Barry K James, NuclearScienceRevB.ppt CANNOCK CHASE U3A SCIENCE & TECHNOLOGY GROUP. Nuclear Science: What s all this isotope stuff?

Size: px
Start display at page:

Download "Barry K James, NuclearScienceRevB.ppt CANNOCK CHASE U3A SCIENCE & TECHNOLOGY GROUP. Nuclear Science: What s all this isotope stuff?"

Transcription

1 Barry K James, NuclearScienceRevB.ppt CANNOCK CHASE U3A SCIENCE & TECHNOLOGY GROUP Nuclear Science: What s all this isotope stuff? October 2016

2 ATOMS.ALL MATTER e Electrons e e Everything around us is made of atoms. Atoms are very small. The diameter of an average atom is a ten-billionth of a metre (or m). 10 million atoms would fit between a millimetre division on a ruler.

3 ATOMS & ELEMENTS There are just 118 different types of atom that have been observed. These are known as chemical elements and of those 118, only about 90 occur naturally. The image above was produced with a type of microscope that enables us to distinguish individual gold atoms (Au). Each element is represented by a chemical symbol, consisting of one or two letters, for example, H is for hydrogen and He is helium.

4 THE TABLE OF ELEMENTS Neodymium Magnetic material used in motors

5 SUB-ATOMIC PARTICLES e e Protons & Neutrons e The nucleus itself made up of smaller particles called protons and neutrons. The number of protons in the nucleus is known its atomic number. This determines the chemical element. The remainder comprises orbital electrons. Electrons are negatively charged, balancing out the positive charge of the nucleus. The number of electrons is always the same as the number of protons in its nucleus, making a neutral atom. All the matter in each atom is concentrated in this tiny volume and so nuclei are super dense and packed with energy

6 THE ROLE NEUTRONS PLAY FORCES WITHIN THE NUCLEUS o There is a repulsive electromagnetic force within the nucleus that acts between protons. o There is an attractive strong force within the nucleus that acts between both protons and neutrons. o Neutrons are necessary to hold the nucleus together for stability. o In the table below, notice that as nuclei get larger the ratio of neutrons to protons increases. o The uranium nucleus needs significantly more neutrons than protons to hold together. The number of protons and neutrons within isotopes Element Symbol Number of protons carbon 12 6 C 6 6 calcium Ca zinc Zn iodine I uranium U Number of neutrons

7 RADIOACTIVE ATOMS..ISOTOPES An element can have different forms where the atoms have the usual number of protons but a different number of neutrons than in the normal atom. These different forms are called isotopes. So, a normal Carbon atom is represented as 12 6C and an atom of an isotope, as 14 6C. Carbon-12 is stable while Carbon-14 is unstable and radioactive (2 more neutrons). Element numbering: 14 6 C Mass no. (A) = protons + neutrons Atomic no. = protons Element

8 STABLE OR UNSTABLE ISOTOPES? In most atoms, the nucleus forces reach an equilibrium. These are able to hold together and are said to be stable. In other nuclei the interaction between the forces can make the nuclei unstable. To gain stability, the unstable nucleus will emit particles and energy (either neutrons and protons bonded together or ejected electrons), and such nuclei are called radioactive. Ejected electrons turn the neutral atoms or molecules into charged ions and hence the emitted particles are sometimes called ionising radiation or Radioactivity. Ionising radiation can be Alpha, Beta or Gamma particles. When it emits a particle, the nucleus is said to decay. Each radioactive element has a half-life decay period.

9 ALPHA, BETA AND GAMMA PARTICLES Unstable nuclei can lead to radiation of 3 types, α, β and γ. All three types of radiation can damage human cells and this damage can lead to cancers developing in the area affected. Alpha particles (two protons and two neutrons) can be stopped by paper. Beta particles (ejected electrons) can be absorbed by water or aluminium. Gamma particles (EM radiation photons) are the highest energy and can only be absorbed by dense materials such as lead or concrete. β γ α

10 TRANSFORMATION Emission of particles transforms the element to a different element. Uranium 238 becomes Thorium 234. Radioactivity isn t new. It has always been part of the environment. Radioactive decay provides the majority of the Earth s internal heat that causes volcanoes to erupt and drives plate tectonics. Radioactive materials are all around you!

11 DISCOVERY OF RADIOACTIVITY Uranium was discovered by M. Klaproth in Radioactivity was discovered in 1896 by Becquerel. His uranium salts emitted particles that reacted with photographic plates and found ultraviolet light made uranium crystals glow. Marie and Pierre Curie, and Ernest Rutherford worked on identifying the different emissions called uranic rays. Marie Curie was working with a uranium ore called pitchblende. Within the pitchblende she discovered polonium and radium (luminous paint) in 1898, we now know to be radioactive.

12 Marie Curie died of exposure to radiation, not understanding the dangers. But still the World went mad about radium

13 THE MADNESS OF RADIUM The world fell in love with radium, assuming its invisible energy must be good for you. The French slapped on radium face powder. The Germans used radium toothpaste & ate radium chocolate. In 1900 s, the Americans sold spa sessions with radium. In 1912 the Americans sold crock pots with radium in to purify water. The Americans even wore radiumbranded condoms. And for sagging men.

14 BUT THE REALISATION Curie, Becquerel and others had no idea of the dangers, nor the public in products of the 1900 s. But the magic faded when doctors realised that far from boosting health, it triggered cancers.

15 TEA ANYONE?

16 NOW WE CAN MEASURE RADIATION THE GEIGER COUNTER Radioactive material emissions can heard by a Geiger counter Wristwatch has radioactive paint on the face contains radium and shows 8 cps. Used to detect Radon gas, a source from the ground (under some houses). A Geiger counter consists of a Geiger-Müller tube, the sensing element which detects the radiation, and the processing electronics, which displays the result. The Geiger-Müller tube is filled with an inert gas such as helium, neon, or argon at low pressure, to which 400 volts is applied between conductor and case. The tube briefly conducts electrical charge when a particle or photon of incident radiation makes the gas conductive by ionization. This charge causes a pulse or count to occur.

17 WHERE IS THIS RADIATION? Radiation dose is expressed in micro-sieverts/hour (µsv/hr). It s cumulative. Some medical procedures involve the use of radiation Flying increases your exposure to cosmic rays. Particles are in the air that you breathe. The food that you eat In the materials with which we build our houses. The rocks in the ground. What are the worst exposures to radiation over a year?

18 THE ANSWERS:

19 EXAMPLE RADIATION DOSE LEVELS The personal annual dose from background radiation in the UK is 2,700 µsv/year (microsieverts). A typical house may have a natural radiation level of about 0.12 µsv/hour, totally harmless, less than 3 µsv per day. A dental X-ray gives a dose of 800 µsv (but in around 1 second). A chest CT scan is about 7000 µsieverts of exposure. A 100,000 µsievert dose is associated with a small but measurable increase in cancer.

20 CAN ISOTOPES BE USEFUL? Americium-241 Americium-241 is an alpha emitter. The alpha particles ionise the air molecules in a chamber open to the air and carry a charge. The charged ions allow a tiny current to flow. If smoke particles enter the chamber this current is disrupted and the alarm sounds. Technetium-99 Iodine-131 Carbon-14 Carbon dating Thyroid cancer therapy Blood tracer, brain and infections

21 CAN URANIUM BE USEFUL? Yes really, really useful: Uranium powers such processes as plate tectonics and the maintenance of the Earth s molten core. It is likely that without the energy released by radioactive decay, the Earth would have cooled long ago causing it to have a Mars-like environment. Without uranium it is probable that there would be no life on Earth. The core would have cooled to a point where the Earth s magnetic field would have collapsed, allowing the solar wind to strip away the atmosphere and the oceans. And for nuclear Fission, generating electricity.

22 FISSION & FUSION Fission (energy from nuclear reactors) Splitting of nuclei of unstable elements, such as Uranium & Plutonium. Splits into two stable elements (nuclear waste). Energy is released by the splitting (power generation). Usually uranium 235 is used in the nuclear industry. Fusion (the sun) Forcing atoms to collide at huge temperature and speed to bind them together. Releases energy [JET ITER experiments] One day may become our energy source. As reliable as the Sun.

23 FISSION HEAT & POWER GENERATION It s all to do with the Neutron Bombarding Uranium with neutrons Cs-140 Unstable Rb-92 The neutrons must be going at the right speed Too fast, they bounce off the Uranium. Releasing binding force causes energy release They must be absorbed to give the right speed & mass. Speed of neutrons controlled by absorber controls. Reaction can run-away if not controlled (critical mass)

24 WHERE DO THESE NEUTRONS COME FROM? A Neutron start-up source is required: Californium-252, a heavy synthetic element that has a significant spontaneous fission (SF) mode of decay emitting neutrons. Or, antimony-beryllium neutron source activated during previous reactor operation. Then we can create lots of energy...

25 USE OF FISSION IN NUCLEAR POWER STATIONS

26 NUCLEAR POWER STATION CORE 300 deg Celcius core 40,000 tonnes pressure Tubes of zirconium Filled with Uranium dioxide (UO 2 ) pellets Fuel rods can last for 3-6 years in use Process starts with free neutrons Neutron control is essential Neutrons must be at the right speed Neutrons can be slowed down or absorbed by control rods of hydrogen, deutirium, carbon graphite, or water. When absorbed by the uranium, the transformation process starts, generating heat.

27 THE INSIDES This Zwentondorf reactor was designed as a boiling water reactor (BWR). The reactor was built but never used; it was prevented by a vote within a referendum on the issue. Since 1978 Austria has banned using fission as an energy source in power stations. Reactor core Steam turbine

28 ANOTHER TIME? What can go wrong with nuclear Safety of nuclear power Accidents in nuclear Long term effects World nuclear power stations Half life What about nuclear waste? Running the National Grid Nuclear Fusion advantages

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Atomic Structure Summary

Atomic Structure Summary Atomic Structure Summary All atoms have: a positively charged nucleus and negatively charged electrons around it Atomic nucleus consists of: positively charged protons and neutrons that have no electric

More information

Chapter 7 - Radioactivity. Science 10 P

Chapter 7 - Radioactivity. Science 10 P Chapter 7 - Radioactivity Science 10 P286-328 What is Radiation? Radiation is: anything that radiates away from something. Radiation may be in the form of: particles (neutrons, alpha particles, and beta

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Isotopes of an element have the same symbol and same atomic number - Mass number refers to the protons plus neutrons in an isotope

Isotopes of an element have the same symbol and same atomic number - Mass number refers to the protons plus neutrons in an isotope 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials Radioactivity

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

P4 Quick Revision Questions

P4 Quick Revision Questions P4 Quick Revision Questions H = Higher tier only SS = Separate science only P3 for AQA GCSE examination 2018 onwards Question 1... of 50 What are the components of an atom, their location and their charge?

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Chapter: Nuclear Changes

Chapter: Nuclear Changes Table of Contents Chapter: Nuclear Changes Section 1: Radioactivity Section 2: Nuclear Decay Section 3: Detecting Radioactivity Section 4: Nuclear Reactions 1 Radioactivity The Nucleus Recall that atoms

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks)

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Q1. The diagram shows an atom. How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Page 1 of 53 Q2. The picture shows a man at work in a factory

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

21/11/ /11/2017 Atomic Structure AQA Physics topic 4

21/11/ /11/2017 Atomic Structure AQA Physics topic 4 Atomic Structure AQA Physics topic 4 4.1 Atoms and Isotopes The structure of the atom ELECTRON negative, mass nearly nothing The nucleus is around 10,000 times smaller then the atom! NEUTRON neutral, same

More information

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element.

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Radioactive Decay Radioactive Decay Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Why would an atom emit radiation in the

More information

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. Radioactivity is the release of high energy particles or waves When atoms lose high energy particles and waves,

More information

Al-Saudia Virtual Academy Pakistan Online tuition Online Tutor Pakistan. NUCLEAR PHYSICS: Chapter 19

Al-Saudia Virtual Academy Pakistan Online tuition Online Tutor Pakistan. NUCLEAR PHYSICS: Chapter 19 Al-Saudia Virtual Academy Pakistan Online tuition Online Tutor Pakistan NUCLEAR PHYSICS: Chapter 19 Nuclear Physics: Branch of physics that deals with the study of the nucleus is called nuclear physics.

More information

NUCLEAR PHYSICS: solutions to higher level questions

NUCLEAR PHYSICS: solutions to higher level questions NUCLEAR PHYSICS: solutions to higher level questions 2015 Question 12 (d) (i) What is meant by the term radioactive? (Spontaneous) disintegration of a nucleus with the emission of radiation (ii) Name a

More information

Radioactivity. Ernest Rutherford, A New Zealand physicist proved in the early 1900s a new model of the atom.

Radioactivity. Ernest Rutherford, A New Zealand physicist proved in the early 1900s a new model of the atom. Radioactivity In 1896 Henri Becquerel on developing some photographic plates he found that the uranium emitted radiation. Becquerel had discovered radioactivity. Models of the Atom Ernest Rutherford, A

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

Nuclear Chemistry. Transmutations and the Creation of Elements

Nuclear Chemistry. Transmutations and the Creation of Elements Nuclear Chemistry Transmutations and the Creation of Elements Nuclear Fusion When two smaller elements are fused together to form a larger element. Fusion is Hard! There are two competing forces in an

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December

IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December 2011 1 TOPIC 5 ATOMIC PHYSICS Radioactivity or radioactive decay: 1. It is the process in which certain unstable atomic nuclei (plural

More information

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle Model of Matter

More information

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle

More information

What does rate of reaction mean?

What does rate of reaction mean? 1 of 39 What does rate of reaction mean? 2 of 39 The speed of different chemical reactions varies hugely. Some reactions are very fast and others are very slow. The speed of a reaction is called the rate

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

: When electrons bombarded surface of certain materials, invisible rays were emitted

: When electrons bombarded surface of certain materials, invisible rays were emitted Nuclear Chemistry Nuclear Reactions 1. Occur when nuclei emit particles and/or rays. 2. Atoms are often converted into atoms of another element. 3. May involve protons, neutrons, and electrons 4. Associated

More information

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay Name Date _ Class _ Nuclear Chemistry Section.1 Nuclear Radiation In your textbook, read about the terms used to describe nuclear changes. Use each of the terms below just once to complete the passage.

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Nuclear Chemistry Unit

Nuclear Chemistry Unit Nuclear Chemistry Unit January 28th HW Due Thurs. 1/30 Read pages 284 291 Define: Radioactivity Nuclear Radiation Alpha Particle Beta Particle Gamma Ray Half-Life Answer: -Questions 1-3 -Write the symbols

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

Atomic Structure and Radioactivity

Atomic Structure and Radioactivity Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain why the evidence from the scattering experiment

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay What does it mean to be radioactive? Some atoms have nuclei that are unstable. These atoms spontaneously decompose

More information

June 01, Chapter 19 SMARTBOARD Notes.notebook. Objectives

June 01, Chapter 19 SMARTBOARD Notes.notebook. Objectives Objectives To learn the types of radioactive decay To learn to write nuclear equations for radioactive decay To learn how one element may be changed to another by particle bombardment To learn about radiation

More information

Science 10 Radioactivity Review v3

Science 10 Radioactivity Review v3 Class: Date: Science 10 Radioactivity Review v3 Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. An atom

More information

National 5. Waves and Radiation. Summary Notes. Name:

National 5. Waves and Radiation. Summary Notes. Name: National 5 Waves and Radiation Summary Notes Name: Wave Parameters and Behaviours Transverse Waves A water wave is a transverse wave. The direction of vibration is at right angles to the direction of wave

More information

A. Identify the highly penetrating radioactive emission that exposed the photographic plates.

A. Identify the highly penetrating radioactive emission that exposed the photographic plates. Name Unit 3: Nuclear Chemistry Date Part 2 Questions 1. In 1896, Antoine H. Becquerel discovered that a uranium compound could expose a photographic plate wrapped in heavy paper in the absence of light.

More information

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc.

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc. Fiesta Ware 2009, Prentice-Hall, Inc. Measuring Radioactivity One can use a device like this Geiger counter to measure the amount of activity present in a radioactive sample. The ionizing radiation creates

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 37 Modern Physics [3] [L37] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L38] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

Chapter 16 Nuclear Chemistry. An Introduction to Chemistry by Mark Bishop

Chapter 16 Nuclear Chemistry. An Introduction to Chemistry by Mark Bishop Chapter 16 Nuclear Chemistry An Introduction to Chemistry by Mark Bishop Chapter Map Nuclides Nuclide = a particular type of nucleus, characterized by a specific atomic number and nucleon number Nucleon

More information

There are no stable isotopes of elements above atomic number 83.

There are no stable isotopes of elements above atomic number 83. Nuclear Chemistry Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation. All

More information

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP CHAPTER 4 1 Radioactivity SECTION Atomic Energy BEFORE YOU READ After you read this section, you should be able to answer these questions: What are three types of radioactive decay? How does radiation

More information

Name Date Class NUCLEAR CHEMISTRY

Name Date Class NUCLEAR CHEMISTRY 25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation

More information

Table O: Symbols Used in Nuclear Chemistry

Table O: Symbols Used in Nuclear Chemistry Packet 12: NUCLEAR CHEMISTRY STABLITY OF NUCLEI Most nuclei are stable and don t change. They are found within the belt of stability. Some nuclei are unstable and break down spontaneously giving off rays

More information

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 36 Modern Physics [3] [L36] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L37] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has

More information

Chapter 4: Atomic structure

Chapter 4: Atomic structure Chapter : Atomic structure Lesson.1 Atomic structure 1 88 electrons 2 92 protons, 238 92 = 16 neutrons 3 The number of electrons is the same; the number of protons is the same; the number of neutrons is

More information

GCSE Physics. The PiXL Club Ltd, Company number

GCSE Physics.   The PiXL Club Ltd, Company number he PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club he PiXL

More information

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1 Q1. (a) Atoms are made up of three types of particle called protons, neutrons and electrons. Complete the table below to show the relative mass and charge of a neutron and an electron. The relative mass

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON

Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON CHEM 3320 Dr. Houston Brown - 2016 Radioactivity Emission of subatomic particles or high-energy electromagnetic

More information

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides Chapter : Nuclear Chemistry. Radioactivity nucleons neutron and proton all atoms of a given element have the same number of protons, atomic number isotopes atoms with the same atomic number but different

More information

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons.

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons.

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Chapter 4 The Atom. Philosophers and scientists have proposed many ideas on the structure of atoms.

Chapter 4 The Atom. Philosophers and scientists have proposed many ideas on the structure of atoms. Chapter4 TheAtom 4.1 Early Models of the Atom An atom is the smallest particle of an element that retains its identity in a chemical reaction. Philosophers and scientists have proposed many ideas on the

More information

L 37 Modern Physics [3]

L 37 Modern Physics [3] L 37 Modern Physics [3] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating Nuclear energy nuclear fission nuclear fusion nuclear reactors nuclear weapons

More information

Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME

Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME Nobel prizes in nuclear and reactor physics Szabolcs Czifrus Institute of Nuclear Techniques BME Nuclear physics in everyday life Electricity: production in nuclear power plants Sterilization by the application

More information

Journal 14. What is so dangerous about nuclear energy?

Journal 14. What is so dangerous about nuclear energy? Journal 14 What is so dangerous about nuclear energy? Nuclear Chemistry Nuclear Chemistry Bravo 15,000 kilotons Discovery of Radiation Wilhelm Conrad Roentgen had discovered X rays Pierre & Marie Curie

More information

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive

More information

4.4 Atomic structure Notes

4.4 Atomic structure Notes 4.4 Atomic structure Notes Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand

More information

L-35 Modern Physics-3 Nuclear Physics 29:006 FINAL EXAM. Structure of the nucleus. The atom and the nucleus. Nuclear Terminology

L-35 Modern Physics-3 Nuclear Physics 29:006 FINAL EXAM. Structure of the nucleus. The atom and the nucleus. Nuclear Terminology 9:006 FINAL EXAM L-5 Modern Physics- Nuclear Physics The final exam is on Monday MAY 7:0 AM - 9:0 AM in W90 CB The FE is not cumulative, and will cover lectures through 6. (50 questions) The last regular

More information

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom.

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. AnswerIT! Atoms and isotopes Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. Atoms and isotopes - AnswerIT 1. The diameter of an atom is about 0.000 000

More information

Nuclear Chemistry AP Chemistry Lecture Outline

Nuclear Chemistry AP Chemistry Lecture Outline Nuclear Chemistry AP Chemistry Lecture Outline Name: involve changes with electrons. involve changes in atomic nuclei. Spontaneously-changing nuclei emit and are said to be. Radioactivity nucleons: mass

More information

Draw one line from each type of radiation to what the radiation consists of.

Draw one line from each type of radiation to what the radiation consists of. ATOMS AND NUCLEAR RADIATION PART I Q1. Alpha, beta and gamma are types of nuclear radiation. (a) Draw one line from each type of radiation to what the radiation consists of. Type of radiation What radiation

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether.

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether. When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before. For his discovery

More information

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, November 13, 2015 Overview Why care about nuclei? How do nuclei

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

Question Bank. Nuclear Physics

Question Bank. Nuclear Physics Nuclear Physics 1. State one difference between a chemical change and a nuclear change. Ans. A chemical change takes place due to transfer/sharing of orbital electrons of atoms of different elements, whereas

More information

NATIONAL 5 PHYSICS RADIATION

NATIONAL 5 PHYSICS RADIATION NATIONAL 5 PHYSICS RADIATION THE ATOM All matter consists of atoms, however atoms themselves are made up of several different particles. In the middle of an atom is a very small, very dense object called

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Chapter 16: Ionizing Radiation

Chapter 16: Ionizing Radiation Chapter 6: Ionizing Radiation Goals of Period 6 Section 6.: To discuss unstable nuclei and their detection Section 6.2: To describe the sources of ionizing radiation Section 6.3: To introduce three types

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information