Modeling radon daughter deposition rates for low background detectors

Size: px
Start display at page:

Download "Modeling radon daughter deposition rates for low background detectors"

Transcription

1 Modeling radon daughter deposition rates for low background detectors Shawn Westerdale LANL, MIT Student Symposium LA-UR : Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

2 The Problem Many next-generation detectors such as dark matter detectors and neutrinoless double-beta decay detectors require record low levels of background radiation Radon (most commonly 222 Rn) is a radioactive daughter of uranium found in the earth and is present in air Daughters of 222 Rn are deposited on materials exposed to air Long-lived daughters, particularly 210 Pb (with a half-life of 22 years) may present a long term source of background radiation above the acceptable threshold (for example, the threshold for miniclean is 1α/m 2 /day) Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

3 The Goal A better understanding of radon daughter deposition may allow for procedures to be developed that will minimize the amount of background radiation from this source The goal is to develop a model of radon daughter deposition so it can be understood as a function of several different environmental variables, including radon concentration, humidity, particle count, temperature, and so on Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

4 Deposition Setup Figure: Diagram of deposition setup Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

5 Deposition Setup cont. Figure: Deposition setup Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

6 Detector Setup Figure: Diagram of detector and data acquisition Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

7 α Detector Geometric Efficiency Figure: Model of α particles leaving sample and hitting detector What percentage of the α particles that leave the sample will hit the detector? Conditions for the α particle to hit the detector: distance traveled by the particle parallel to the plates is Distance Traveled a = h tan θ (1) Figure: Top-down view Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

8 Geometric Efficiency cont. distance to edge of detector plate is Maximum Distance b max = r cos φ + Rdet 2 r 2 sin 2 φ (2) distance to reach the detector plate Minimum Distance b min = r cos φ Rdet 2 r 2 sin 2 φ (3) So in order for the particle to hit the detector, a must be less than b max, non-negative, and greater than b min Running a Monte Carlo simulation with randomized values for φ,θ, and r yields a geometric efficiency of Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

9 α Detector Sampling Frequency What is the maximum rate at which the detector can detect α particles? Is the detector likely to miss a significant number of α particles if the radon daughters decay too quickly? Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

10 α Detector Sampling Frequency What is the maximum rate at which the detector can detect α particles? Is the detector likely to miss a significant number of α particles if the radon daughters decay too quickly? Found that the detector does not start missing pulses until they are coming in at a frequency of approximately 40 khz Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

11 α Detector Sampling Frequency cont. Figure: Pulse Generator vs. Detected Frequencies Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

12 ADC Sampling Frequency What is the maximum rate at which the ADC can collect data from the α detector? Is data likely to be lost due to restrictions on the ADC? Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

13 ADC Sampling Frequency What is the maximum rate at which the ADC can collect data from the α detector? Is data likely to be lost due to restrictions on the ADC? Used a random generator to send pulses to ADC and compared the measured frequencies to the input frequencies Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

14 ADC Sampling Frequency cont. Figure: Pulse Generator vs. Measured Frequencies Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

15 Decay Chain Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

16 The Model N 1 = 218 Po, N 2 = 214 Pb, N 3 = 214 Bi, N 4 = 214 Po Deposition dn 1 = C 1 D 1 λ 1 N 1 dt (4) dn 2 = C 2 D 2 λ 2 N 2 + λ1n 1 dt (5) dn 3 = C 3 D 3 λ 3 N 3 + λ2n 2 dt (6) dn 4 = C 4 D 4 λ 4 N 4 + λ3n 3 dt (7) Decay dn 1 = λ 1 N 1 dt (8) dn 2 = λ 2 N 2 + λ1n 1 dt (9) dn 3 = λ 3 N 3 + λ2n 2 dt (10) dn 4 = λ 4 N 4 + λ3n 3 dt (11) Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

17 Energy Spectra Figure: 218 Po around 6 MeV, 214 Po around 7.8 Mev Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

18 Decay Spectrum Figure: RH= 2%, Temp= 27.1 C, Concentration= ± 108 pci/l [ 218 Po]= ± atoms, [ 214 Pb]= ± atoms, [ 214 Bi]= ± atoms Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

19 Results Deposition Rates for Acrylic D 1 = ± L/pCi/min/cm 2 D 2 = ± L/pCi/min/cm 2 D 3 = 0 ± L/pCi/min/cm 2 Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

20 Results Deposition Rates for SUVT Acrylic D 1 = ± L/pCi/min/cm 2 D 2 = ± L/pCi/min/cm 2 D 3 = 0 ± L/pCi/min/cm 2 Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

21 Results Deposition Rates for Copper D 1 = ± L/pCi/min/cm 2 D 2 = ± L/pCi/min/cm 2 D 3 = 0 ± L/pCi/min/cm 2 Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

22 Summary D 1 (L/pCi/min/cm 2 ) D 2 (L/pCi/min/cm 2 ) D 3 (L/pCi/min/cm 2 ) Acrylic ± ± ± SUVT Acrylic ± ± ± Copper ± ± ± The deposition rates per concentration per unit area are as shown above Deposition rate varies linearly with radon concentration Sample material has little to no effect on deposition rate Deposition rate is insensitive to small fluctuations in temperature and particle count in deposition chamber Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

23 Continuing Repeat experiment at several varying Temperatures Humidity levels Particle count etc. Compare results using acrylic samples to those using copper samples Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

24 Acknowledgements A. Hime K. Rielage S.R. Elliot V. Guiseppe Additional acknowledgements to the U.S. Department of Energy through the LANL/LDRD Program Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student Symposium / 22

Leaching Studies for the SNO+ Experiment

Leaching Studies for the SNO+ Experiment Leaching Studies for the SNO+ Experiment Pouya Khaghani Laurentian University SNOLAB Users Meeting Symposium September 2 nd 2016 1 SNO+ Physics SNOLAB, Creighton Mine (2070m 6000 m. w. e) Linear Alkyl

More information

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected Physics 111 Fall 007 Homework Solutions Week #10 Giancoli Chapter 30 Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected by the strongest physical

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

The Effects of Exposing UltraLo-1800 Samples to Room Air

The Effects of Exposing UltraLo-1800 Samples to Room Air The Effects of Exposing UltraLo-1800 Samples to Room Air Document: Release Date: 07/19/2010 Version: 1.0 Contact Name: Stuart Coleman Email: stuart@xia.com Phone: (510) 401 5760 Fax: (510) 401 5761 XIA,

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RADIOACTIVITY IN THE AIR REFERENCES M. Sternheim and J. Kane, General Physics (See the discussion on Half Life) Evans, The Atomic Nucleus, pp. 518-522 Segre, Nuclei and Particles, p. 156 See HEALTH AND

More information

A coincidence method of thorium measurement

A coincidence method of thorium measurement A coincidence method of thorium measurement Nevenka Antovic a*, Perko Vukotic a and Nikola Svrkota b a Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica,

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

Modelling of decay chain transport in groundwater from uranium tailings ponds

Modelling of decay chain transport in groundwater from uranium tailings ponds Modelling of decay chain transport in groundwater from uranium tailings ponds Nair, R.N., Sunny, F., Manikandan, S.T. Student : 曹立德 Advisor : 陳瑞昇老師 Date : 2014/12/04 Outline Introduction Model Result and

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

arxiv: v1 [physics.ins-det] 20 Dec 2017

arxiv: v1 [physics.ins-det] 20 Dec 2017 Prepared for submission to JINST LIDINE 2017: LIght Detection In Noble Elements 22-24 September 2017 SLAC National Accelerator Laboratory arxiv:1712.07471v1 [physics.ins-det] 20 Dec 2017 Radon background

More information

Lucite Hodoscope for SANE

Lucite Hodoscope for SANE Lucite Hodoscope for SANE A. Ahmidouch, S. Danagoulian NC A&T State University Outline Cosmic Ray test of a lucite prototype bar The old result from Monte Carlo Geometry consideration Trigger Electronics

More information

Distillation purification and radon assay of liquid xenon

Distillation purification and radon assay of liquid xenon Distillation purification and radon assay of liquid xenon Yasuo Takeuchi Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 56-125, Japan Abstract. We succeeded to reduce the Kr contamination

More information

EXAMINATION QUESTIONS (6)

EXAMINATION QUESTIONS (6) 1. What is a beta-particle? A a helium nucleus B a high-energy electron C four protons D two neutrons EXAMINATION QUESTIONS (6) 2. The diagram shows part of a circuit used to switch street lamps on and

More information

Air Filter Alpha Spectrometry Report

Air Filter Alpha Spectrometry Report search this site Air Filter Alpha Spectrometry Report Navigation Latest News Realtime Air Monitoring Environmental Monitoring About RadWatch BRAWM Data (2011-2013) KelpWatch Frequently Asked Questions

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE Marian Romeo Călin, Adrian Cantemir Călin Horia Hulubei National Institute of Physics and Nuclear Engineering

More information

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1 Ion Chamber Radon Measurements Theremino System Rev.1 Theremino System IonChamber_ENG Page 1 Table of Contents Misure con Camera a Ioni... 3 Theory... 3 Equipment... 3 Radon in Buildings - Rn 222... 4

More information

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po Nuclear Instruments and Methods in Physics Research A 450 (2000) 568} 572 Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po D. NikezicH, K.N. Yu* Department of Physics

More information

Radon Emanation Testing for DRIFT

Radon Emanation Testing for DRIFT Radon Emanation Testing for DRIFT DRIFT-IIa @ Boulby Direct & independent measurement of Rn emanation from detector components. Sean Paling - Sheffield. 1 CYGNUS mtg - July 2007 Boulby Cathode crossers

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

Natural Radiation K 40

Natural Radiation K 40 Natural Radiation There are a few radioisotopes that exist in our environment. Isotopes that were present when the earth was formed and isotopes that are continuously produced by cosmic rays can exist

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy

Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy Alexandra Huss August 31, 2013 Abstract The SNO+ experiment in Sudbury,

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

Low Background Counting At SNOLAB

Low Background Counting At SNOLAB Low Background Counting At SNOLAB Ian Lawson Collaboration Meeting Minneapolis, Minnesota, June 22-23, 212 1 Outline SNOLAB and description of the SNOLAB Low Background Gamma Counting System Other material

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

7.1 Atomic Theory and Radioactive Decay

7.1 Atomic Theory and Radioactive Decay 7.1 Atomic Theory and Radioactive Decay exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials. is the release of high energy particles

More information

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss Nuclear Decay and Chain Reactions ID: 9522 Time required 45 minutes Topic: Nuclear Identify and write equations for the three forms of nuclear decay. Predict decay products. Perform half-life and decay

More information

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second.

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second. 1 The graph below shows the number of radioactive nuclei remaining in a sample of material against time. The radioactive isotope decays to a non-radioactive element. (a) Use the graph to show that, after

More information

Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments

Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments Measurements of Liquid Scintillator Light Yield for Future Neutrino Experiments Athena Ierokomos University of California, Berkeley 2013 University of California, Los Angeles REU Program Abstract Neutrinoless

More information

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half-lives so long

More information

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides)

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides) Nothing in life is to be feared. It is only to be understood. -Marie Curie Segre Chart (Table of Nuclides) Z N 1 Segre Chart (Table of Nuclides) Radioac8ve Decay Antoine Henri Becquerel Marie Curie, née

More information

REFLECTION AND REFRACTION

REFLECTION AND REFRACTION S-108-2110 OPTICS 1/6 REFLECTION AND REFRACTION Student Labwork S-108-2110 OPTICS 2/6 Table of contents 1. Theory...3 2. Performing the measurements...4 2.1. Total internal reflection...4 2.2. Brewster

More information

arxiv: v1 [physics.ins-det] 4 Mar 2019

arxiv: v1 [physics.ins-det] 4 Mar 2019 Development of an alpha-particle imaging detector based on a low radioactive micro-time-projection chamber H. Ito a, T. Hashimoto a, K. Miuchi a, K. Kobayashi b,c,y. Takeuchi a,c, K. D. Nakamura a,t. Ikeda

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Hrant Gulkanyan and Amur Margaryan

Hrant Gulkanyan and Amur Margaryan ALPHA-SPECTROSCOPY OF 252 Cf DECAYS: A NEW APPROACH TO SEARCHING FOR THE OCTONEUTRON YerPhI Preprint -1628 (2014) Hrant Gulkanyan and Amur Margaryan A.I. Alikhanyan National Science Laboratory (Yerevan

More information

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici AGATA preamplifier performance on large signals from a 241 Am+Be source F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici AGATA Week - LNL (PD), Italy, 12-15 November 2007 Outline Recalls : Fast reset device

More information

Detectors for the measurement of ionizing radiation

Detectors for the measurement of ionizing radiation For the measurement of radiation, the following reactions during the irradiation of matter are predominantly utilized: Ionization in gases (Ionization chamber, proportional flow counter, release counter)

More information

Radioactive Decay and Radioactive Series

Radioactive Decay and Radioactive Series Radioactive Decay and Radioactive Series by Michele Laino June 7, 2015 Abstract In this short paper I will explain some general aspects of radioactive decays, furthermore, some useful tables, concerning

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Monte Carlo Simulations for Future Geoneutrino Detectors

Monte Carlo Simulations for Future Geoneutrino Detectors Monte Carlo Simulations for Future Geoneutrino Detectors Morgan Askins Abstract The main contribution of heat in the earth s mantle is thought to be the radioactive decays of 238 U, 232 T h, and 40 K.

More information

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 112 (a) What is meant by radioactive decay? Radioactivity [2] (b) Fig. 12.1 shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 Put a tick alongside any of the

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON W. Hennig 1, H. Tan 1, W.K. Warburton 1, and J.I. McIntyre 2 XIA LLC 1, Pacific Northwest

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 NAME SCHOOL INDEX NUMBER DATE RADIOACTIVITY 1. 1995 Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 C N + e 6 7 y Determine the values of x and y in the equation (2 marks)

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

Supervised assessment: Ionising radiation

Supervised assessment: Ionising radiation Physics 27 Sample assessment instrument and indicative Supervised assessment: Ionising radiation This sample is intended to inform the design of assessment instruments in the senior phase of learning.

More information

CANDLES Search for Neutrino-less Double Beta Decay of 48 Ca

CANDLES Search for Neutrino-less Double Beta Decay of 48 Ca CANDLES Search for Neutrino-less Double Beta Decay of 48 Ca S. Umehara 1, T. Kishimoto 1,2, M. Nomachi 1, S. Ajimura 1, T. Iida 1, K. Nakajima 1, K. Ichimura 1, K. Matsuoka 1, T. Ishikawa 1, D. Tanaka

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

ARMUG New CAM Developments. Arran Morgan MSc Physicist

ARMUG New CAM Developments. Arran Morgan MSc Physicist New CAM Developments Arran Morgan MSc Physicist Topics Particulate sampling considerations Alpha spectral analysis Concentration calculation Spectrum stabilisation Beta measurement Loose filter Bi detection

More information

Radioactivity Review (Chapter 7)

Radioactivity Review (Chapter 7) Science 10 Radioactivity Review (Chapter 7) 1. The alpha decay of radon-222 will yield which of the following? a. bismuth-220 c. astatine-222 b. francium-222 d. polonium-218 2. Which of the following types

More information

α Spectroscopy Sara Fiorendi - Riccardo Manzoni - Monica Tarantino 2007/2008 Abstract

α Spectroscopy Sara Fiorendi - Riccardo Manzoni - Monica Tarantino 2007/2008 Abstract α Spectroscopy Sara Fiorendi - Riccardo Manzoni - Monica Tarantino 7/8 Abstract Our experiment consist in α spectroscopy measures, using solid state silicon detectors. Our radioactive sources will be 41

More information

Activity 11 Solutions: Ionizing Radiation II

Activity 11 Solutions: Ionizing Radiation II Activity 11 Solutions: Ionizing Radiation II 11.1 Additional Sources of Ionizing Radiation 1) Cosmic Rays Your instructor will show you radiation events in a cloud chamber. Look for vapor trails that do

More information

The need for a large-area low emissivity alpha particle standard

The need for a large-area low emissivity alpha particle standard The need for a large-area low emissivity alpha particle standard Michael Gordon Research Staff Member IBM TJ Watson Research Center Yorktown Heights, NY 10598 (914) 945-2802 gordonm@us.ibm.com 1 Outline

More information

Sources of Radiation

Sources of Radiation Radioactivity Sources of Radiation Natural Sources Cosmic Radiation The Earth is constantly bombarded by radiation from outside our solar system. interacts in the atmosphere to create secondary radiation

More information

AEPHY: Nuclear Physics Practise Test

AEPHY: Nuclear Physics Practise Test AEPHY: Nuclear Physics Practise Test Name: OVERALL: Additional 1 mark for units and significant figures. 1. Complete the table below: (2 marks) (63 marks + overall = 64 marks) Element Nuclide Atomic Number

More information

Behaviour of. 222 Rn. and its daughters in liquid nitrogen. GERDA Collaboration Meeting Jagellonian University,, Kraków 2008

Behaviour of. 222 Rn. and its daughters in liquid nitrogen. GERDA Collaboration Meeting Jagellonian University,, Kraków 2008 Behaviour of Rn 222 Rn and its daughters in liquid nitrogen Marcin Wójcik,, Nikodem Frodyma,, Krzysztof Pelczar GERDA Collaboration Meeting Jagellonian University,, Kraków 2008 1 Problems and Questions

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER V.A. MOROZOV 1, N.V. MOROZOVA 1, T. BĂDICĂ 2, D. DELEANU 2,3, D. GHIŢĂ 2, S. PASCU 2,3 1 Joint

More information

Past searches for kev neutrinos in beta-ray spectra

Past searches for kev neutrinos in beta-ray spectra Past searches for kev neutrinos in beta-ray spectra Otokar Dragoun Nuclear Physics Institute of the ASCR Rez near Prague dragoun@ujf.cas.cz supported by GAČR, P203/12/1896 The ν-dark 2015 Workshop TUM

More information

The Geiger Counter. Gavin Cheung. April 10, 2011

The Geiger Counter. Gavin Cheung. April 10, 2011 The Geiger Counter Gavin Cheung 0938173 April 10, 011 Abstract The half life of indium-116 was found using a Geiger counter. The half life was found to be 3300 ± 50s. The dead time of the Geiger counter

More information

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece Radon in the Living Environment, 39 MEASUREMENTS OF DEPOSITION VELOCITY OF RADON DECAY PRODUCTS FOR EXAMINATION OF THE CORRELATION BETWEEN AIR ACTIVITY CONCENTRATION OF RADON AND THE ACCUMULATED Po-0 SURFACE

More information

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory PC1144 Physics IV Radioactivity 1 Objectives Investigate the analogy between the decay of dice nuclei and radioactive nuclei. Determine experimental and theoretical values of the decay constant λ and the

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

3 Radioactivity - Spontaneous Nuclear Processes

3 Radioactivity - Spontaneous Nuclear Processes 3 Radioactivity - Spontaneous Nuclear Processes Becquerel was the first to detect radioactivity. In 1896 he was carrying out experiments with fluorescent salts (which contained uranium) and found that

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies AUTOMATED QA/QC CHECK

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies AUTOMATED QA/QC CHECK AUTOMATED QA/QC CHECK FOR β- COINCIDENCE DETECTOR Matthew W. Cooper, James C. Hayes, Tom R. Heimbigner, Charles W. Hubbard, Justin I. McIntyre, Michael D. Ripplinger, and Brian T. Schrom Pacific Northwest

More information

10.4 Half-Life. Investigation. 290 Unit C Radioactivity

10.4 Half-Life. Investigation. 290 Unit C Radioactivity .4 Half-Life Figure Pitchblende, the major uranium ore, is a heavy mineral that contains uranium oxides, lead, and trace amounts of other radioactive elements. Pierre and Marie Curie found radium and polonium

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Radioactivity Outcomes. Radioactivity Outcomes. Radiation

Radioactivity Outcomes. Radioactivity Outcomes. Radiation 1 Radioactivity Outcomes Describe the experimental evidence for there being three types of radiation. Discuss the nature and properties of each type. Solve problems about mass and atomic numbers in radioactive

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Revision Guide for Chapter 18

Revision Guide for Chapter 18 Revision Guide for Chapter 18 Contents Student s Checklist Revision Notes Ionising radiation... 4 Biological effects of ionising radiation... 5 Risk... 5 Nucleus... 6 Nuclear stability... 6 Binding energy...

More information

NUCLEAR PHYSICS. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

NUCLEAR PHYSICS. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe NUCLEAR PHYSICS Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 The activity of a radioactive sample decreases to one third of its original activity Ao in a period

More information

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg:

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg: Chapter 44 Solutions *44. An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water molecule there are eight neutrons and ten protons. So protons and neutrons are nearly

More information

17. Radiometric dating and applications to sediment transport

17. Radiometric dating and applications to sediment transport OCEAN/ESS 410 17. Radiometric dating and applications to sediment transport William Wilcock Lecture/Lab Learning Goals Understand the basic equations of radioactive decay Understand how Potassium-Argon

More information

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay Chapter 10 Nuclear Physics 10.1 Nuclear Structure and Stability 10.1.1 Atomic Number and Nucleon Number 10.2 Radioactivity and Radioactive Decay 10.2.1 Types of Radioactive Decay 10.2.2 Predicting the

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

What is Radiation? Historical Background

What is Radiation? Historical Background What is Radiation? This section will give you some of the basic information from a quick guide of the history of radiation to some basic information to ease your mind about working with radioactive sources.

More information

Results from 730 kg days of the CRESST-II Dark Matter Search

Results from 730 kg days of the CRESST-II Dark Matter Search Results from 730 kg days of the CRESST-II Dark Matter Search Federica Petricca on behalf of the CRESST collaboration: Max-Planck-Institut für Physik, München TU München University of Oxford Universität

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

RADON EQUILIBRIUM MEASUREMENT IN THE AIR * RADON EQUILIBRIUM MEASUREMENT IN THE AIR * SOFIJA FORKAPIĆ, DUŠAN MRĐA, MIROSLAV VESKOVIĆ, NATAŠA TODOROVIĆ, KRISTINA BIKIT, JOVANA NIKOLOV, JAN HANSMAN University of Novi Sad, Faculty of Sciences, Department

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN AND MODELING OF A COMPTON-SUPPRESSED PHOSWICH DETECTOR FOR RADIOXENON MONITORING Abi T. Farsoni and David M. Hamby Oregon State University Sponsored by the National Nuclear Security Administration

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

Application Note. Understanding Performance Specifications for Low Background Alpha Beta Counters. FOM What Is It and Is It Useful?

Application Note. Understanding Performance Specifications for Low Background Alpha Beta Counters. FOM What Is It and Is It Useful? Application Note Understanding Performance Specifications for Low Background Alpha Beta Counters Comparisons between vendors systems, often a tedious task, can lead to frustration and confusion. This application

More information

Neutron Activation Cross Sections for Fusion

Neutron Activation Cross Sections for Fusion Neutron Activation Cross Sections for Fusion Adelle Hay The University of York/Culham Centre for Fusion Energy March 30, 2015 Adelle Hay (UoY/CCFE) Neutron activation cross sections March 30, 2015 1 /

More information

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration.

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Raffaele Buompane Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi

More information

Identification of Naturally Occurring Radioactive Material in Sand

Identification of Naturally Occurring Radioactive Material in Sand Identification of Naturally Occurring Radioactive Material in Sand Michael Pope 2012 NSF/REU Program Physics Department, University of Notre Dame Advisors: Dr. Ed Stech, Dr. Michael Wiescher Abstract Radionuclides

More information

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Application Note The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Introduction The increasing demand for safety in nuclear installations calls for continuous survey of airborne

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

SYNTHESIS OF SUPERHEAVY ELEMENTS USING THE MASS SPECTROMETER MASHA

SYNTHESIS OF SUPERHEAVY ELEMENTS USING THE MASS SPECTROMETER MASHA SYNTHESIS OF SUPERHEAVY ELEMENTS USING THE MASS SPECTROMETER MASHA Students Timofei Tikhomirov - RB Kevin Li - RSA Alesya Lebedevich - RB Maurice Mashau - RSA Supervisor Krupa Lubosh Flerov Laboratiory

More information

Evidence of Solar Influences on Nuclear Decay Rates

Evidence of Solar Influences on Nuclear Decay Rates Evidence of Solar Influences on Nuclear Decay Rates John Buncher Tom Gruenwald Jordan Heim Dan Javorsek Dennis Krause Anthony Lasenby Andrew Longman Jere Jenkins Ephraim Fischbach Peter Sturrock Ed Merritt

More information