Evidence of Solar Influences on Nuclear Decay Rates

Size: px
Start display at page:

Download "Evidence of Solar Influences on Nuclear Decay Rates"

Transcription

1 Evidence of Solar Influences on Nuclear Decay Rates John Buncher Tom Gruenwald Jordan Heim Dan Javorsek Dennis Krause Anthony Lasenby Andrew Longman Jere Jenkins Ephraim Fischbach Peter Sturrock Ed Merritt Josh Mattes Tasneem Mohsinally Dan Mundy John Newport Ben Revis

2 Half-life Discrepancies

3 Begemann, F., et al., Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta, (1): p

4 Chiu, T.-C., et al., Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U, 231Pa/235U and 14C dates on fossil corals. Quaternary Science Reviews, (1-2): p

5 2.6% Chiu, T.-C., et al., Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U, 231Pa/235U and 14C dates on fossil corals. Quaternary Science Reviews, (1-2): p

6 4.6%

7 Woods, M.J. and S.E.M. Lucas. Half-life of 90Sr - measurement and critical review Netherlands: Elsevier.

8 H. Schrader, Appl. Rad. & Isot., 60 (2004)

9 Data Summary Experiment Detector Type Decay Type Measured Radiation Type Observed Variations PTB ( 226 Ra) Ion Chamber Gas α, β, γ γ Annual PTB ( 152 Eu) GeLi Solid State ε, γ γ Annual BNL ( 32 Si/ 36 Cl) Prop. Counter Gas β - β - Annual Purdue ( 54 Mn) NaI(Tl) Scintillator ε, γ γ Flare CNRC ( 56 Mn) NaI(Tl) Scintillator β -, γ γ Annual OSU ( 36 Cl) G-M Gas β - β - Annual Parkhomov ( 90 Sr/ 90 Y-I) G-M Gas β - β - Annual Parkhomov ( 90 Sr/ 90 Y-II) G-M Gas β - β - Annual Parkhomov ( 60 Co) G-M Gas β -, γ β -, γ Weak Annual Parkhomov ( 239 Pu) Si Solid State α α None

10 Exclusion of Environmental and Systematic Causes

11 Magnetic Sensitivity Testing of 54 Mn/NaI(Tl) Experiments Solar Flare December 2006

12 December ln(gross) decay with measured Magnetic Data Ap Peak 00:00 12/ ln(gross) Dec storm 17 Dec storm 22 Dec storm Magnetic Index (Ap) /29 12/4 12/9 12/14 12/19 12/24 12/29 1/3 1/8 Date ln(gross) Ap Linear (ln(gross))

13 December ln(gross) decay with measured Magnetic Data Dec storm 8 ln(gross) Dec storm 22 Dec storm Magnetic Index (Kp) /29 12/4 12/9 12/14 12/19 12/24 12/29 1/3 1/8 Date ln(gross) Kp Linear (ln(gross))

14

15

16 26000 Magnetic Field Sensitivity Measurements (45 o Orientation) Zero Field 0 Gauss Earth Field 0.42Gauss 2x Earth Field 0.85 Gauss Earth Field Gauss Counts/10s Count # Series1 +sigma -sigma +3sigma -3sigma

17 Environmental Sensitivities Temperature/Pressure/Relative Humidity Gas Proportional Detector, BNL

18 BNL Detector Proportional Counter Precision Sample Changer 32 Si( 32 P) source (T 1/2 =172y) at 1 mm 32 Si E βmax = (19) kev 32 P E βmax = (22) kev 36 Cl source (T 1/2 =300,000y) at 4 mm 36 Cl E βmax = 708.6(3) kev Background 6.5(3) cpm (compared to 21,500 cpm( 36 Cl) and 14,800 cpm( 32 Si) [1E-4]

19 Air Density as a function of Temperature and Humidity

20 BNL Proportional Counter 7 Pt Avg'd Normalized BNL With Earth-Sun Distance Normalized BNL /81 02/82 09/82 03/83 10/83 04/84 11/84 06/85 12/85 07/86 1/R^2 (a.u.^2) 0.96 Date Un-decayed 7pt avg USNO 1/R^2

21 BNL Detector-Source Geometries (MCNPX) 1.000mm 32 Si- 32 P 4.000mm 36 Cl

22 BNL Detector-Source Geometries (MCNPX) 32 Si- 32 P 36 Cl

23 MCNPX Results Per Source e - ( / F) 32 Si- 32 P 36 Cl ( 32 Si- 32 P)/ 36 Cl Norm.(70 F) ( / F) Per Source e - ( / F) Norm.(70 F) ( / F) Ratio ( / F) Det. E Deposition (MeV/ptcl) 0.051(24) (67) (40) (67) (40) 10-6 Det. Window e - Current 4.39(86) (33) (13) (33) (21) 10-6 Det. Window E Current(MeV/ptcl) 1.48(45) (33) (32) (34) (48) 10-6 Det./Source e - Current Ratio 6.8(32) (48) (24) (48) (64) 10-6 Det./Source E Current Ratio 5.1(33) (47) (25) (48) (63) 10-6

24 Environmental Sensitivities PTB Ionization Chamber

25 PTB Detector T. Alloway, Technical Inquiry, IG12. Private Comm. J.H. Jenkins, 2009.

26 Raw Undecayed 226Ra PTB Data with Earth-Sun Distance Normalized 226 Ra Data /R 2 (a.u. -2 ) /23/83 3/22/84 3/22/85 3/22/86 3/22/87 3/21/88 3/21/89 3/21/90 3/21/91 3/20/92 3/20/93 3/20/94 3/20/95 3/19/96 3/19/97 3/19/98 3/19/99 3/18/ Date Normalized Undecayed USNO 1/R^2 Pearson Correlation Coefficient r=0.62, N=1974, Prob=5.13x Data from Siegert, et al., Appl. Radiat. Isot. 49, 1397 (1998) Fig. 1

27 Changes in total alpha and beta activity 5 in a 226 Ra source with time 4 Relative activity total beta total alpha Source age (yrs) Data from A. Karam, J. Buncher and J. Mattes

28 226 Ra Decay Chain 226 Ra 1600y 218 Rn 0.035s α 100 % 206 Pb α 100 % β % 206 Tl 4.2m 210 Po 138.4d α 1.3E-4 % β % β % 206 Hg 8.3m 210 Bi 5.01d α 1.9E-6 % β % 210 Pb 22.2y β % α 100 % 210 Tl 1.3m 214 Po 0.16ms α 0.02 % α 100 % β % 214 Bi 19.9m α % β % β % 214 Pb 26.8m 218 At 1.5s α % β % 218 Po 3.1m α 100 % 222 Rn 3.8d

29 Radon Hourly Averaged Centre for Radiation Protection and Radioecology (ZSR), Hannover University 100 Month to Month 222 Rn Measurements at ZSR, Hannover Germany Rn Activity (Bq/m 3 ) /00 6/00 7/00 8/00 9/00 10/00 11/00 12/00 1/01 2/01 3/01 4/01 5/01 6/01 A. Abbady, A.G.E. Abbady, R. Michel, Applied Radiation and Isotopes 61 (2004) Date 2 hr 4 hr 6 hr 8 hr 10 hr 12 hr 14 hr 16 hr 18 hr 20 hr 22 hr 24 hr

30 Radon Monthly Averaged Centre for Radiation Protection and Radioecology (ZSR), Hannover University 80 Monthly Average 222 Rn Measurements from Abbady Rn Activity (Bq/m 3 ) /00 6/00 8/00 10/00 11/00 1/01 2/01 4/01 6/01 7/01 Month A. Abbady, A.G.E. Abbady, R. Michel, Applied Radiation and Isotopes 61 (2004) 1469.

31 Radon Hourly Averaged Centre for Radiation Protection and Radioecology (ZSR), Hannover University 80 Hourly Average 222 Rn Measurements from Abbady Rn Activity (Bq/m 3 ) Time of Day (hr) A. Abbady, A.G.E. Abbady, R. Michel, Applied Radiation and Isotopes 61 (2004) 1469.

32 PTB Backgrounds Data provided by H. Schrader for 226 Ra was background corrected. Cosmic background found to vary (Wissmann) annually ±1.92x10-3 nsv/s (6.9 nsv/h) 226Ra source, 300 ug, has activity of ~11 MBq, which equates to a dose rate of ~2.1x10 4 nsv/s

33 Spectral Analysis and Evidence for Solar Influence

34 Brookhaven National Laboratory 1/yr 11.17/yr 13.11/yr Power spectrum formed by a likelihood procedure from the 32Si/36Cl ratio. False Alarm Probability F=4.0x /yr could possibly indicate solar core rotation

35 CUMSUM Cl ACRIM Cl Temp

36 ACRIM/BNL

37 PTB Indication of Solar Core Rotation 11.29/yr, power S= pt weighted mean, 11.24/yr

38 BNL/PTB Solar Core Period Plots of the 101-point weighted running means formed from the PTB power spectrum (blue) and from the BNL power spectrum (magenta). The two peaks are found at year -1 and at year -1, respectively.

39 BNL/PTB Solar Core Period The joint power spectrum formed from the weighted-runningmean BNL and PTB power spectra. The peak is found at year -1 with J=10.34.

40 Parkhomov, A.G., Researches of alpha and beta radioactivity at long-term observations, arxiv: v1 [physics.gen-ph], (2010)

41 Rieger Periodicity in BNL Power spectrum formed from BNL data. The arrows indicate the search band 2.00 yr -1 to 2.25 yr -1. The peak is found at 2.11 yr -1 with power S =

42 Rieger Periodicity in PTB data Power spectrum formed from PTB data. The arrows indicate the search band 2.00 yr -1 to 2.25 yr -1. The peak is found at 2.11 yr -1 with power S =

43 Joint Power Statistic (Rieger) The joint power statistic using the BNL and PTB power spectra. The arrows indicate the search band 2.00 yr -1 to 2.25 yr -1. The peak is found at 2.11 yr -1 with joint power statistic J =

44 Frequency Content Comparisons Experiment Isotope Low Frequency [1/year] Annual Frequency [1/year] BNL Si/Cl CNRC Mn PTB Ra OSU Cl

45 New Data

46

47

48

49

50 Summary

1/1. Concerning the variability of beta-decay measurements. P.A. Sturrock a,*, E. Fischbach b, A. Parkhomov c, J.D. Scargle d, G.

1/1. Concerning the variability of beta-decay measurements. P.A. Sturrock a,*, E. Fischbach b, A. Parkhomov c, J.D. Scargle d, G. Concerning the variability of beta-decay measurements P.A. Sturrock a,*, E. Fischbach b, A. Parkhomov c, J.D. Scargle d, G. Steinitz e a Center for Space Science and Astrophysics, and Kavli Institute for

More information

Periods Detected During Analysis of Radioactivity Measurements Data

Periods Detected During Analysis of Radioactivity Measurements Data Periods Detected During Analysis of Radioactivity Measurements Data A.G.Parkhomov Institute for Time Nature Explorations. Lomonosov Moscow State University, Moscow, Russia. alexparh@mail.ru Analysis results

More information

arxiv: v1 [astro-ph.sr] 10 Dec 2012

arxiv: v1 [astro-ph.sr] 10 Dec 2012 Spectral Content of 22 Na/ 44 Ti Decay Data: Implications for a Solar Influence arxiv:1212.2198v1 [astro-ph.sr] 1 Dec 212 D. O Keefe, B. L. Morreale and R. H. Lee Physics Department; U.S. Air Force Academy;

More information

arxiv: v1 [nucl-ex] 7 Jun 2011

arxiv: v1 [nucl-ex] 7 Jun 2011 arxiv:1106.1470v1 [nucl-ex] 7 Jun 2011 EVIDENCE FOR TIME-VARYING NUCLEAR DECAY DATES: EXPERIMENTAL RESULTS AND THEIR IMPLICATIONS FOR NEW PHYSICS E. FISCHBACH Department of Physics, Purdue University,

More information

An investigation into the phenomenological relation between solar activity and nuclear betadecay

An investigation into the phenomenological relation between solar activity and nuclear betadecay Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations Spring 2015 An investigation into the phenomenological relation between solar activity and nuclear betadecay rates Tasneem

More information

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Karsten Kossert * and Ole J. Nähle Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany Abstract A custom-built

More information

A cryogenic detector for 222 Rn

A cryogenic detector for 222 Rn A cryogenic detector for Rn M. Wojcik a, G. Zuzel b a) Institute of Physics, Jagellonian University, Cracow, Poland b) Max Planck Institute for Nuclear Physics, Heidelberg, Germany 1. Selected detection

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

arxiv: v1 [nucl-ex] 16 Feb 2012

arxiv: v1 [nucl-ex] 16 Feb 2012 Search for time dependence of the 137 Cs decay constant E. Bellotti a, C. Broggini b, G. Di Carlo c, M. Laubenstein c, R. Menegazzo b a Università degli Studi di Milano Bicocca and Istituto Nazionale di

More information

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

RADON EQUILIBRIUM MEASUREMENT IN THE AIR * RADON EQUILIBRIUM MEASUREMENT IN THE AIR * SOFIJA FORKAPIĆ, DUŠAN MRĐA, MIROSLAV VESKOVIĆ, NATAŠA TODOROVIĆ, KRISTINA BIKIT, JOVANA NIKOLOV, JAN HANSMAN University of Novi Sad, Faculty of Sciences, Department

More information

ARMUG New CAM Developments. Arran Morgan MSc Physicist

ARMUG New CAM Developments. Arran Morgan MSc Physicist New CAM Developments Arran Morgan MSc Physicist Topics Particulate sampling considerations Alpha spectral analysis Concentration calculation Spectrum stabilisation Beta measurement Loose filter Bi detection

More information

2. Ionization chamber data

2. Ionization chamber data Physics Letters B 675 (2009) 415 419 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Oscillations in radioactive exponential decay T.M. Semkow a,, D.K. Haines

More information

1/23. P.A. Sturrock 1,, G. Steinitz 2, E. Fischbach 3. Keywords: Nuclear physics Solar structure

1/23. P.A. Sturrock 1,, G. Steinitz 2, E. Fischbach 3. Keywords: Nuclear physics Solar structure Analysis of Radon-Chain Decay Measurements: Evidence of Solar Influences and Inferences Concerning Solar Internal Structure and the Role of Neutrinos P.A. Sturrock 1,, G. Steinitz 2, E. Fischbach 3 Keywords:

More information

Six decades of environmental radioactivity measurements. Sven P. Nielsen

Six decades of environmental radioactivity measurements. Sven P. Nielsen Six decades of environmental radioactivity measurements Sven P. Nielsen Research Establishment Risø Established by Government in 1950 s to keep Denmark in line with development of nuclear technology including

More information

arxiv: v4 [astro-ph.he] 21 Jun 2018

arxiv: v4 [astro-ph.he] 21 Jun 2018 Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral E. Fischbach a, V. E. Barnes a, N. Cinko b,a, J. Heim a, H. B. Kaplan c,a, D. E. Krause d,a, J. R. Leeman a,

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell NUKLEONIKA 2007;52(4):167 171 ORIGINAL PAPER Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell Bronisław Machaj, Piotr Urbański, Jakub Bartak Abstract.

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

College Station, TX 77843, USA *Corresponding author. Tel ; fax address:

College Station, TX 77843, USA *Corresponding author. Tel ; fax address: Transfer Functions for the DAMA Experiments P.A. Sturrock a,*, J. Scargle b E. Fischbach c, J.H. Jenkins d, J. Nistor c a Center for Space Science and Astrophysics, Stanford University, Stanford, CA 94305,

More information

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series John W. Moore Conrad L. Stanitsi Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 9 Nuclear Chemistry Stephen C. Foster Mississippi State University The Nature of Radioactivity Henri Becquerel

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Modeling radon daughter deposition rates for low background detectors

Modeling radon daughter deposition rates for low background detectors Modeling radon daughter deposition rates for low background detectors Shawn Westerdale LANL, MIT Student Symposium 2009 0 LA-UR : 09-04881 Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results The Atomic Nucleus & Radioactive Decay ( Chapter 10) Student Learning Outcomes Analyze radioactive decay and its results Differentiate between nuclear fission and fusion Major Constituents of an Atom U=unified

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Background measurements in the underground labs: Gran Sasso, Modane and Boulby

Background measurements in the underground labs: Gran Sasso, Modane and Boulby Background measurements in the underground labs: Gran Sasso, Modane and Boulby Jan Kisiel Institute of Physics, University of Silesia, Katowice, Poland (kisielj@us.edu.pl) (in collaboration with: J.Dorda

More information

CHAPTER 1 RADIATION AND RADIOACTIVITY

CHAPTER 1 RADIATION AND RADIOACTIVITY CHAPTER 1 RADIATION AND RADIOACTIVITY 1 Atomic Model Atomic Structure Atomic Number Mass Number Isotope [Mass Number][HKCEE] If the nucleus of an atom is represented by the symbol 214 83 X, it means that

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

Search for Possible Solar Influences in Ra-226 Decays

Search for Possible Solar Influences in Ra-226 Decays Search for Possible Solar Influences in Ra-226 Decays Daniel D. Stancil 1, Sümeyra Balci Yegen 2, David A. Dickey 3, and Chris R. Gould 2 1 Department of Electrical and Computer Engineering 2 Department

More information

7.2 RADIOACTIVE DECAY HW/Study Packet

7.2 RADIOACTIVE DECAY HW/Study Packet 7.2 RADIOACTIVE DECAY HW/Study Packet Required: Tsokos, pp 373-378 Hamper pp 244-255 SL/HL Supplemental: Cutnell and Johnson, pp 963-979, 986-990 REMEMBER TO. Work through all of the example problems in

More information

Čerenkov counting and liquid scintillation counting of 36 Cl

Čerenkov counting and liquid scintillation counting of 36 Cl Čerenkov counting and liquid scintillation counting of 36 Cl Karsten Kossert, Ole Nähle Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany and Agustín Grau Carles Instituto de Física Fundamental

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Radiation Detection. 15 th Annual OSC Readiness Training Program. Radiation Detection 15 th Annual OSC Readiness Training Program www.oscreadiness.org GM Detectors 15 th Annual OSC Readiness Training Program www.oscreadiness.org 1 A closer look 15 th Annual OSC Readiness

More information

Unit 13: Nuclear Chemistry

Unit 13: Nuclear Chemistry Name Unit 13: Nuclear Chemistry Skills: 1. Review Atomic Structure 2. Determining Nuclear Stability 3. Naming and Drawing Hydrocarbons 4. Using N + O to Write Decay Equations Period 5. Solve Various Half

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

Radon Emanation Testing for DRIFT

Radon Emanation Testing for DRIFT Radon Emanation Testing for DRIFT DRIFT-IIa @ Boulby Direct & independent measurement of Rn emanation from detector components. Sean Paling - Sheffield. 1 CYGNUS mtg - July 2007 Boulby Cathode crossers

More information

Low Background Counting At SNOLAB

Low Background Counting At SNOLAB Low Background Counting At SNOLAB Ian Lawson Collaboration Meeting Minneapolis, Minnesota, June 22-23, 212 1 Outline SNOLAB and description of the SNOLAB Low Background Gamma Counting System Other material

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RADIOACTIVITY IN THE AIR REFERENCES M. Sternheim and J. Kane, General Physics (See the discussion on Half Life) Evans, The Atomic Nucleus, pp. 518-522 Segre, Nuclei and Particles, p. 156 See HEALTH AND

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Objective: Using the MCA to acquire spectrums for different gamma sources and to identify an unknown source from its spectrum, furthermore to investigate

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model

Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model Iran. J. Radiat. Res., 2006; 4 (3): 155-159 Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model F.Arkian 1*, M.

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

EXPERIMENT 11: NUCLEAR RADIATION

EXPERIMENT 11: NUCLEAR RADIATION Introduction: radioactive nuclei. third is electromagnetic radiation. EXPERIMENT 11: NUCLEAR RADIATION In this lab, you will be investigating three types of emissions from Two types of these emissions

More information

Clearance Monitoring. Chris Goddard.

Clearance Monitoring. Chris Goddard. Clearance Monitoring Chris Goddard Outline What is Clearance? Clearance Limits around Europe Measurement techniques Plastic scintillators Long Range Alpha Detection Example systems Thermo SAM12 VF FRM-2

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

y loo Physics Essentials Workbook Stage 2 Physics Exercises

y loo Physics Essentials Workbook Stage 2 Physics Exercises 238 Physics Essentials Workbook Stage 2 Physics 15.1 2 Exercises P Explain why stable nuclei of high mass have a higher proportion of neutrons than stable nuclei of low mass. 2 Name four types of spontaneous

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Leaching Studies for the SNO+ Experiment

Leaching Studies for the SNO+ Experiment Leaching Studies for the SNO+ Experiment Pouya Khaghani Laurentian University SNOLAB Users Meeting Symposium September 2 nd 2016 1 SNO+ Physics SNOLAB, Creighton Mine (2070m 6000 m. w. e) Linear Alkyl

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164 PVT and LaBr3(Ce)-based Radon Express Analyzers 864 Vladislav Kondrashov *, Stephen Steranka* and Glenn Paulson** * RadComm Systems Corp. 293 Portland Dr, Oakville, Ontario L6H 5S4, CANADA ** Paulson and

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Understanding the contribution of naturally occurring radionuclides to the measured radioactivity in AWE Environmental Samples

Understanding the contribution of naturally occurring radionuclides to the measured radioactivity in AWE Environmental Samples Understanding the contribution of naturally occurring radionuclides to the measured radioactivity in AWE Environmental Samples Dr Jonathan Burnett ASc Analytical Sciences PhD Supervisors Dr Richard Greenwood

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 13161 First edition 2011-10-01 Water quality Measurement of polonium 210 activity concentration in water by alpha spectrometry Qualité de l eau Mesurage de l activité du polonium

More information

Radiometric Measurements of Environmental Radioactivity

Radiometric Measurements of Environmental Radioactivity Radiometric Measurements of Environmental Radioactivity Beta Counting, Alpha and Gamma Spectrometry Sven Nielsen Early start at Risø Measurements of environmental radioactivity started at Risø in 1956

More information

Past searches for kev neutrinos in beta-ray spectra

Past searches for kev neutrinos in beta-ray spectra Past searches for kev neutrinos in beta-ray spectra Otokar Dragoun Nuclear Physics Institute of the ASCR Rez near Prague dragoun@ujf.cas.cz supported by GAČR, P203/12/1896 The ν-dark 2015 Workshop TUM

More information

Ultra-Low Background Measurement Capabilities At SNOLAB

Ultra-Low Background Measurement Capabilities At SNOLAB Ultra-Low Background Measurement Capabilities At SNOLAB Ian Lawson SNOLAB Greater Sudbury, Canada Torino, Italy 1 Brief Outline Motivation for low background counters Advantages of being deep Current facilities

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

High-energy calibration data for neutron activation analysis

High-energy calibration data for neutron activation analysis Nuclear Analysis and Radiography Department High-energy calibration data for neutron activation analysis L. Szentmiklósi 1, Zs. Révay 2, B. Maróti 1, D. Párkányi 1, I. Harsányi 1 1 Nuclear Analysis and

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

12/18/2016. Radioanalysis Laboratory Capabilities and Issues. Eleventh Annual Radiation Measurement Cross Calibration Workshop RMCC XI

12/18/2016. Radioanalysis Laboratory Capabilities and Issues. Eleventh Annual Radiation Measurement Cross Calibration Workshop RMCC XI 1. Introduction 2. Laboratories Gamma spectrometry laboratory. Radiochemistry laboratory. Analytical chemistry laboratory. Alpha spectrometry laboratory Gross alpha / beta laboratory. Neutron activation

More information

Ch : Electrochemistry and Radiochemistry AP Review Questions

Ch : Electrochemistry and Radiochemistry AP Review Questions Ch. 17-21: Electrochemistry and Radiochemistry AP Review Questions Radioactivity: Zone of Stability All nuclides with 84 or more protons are unstable (radioactive). Light elements like the neutron to proton

More information

The Effects of Exposing UltraLo-1800 Samples to Room Air

The Effects of Exposing UltraLo-1800 Samples to Room Air The Effects of Exposing UltraLo-1800 Samples to Room Air Document: Release Date: 07/19/2010 Version: 1.0 Contact Name: Stuart Coleman Email: stuart@xia.com Phone: (510) 401 5760 Fax: (510) 401 5761 XIA,

More information

Pete Burgess, Nuvia Limited. Clearance and exemption

Pete Burgess, Nuvia Limited. Clearance and exemption Pete Burgess, Nuvia Limited Clearance and exemption The clearance, exclusion and exemption process Most of the UK nuclear industry (and many other organisations) refer to the Clearance and Exemption Working

More information

2) Explain why the U-238 disintegration series shown in the graph ends with the nuclide Pb-206.

2) Explain why the U-238 disintegration series shown in the graph ends with the nuclide Pb-206. Name: 3156-1 - Page 1 Questions 1 and 2 refer to the following: A U-238 atom decays to a Pb-206 atom through a series of steps. Each point on the graph below represents a nuclide and each arrow represents

More information

RADEAGLET. Lightweight Handheld Radioisotope Identification Device

RADEAGLET. Lightweight Handheld Radioisotope Identification Device RADEAGLET Lightweight Handheld Radioisotope Identification Device Weighing Only 900 grams, the RADEAGLET is the Lightest HH-RIID in the world! The Perfect Instrument for First Responders Who Need to Wear

More information

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 37 Modern Physics [3] [L37] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L38] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

arxiv: v1 [physics.ins-det] 20 Dec 2017

arxiv: v1 [physics.ins-det] 20 Dec 2017 Prepared for submission to JINST LIDINE 2017: LIght Detection In Noble Elements 22-24 September 2017 SLAC National Accelerator Laboratory arxiv:1712.07471v1 [physics.ins-det] 20 Dec 2017 Radon background

More information

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 36 Modern Physics [3] [L36] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L37] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER V.A. MOROZOV 1, N.V. MOROZOVA 1, T. BĂDICĂ 2, D. DELEANU 2,3, D. GHIŢĂ 2, S. PASCU 2,3 1 Joint

More information

Ultra-Low Background Counting and Assay Studies At SNOLAB

Ultra-Low Background Counting and Assay Studies At SNOLAB Ultra-Low Background Counting and Assay Studies At SNOLAB Ian Lawson SNOLAB 2015 CAP Congress University of Alberta 1 Outline Motivation for Low Background Counters Advantages of being deep Current Facilities

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

ISO Water quality Measurement of polonium 210 activity concentration in water by alpha spectrometry

ISO Water quality Measurement of polonium 210 activity concentration in water by alpha spectrometry INTERNATIONAL STANDARD ISO 13161 First edition 2011-10-01 Water quality Measurement of polonium 210 activity concentration in water by alpha spectrometry Qualité de l eau Mesurage de l activité du polonium

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables ELENA SIMION 1,2 *, ION MIHALCEA 2, FLORIN SIMION 1,3, CRISTIAN PACURARU 4 1 National Environmental Protection

More information

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Application Note The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Introduction The increasing demand for safety in nuclear installations calls for continuous survey of airborne

More information

ARTICLE IN PRESS. Applied Radiation and Isotopes

ARTICLE IN PRESS. Applied Radiation and Isotopes Applied Radiation and Isotopes 68 (21) 1349 1353 Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso Standardization and measurement

More information

THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION

THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION 2 OUTLOOK NEXT: Neutrino Experiment with a Xenon TPC R&D Phase NEW Detector design

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Radioactivity in the Risø District July-December 2013

Radioactivity in the Risø District July-December 2013 Downloaded from orbit.dtu.dk on: Jan 02, 2019 Radioactivity in the Risø District July-December 2013 Nielsen, Sven Poul; Andersson, Kasper Grann; Miller, Arne Publication date: 2014 Document Version Publisher's

More information

NEMO-3 latest results

NEMO-3 latest results NEMO-3 latest results Thibaud Le Noblet LAPP On behalf of the NEMO collaboration GdR neutrino 29-30 mai 2017 - APC Outline Neutrinoless double beta decay Tracker-calorimeter technique NEMO-3 detector Latest

More information

Response of the PRISMA-YBJ detectors to earthquakes. Yuri Stenkin on behalf of PRISMA collaboration

Response of the PRISMA-YBJ detectors to earthquakes. Yuri Stenkin on behalf of PRISMA collaboration Response of the PRISMA-YBJ detectors to earthquakes Yuri Stenkin on behalf of PRISMA collaboration Yu. Stenkin, 35RCRC+25ECRS, Barnaul, 2018 1 Outline natural neutron sources global net of en-detectors

More information

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer 1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer PerkinElmer LAS (UK) Ltd, Chalfont Rd, Seer Green, Beaconsfield, Bucks HP9 2FX tel: 0800 896046 www.perkinelmer.com John Davies January

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up: Page 17a Objective: We will identify different types of radioactive decay. Warm-up: What are the three subatomic particles? Where is each particle located in the atom? What is an isotope? Page 17a (again)

More information

Hrant Gulkanyan and Amur Margaryan

Hrant Gulkanyan and Amur Margaryan ALPHA-SPECTROSCOPY OF 252 Cf DECAYS: A NEW APPROACH TO SEARCHING FOR THE OCTONEUTRON YerPhI Preprint -1628 (2014) Hrant Gulkanyan and Amur Margaryan A.I. Alikhanyan National Science Laboratory (Yerevan

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS 2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 MATHEMATICAL MODEL OF RADON ACTIVITY

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY UNIQUE SIENE EMY Test (Unit 25) Name :... Paper: Physics ate :... ode: 5054 lass: II Time llowed: 5Minutes Maximum Marks: 25 1 Theory Section: [Total 17 Marks] 1 doctor uses a radioactive isotope, iodine-11,

More information

Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods

Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods Journal of Physics: Conference Series PAPER OPEN ACCESS Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods To cite this article: A Ruzzarin et al 2016 J. Phys.: Conf.

More information

Radiometric Measurements of Environmental Radioactivity Beta Counting, Alpha and Gamma Spectrometry

Radiometric Measurements of Environmental Radioactivity Beta Counting, Alpha and Gamma Spectrometry Downloaded from orbit.dtu.dk on: Jan 31, 2018 Radiometric Measurements of Environmental Radioactivity Beta Counting, Alpha and Gamma Spectrometry Nielsen, Sven Poul Publication date: 2013 Link back to

More information

CHAPTER 25: NUCLEAR CHEMISTRY. Mrs. Brayfield

CHAPTER 25: NUCLEAR CHEMISTRY. Mrs. Brayfield CHAPTER 25: NUCLEAR CHEMISTRY Mrs. Brayfield CHEMICAL VS. NUCLEAR When you hear the word nuclear, what do you think of? What makes nuclear reactions different from chemical reactions? The speed of nuclear

More information