hall FIREPLACE GEOLOGY Dining Hall The Dining Hall fireplace represents a slice through a Cascade Mountain volcano. Volcanoes are formed from molten magma rising up from within the Earth s crust. Magma that

More information

RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES. Abstract.

RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES. Abstract. RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES Darcy K. McPhee, U.S. Geological Survey, Menlo Park, CA Louise Pellerin, Green Engineering,

More information

Late Tertiary Volcanism. North Washington. Other Andesite Volcanoes. Southern Washington. High Cascades. High Cascades. Mid-Miocene Miocene to present

Late Tertiary Volcanism. North Washington. Other Andesite Volcanoes. Southern Washington. High Cascades. High Cascades. Mid-Miocene Miocene to present Miocene to Present Late Tertiary Volcanism Mid-Miocene Miocene to present Reading: DNAG volume G3, Ch. 7 High Cascade Range Columbia River Snake River Plain Basin and Range Southwestern California Sierra

More information

3. GEOLOGY. 3.1 Introduction. 3.2 Results and Discussion Regional Geology Surficial Geology Mine Study Area

3. GEOLOGY. 3.1 Introduction. 3.2 Results and Discussion Regional Geology Surficial Geology Mine Study Area 3. GEOLOGY 3.1 Introduction This chapter discusses the baseline study of the geology and mineralization characteristics of the mine study area. The study consolidates existing geological data and exploration

More information

Yellowstone National Park: Regional Groundwater Dynamics in High-Temperature Geothermal Areas

Yellowstone National Park: Regional Groundwater Dynamics in High-Temperature Geothermal Areas International Symposium on Regional Groundwater Flow: Theory, Applications and Future Development Yellowstone National Park: Regional Groundwater Dynamics in High-Temperature Geothermal Areas K. Udo Weyer

More information

Lab 9: Petroleum and groundwater

Lab 9: Petroleum and groundwater Geology 101 Name(s): Lab 9: Petroleum and groundwater Petroleum (oil) is a multi-component liquid refined to generate different hydrocarbons, such as heptane (a component of gasoline) and waxes. For the

More information

THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1

THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1 THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1 STANLEY E. NORRIS, Geologist, U. S. Geological Survey, Columbus, Ohio INTRODUCTION The bedrock surface of Montgomery County,

More information

Structural Geology of the Mountains

Structural Geology of the Mountains Structural Geology of the Mountains Clinton R. Tippett Shell Canada Limited, Calgary, Alberta clinton.tippett@shell.ca INTRODUCTION The Southern Rocky Mountains of Canada (Figure 1) are made up of several

More information

Sustainable Energy Science and Engineering Center GEOTHERMAL ENERGY. Sustainable Energy Sources. Source:

Sustainable Energy Science and Engineering Center GEOTHERMAL ENERGY. Sustainable Energy Sources. Source: Sustainable Energy Sources GEOTHERMAL ENERGY Earth s Temperature Profile GEOTHERMAL ENERGY Plate Tectonics Earth's crust is broken into huge plates that move apart or push together at about the rate our

More information

Igneous Rocks and the Geologic History of Your Community

Igneous Rocks and the Geologic History of Your Community Ch 1 Bedrock Geology 9/17/04 12:48 PM Page 14 Activity 2 Igneous Rocks and the Geologic History of Your Community Goals In this activity you will: Identify several igneous rocks using a rock chart. Describe

More information

Fletcher Junction Project Technical Update December 18, 2008

Fletcher Junction Project Technical Update December 18, 2008 Fletcher Junction Project Technical Update December 18, 2008 Disclaimer Warning! The business of Gold Exploration can be FUN, but it can also be hazardous to your physical, emotional, spiritual and financial

More information

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary. Magma Objectives Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary viscosity Magma Magma The ash that spews from some volcanoes can form

More information

The Earth s Structure

The Earth s Structure Planet Earth The Earth s Structure Crust the outermost and thinnest layer of Earth Mantle the layer of rock between the Earth s crust and its core - rocks are plastic soft and easily deformed The Earth

More information

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s References Information taken from several places including Prentice Hall Earth Science: @ http://www.eram.k12.ny.us/education/components/docmgr/default.php?sectiondetaili

More information

Classify Rock (rock1)

Classify Rock (rock1) Name: Date: 1. Cleavage of a mineral is related to a mineral's A. chemical composition. B. streak color. C. luster. D. crystalline structure. 2. Which is not part of the definition of a mineral? A. naturally

More information

History of the Long Valley Caldera Abstract The history of the Long Valley Caldera is an active one that began 280 ma years before

History of the Long Valley Caldera Abstract The history of the Long Valley Caldera is an active one that began 280 ma years before Alicia Pardoski 1 History of the Long Valley Caldera Abstract The history of the Long Valley Caldera is an active one that began 280 ma years before present with the building and eruption of Glass Mountain.

More information

WAMUNYU EDWARD MUREITHI I13/2358/2007

WAMUNYU EDWARD MUREITHI I13/2358/2007 WAMUNYU EDWARD MUREITHI I13/2358/2007 Olkaria geothermal area is situated south of Lake Naivasha on the floor of the southern segment of the Kenya rift. The geology of the Olkaria Geothermal area is subdivided

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

The Role of Magnetotellurics in Geothermal Exploration

The Role of Magnetotellurics in Geothermal Exploration The Role of Magnetotellurics in Geothermal Exploration Adele Manzella CNR - Via Moruzzi 1 56124 PISA, Italy manzella@igg.cnr.it Foreword MT is one of the most used geophysical methods for geothermal exploration.

More information

TEACHER BACKGROUND KNOWEDGE. Minerals, Rocks and the Rock Cycle

TEACHER BACKGROUND KNOWEDGE. Minerals, Rocks and the Rock Cycle TEACHER BACKGROUND KNOWEDGE Minerals, Rocks and the Rock Cycle Core Concepts Rocks in the Earth s crust vary in their form and structure based on process that made them. The constant changing of the form

More information

,Baynes Lake. TO...?&.?...A 2...KO.?'!!&... Sr. *logical Engineer

,Baynes Lake. TO...?&.?...A 2...KO.?'!!&... Sr. *logical Engineer > i evernment OF BRITISH COLUMBIA a TO...?&.?...A 2....KO.?'!!&... Sr. *logical Engineer... Grou,,water. Section Hydrology Division Wat.er... In~.~s.tiga.ti.On.s..Branck.... 5 u BJECT...C;.roun.dw.ater...Snve

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

How to Build a Mountain and other Geologic Structures. But first a short review

How to Build a Mountain and other Geologic Structures. But first a short review How to Build a Mountain and other Geologic Structures But first a short review Where do we see deep earthquakes? What is happening there? What can happen at a plate boundary? 1. Plates can move apart

More information

Last Updated HYDROLOGIC ATLAS OF THE BLACK HILLS, PENNINGTON COUNTY, SOUTH DAKOTA

Last Updated HYDROLOGIC ATLAS OF THE BLACK HILLS, PENNINGTON COUNTY, SOUTH DAKOTA Last Updated 10-29-2015 HYDROLOGIC ATLAS OF THE BLACK HILLS, PENNINGTON COUNTY, SOUTH DAKOTA INTRODUCTION The following is a brief outline of ground water characteristics in Pennington County, South Dakota.

More information

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface.

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface. Chapter 5 What are igneous rocks? How do they form? Igneous rocks are rocks that form when molten material cools and crystallizes. Molten material can be either magma or lava. How is magma different from

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Ann Moulding and Tom Brikowski University of Texas at Dallas, Department of Geosciences

Ann Moulding and Tom Brikowski University of Texas at Dallas, Department of Geosciences GRC Transactions, Vol. 39, 2015 Influence of Continuously Variable Permeability and Basin Rock Properties on Three Dimensional Heat and Mass Balance Models of Basin & Range Geothermal Systems Ann Moulding

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information