Many of us were taught that the standard

Size: px
Start display at page:

Download "Many of us were taught that the standard"

Transcription

1 Atomic Weights No Longer Constants of Nature by Tyler B. Coplen and Norman E. Holden Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature. Atomic Weight The concept of atomic weights goes back to the time of John Dalton at the beginning of the 19th century. Much of chemistry in the first half of that century involved the measurement and analysis of atomic weights. Many scientists, most notably Dmitri Mendeleev, analyzed and divided the atomic weights of the elements into triads, octaves, and spirals, based on similarities of the chemical and physical properties of these elements. Mendeleev provided a periodic table along with predictions of new elements to fill gaps in his table, and these elements subsequently were discovered. In 1882, Frank W. Clarke recommended atomic-weight values for use in science, industry, and trade. 1 The American Chemical Society appointed Clarke as a one-man committee to issue atomic-weight tables annually. Groups in other countries created committees with a similar purpose. The values of the atomic-weight tables of these committees often differed, however, leading the German Atomic Weights Commission to call for an international commission to determine atomic weights. The first report (1901) of the International Commission on Atomic Weights (ICAW) was published as a flyleaf in the first issue of the Chemische Berichte in January In 1913, the Commission became part of the International Association of Chemical Societies (IACS). Although IACS was dissolved following World War I, the Commission continued to publish updated tables of atomic weights each year until In 1919, the International Union of Pure and Applied Chemistry (IUPAC) was created as the chemical section of the International Research Council. An atomic-weight report from a new Commission, under IUPAC auspices, was first prepared in Since that time, ICAW or its successors within IUPAC, hereafter termed the Commission, took over the careful evaluation and dissemination of atomic-weight values, which continued to be considered constants of nature. Isotopes A constant of nature, such as the Faraday constant [ (24) C mol 1 ], typically is known to better than 1 part in a million parts. IUPAC s Periodic Table 3 lists a value of (7) for boron. If standard atomic weights are constants of nature, why are the values not published with greater accuracy? The answer, of course, is that the atomic weight of an element depends upon the source of the material and upon its number of stable isotopes, where isotopes are atoms of the same element having different mass numbers. At the start of the twentieth century, radioactive elements were discovered. Fredrick Soddy showed the chemical identity of meso-thorium ( 228 Ra) and radium ( 226 Ra). 4 He concluded that these chemical elements had different radioactive properties and different atomic weights, but the same chemical properties and so should occupy the same positions in the Periodic Table of the Elements. He coined the word isotope (Greek: in the same place ) to account for radioactive species. 5 An event that profoundly affected atomic weights was the discovery by John (J.J.) Thomson 6 in 1912 that the element neon was made up of two stable isotopes, 20 Ne and 22 Ne. ( 21 Ne was discovered later.) With the discovery of stable isotopes and the use of mass spectrographs to measure the isotopic composition of chemical elements, it was realized that the masses of the individual stable isotopes and their isotopic-abundance values (mole fractions) could provide an alternative method for estimating an element s atomic weight. With technical improvements to mass spectrometers, the accuracy of this method began to exceed that of chemical determinations of atomic weight. Over the last half of the 20th century, almost every new recommended atomic-weight value was based on mass spectrometric measurements. 10 CHEMISTRY International March-April 2011

2 Variations in Abundances of Isotopes and Atomic Weights In 1908, the atomic weight of common lead (from a nonradioactive source material) was measured to be 207.2, 7 while a 1914 measurement 8 of lead from a thorium silicate mineral had an atomic weight of A low value of was measured for the atomic weight of lead in uranium samples in Differences in lead atomic-weight values were considered to be an exceptional case that was attributed to lead isotopes being products of the natural radioactive decay chains. However, in 1936, Malcolm Dole 10 reported the variation of oxygen s atomic-weight value in air and in water, because of variations in abundances of its stable isotopes. In 1939, Alfred O.C. Nier 11 reported on the 5 percent variation in the isotopic composition of carbon. It was becoming clear that atomic weights might not be constants of nature. At the Commission s meeting in 1951, it was recognized that the isotopicabundance variation of sulfur impacted the internationally accepted value of an atomic weight. 12 In order to indicate the span of values that may apply to sulfur from different natural sources, the value ± was attached to the atomic weight of sulfur. Ranges were listed for six elements (H, B, C, O, Si, and S) due to the natural variation in their isotopic compositions, and experimental uncertainties were added for an additional five elements (Cl, Cr, Fe, Br, and Ag) in the 1961 report of the Commission. 13 In the 1969 report of the Commission, 14 uncertainties were added for all atomic-weight values for the first time. IUPAC had now added to its responsibilities the careful evaluation and dissemination of atomic-weight uncertainties, derived from critically assessed published information. Also in the 1969 report, the Commission acknowledged for the first time that the discovery that most chemical elements exist in nature as isotopic mixtures, many of which are known to vary in composition, makes it necessary to modify the historical concept of atomic weights as constants of nature. Even though [stable] isotopes have not been observed in nature for some elements (currently 21 in number), it appears more logical to consider that isotopic mixtures represent the normal rather than the exceptional state of an element. The Commission considers that this attitude will promote an awareness that uncertainties in the values given in the International Table are no longer, as in earlier times, to be regarded as resulting only from errors in the measurement of the value, but that they arise from natural variations in isotopic composition.... To arrive at the recommended value for the atomic weight the Commission will use weighting procedures so that the value will be optimized for materials in world science, chemical technology and trade, rather than represent an estimated geochemical average. Not all elements, though, exhibit variations in their atomic weights; some have only one stable isotope. Determination of the standard atomic weights of the 21 elements with a single stable isotope, 15 such as F, Al, Na, and Au, is relatively simple because they depend only upon the atomic mass of a single stable isotope. These standard atomic weights are constants of nature, and their values are known to be better than one part in a million parts. As a result of the growing importance of isotopic measurements for atomic weights, the Commission changed its name in 1979 to the Commission on Atomic Weights and Isotopic Abundances. The Commission decided that an atomic weight could be defined for any specified sample. For the IUPAC table of recommended values of atomic weights, the Commission stated: Dated Tables of Standard Atomic Weights published by the Commission refer to our best knowledge of the elements in natural terrestrial sources. 16 Atomic-weight distributions determined from published variations in isotopic compositions can span relatively large intervals. Figure 1 shows the variation in atomic weight as a function of mole fraction of 2 H in selected hydrogen-bearing materials. The atomic weight of hydrogen in normal materials spans atomic-weight values from approximately CHEMISTRY International March-April

3 Atomic Weights to , whereas the uncertainty of the atomic weight calculated from the best measurement 20 of the isotopic abundance of hydrogen is about a thousand times smaller: A r (H) = (5). By a normal material, the Commission means a material from a terrestrial source that satisfies the following criterion: The material is a reasonably possible source for this element or its compounds in commerce, for industry or science; the material is not itself studied for some extraordinary anomaly and its isotopic composition has not been modified significantly in a geologically brief period. 21 To determine the atomic-weight value of an element having variations in the abundances of its stable isotopes in natural materials that result in a span of atomic-weight values (e.g., H, Li, B, C, N, etc.), the Commission typically has evaluated published variations in isotopic compositions, selected an atomic weight near the median value as the standard atomic weight, and assigned an uncertainty to encompass most or all of the published atomic-weight values. For example, for hydrogen (figure 1) the Commission selected at its 1981 meeting 22 a standard atomic-weight value of with an uncertainty of The Commission s concern that the chemical com- Figure 1. Variation in atomic weight with isotopic abundance of selected hydrogen-bearing materials Isotopic reference materials are designated by solid black circles. The previous (2007) standard atomic weight of hydrogen was (7). The atomic-weight uncertainty of the best measurement of isotopic abundance 20 is approximately ± , which is about 1000 times smaller than the uncertainty of the 2007 standard atomic weight CHEMISTRY International March-April 2011

4 No Longer Constants of Nature munity would have difficulty handling asymmetric uncertainties and that most computer programs would not be able to treat asymmetric uncertainties properly led the Commission always to adopt symmetric uncertainties for standard atomic-weight values, even in cases where asymmetric uncertainties were called for. This presentation method is unsatisfactory for several reasons: 1. Students and others commonly misinterpret the uncertainty value of the standard atomic weight as a measurement uncertainty, and they wonder why standard atomic weights cannot be determined more accurately. 2. In years following the determination of a new standard atomic weight, newly published natural variations provide atomic-weight values that commonly exceed the bounds of the newly adopted standard atomic-weight value; thus, standard atomic weights needed to be changed regularly or they did not reflect recently published scientific literature. 3. The standard atomic-weight value is commonly expected by readers to reflect a Gaussian distribution, and it does not reflect satisfactorily the bimodal distribution of some elements for example, that of boron and sulfur. 17,18 4. It is often difficult, or even impossible, to find a material with an atomic-weight value identical to the standard atomic weight. For example, finding a hydrogen-bearing material with an atomic weight of would be a challenge. Atomic-Weight Intervals A new presentation method for standard atomic weights of elements such as H, Li, B, C, and N was needed. At its meeting in 2009 in Vienna, the Commission decided to express the standard atomic weight of hydrogen and nine other elements in a manner that clearly indicates that the values are not constants of nature. 24 The span of atomic-weight values in normal materials is termed the interval. The interval is used together with the symbols [a; b] to denote the set of values x for which a x b, where b > a and where a and b are the lower and upper bounds, respectively. 25 Neither the upper nor lower bounds have any uncertainty associated with them; each is a considered decision by the Commission based on professional evaluation and judgment. Writing the Guidelines for Atomic-Weight Intervals* 1. The variation in atomic-weight values, A r (E), of an element E is termed an atomic-weight interval with the symbol [a; b], where a and b are the lower and upper bounds, respectively, of the interval; thus, for element E, a A r (E) b. 2. The standard atomic weight of an element, expressed as an interval, [a; b], should not be expressed as the average of a and b ± half of the difference between b and a. 3. The atomic-weight interval and range should not be confused. The atomic-weight range is equal to b a, where a and b are the lower and upper bounds, respectively. 4. The lower and upper bounds commonly are determined from mass spectrometric measurements of normal materials, taking into account both the uncertainties of the measurements and the uncertainty of the best measurement of isotopic abundances of an element used to determine its 2007 standard atomic weight. 5. The atomic-weight interval encompasses atomic-weight values of all normal materials. 6. Both lower and upper bounds are consensus values, and neither has any uncertainty associated with it. 7. The atomic-weight interval is the standard atomic weight, which is the best knowledge of the atomic weights of natural terrestrial sources. 8. The number of significant figures in the lower and upper bounds are adjusted so that mass spectrometric measurement uncertainties do not impact the bounds. 9. The number of significant figures in the lower and upper bounds should be identical. A zero as a trailing digit in a value may be needed and is acceptable. 10. The atomic-weight interval is selected conservatively so that changes in the Table of Standard Atomic Weights are needed infrequently. Thus, IUPAC s Commission on Isotopic Abundances and Atomic Weights may recommend additional conservatism and may reduce the number of significant figures. 11. The atomic-weight interval is given as precisely as possible and should have as many digits as possible, consistent with the previously stated rules. 12. Values of atomic-weight intervals are updated in the Table of Standard Atomic Weights by the Commission following completion of an IUPAC project reviewing the published literature for peer-reviewed isotopic-abundance data. 13. If the variation in isotopic composition in normal materials of an element is under evaluation by an IUPAC project, a footnote r may be retained in the Table of Standard Atomic Weights until the project completes its evaluation in order that changes to the tables are infrequent. Currently, such elements include He, Ni, Cu, Zn, Se, Sr, Ar, and Pb. *See reference 24 for more details. CHEMISTRY International March-April

5 Atomic Weights standard atomic weight of hydrogen as [ ; ] indicates that the atomic weight in any normal material will be greater than or equal to and will be less than or equal to Thus, the atomicweight interval is said to encompass atomic-weight values of all normal materials. The range of an interval is the difference between b and a that is, b a. 25 Thus, the range of the atomic-weight interval of hydrogen is calculated as = The lower bound of an atomic-weight interval is determined from the lowest atomic weight determined by the Commission s evaluations, taking into account the uncertainty of the measurement. Commonly, a mass spectrometrically determined isotope-delta measurement 17,18 is the basis for the determination of the bound. In addition to the uncertainty in the isotope-delta measurement, the uncertainty in the atomic weight of the material anchoring the delta scale is also taken into account. 17,18 If substance P is the normal terrestrial material having the lowest atomic weight of element E, then lower bound = lowest A r (E) P U[A r (E)] P where U[A r (E)] P is the combined uncertainty that incorporates the uncertainty in the measurement of the delta value of substance P and the uncertainty in relating the delta-value scale to the atomic-weight scale. For hydrogen, the substance with the lowest published, evaluated 2 H abundance is hydrogen gas in a natural gas well, 17,18 and for it A r (H) = , and U[A r (H)] = Thus, the lower bound is The combined uncertainty constrains the number of significant figures in the atomic-weight value of the bound. For hydrogen, the sixth digit after the decimal point is uncertain; therefore, the value is truncated to five digits after the decimal point. For the lower bound of hydrogen, is truncated to The upper bound is determined in an equivalent manner, but for an upper bound, the trailing digit is increased to ensure the atomic-weight interval encompasses the atomic-weight values of all normal materials. The lower and upper bounds are evaluated so that the number of significant digits in each is identical. If a value ends with a zero, the zero may need to be included in the value to express the required number of digits. Elements whose 2007 atomic weights are now presented as intervals 24 are shown in the following table. Element name 2007 Atomic Weight Atomic Weight 24 hydrogen (7) [ ; ] lithium 6.941(2) [6.938; 6.997] boron (7) [10.806; ] carbon (8) [ ; ] nitrogen (2) [ ; ] oxygen (3) [ ; ] silicon (3) [28.084; ] sulfur (5) [32.059; ] chlorine (2) [35.446; ] thallium (2) [ ; ] The most recent periodic table (based on reference 24) is reproduced as a tear-off page on the back cover of this issue. In some cases, such as for trade and commerce, users may need a representative value for an element having an atomic-weight interval. Conventional atomic-weight values are conventional quantity values 25 and are provided by the Commission. 24 For example, the conventional atomic-weight value for hydrogen is Figure 2 (next page) is an example from IUPAC s periodic table of the isotopes for the educational community. 26 The isotopic abundances of an element are shown in a pie diagram. This figure shows four classifications of elements (from left to right): (a) those whose standard atomic weights are not constants of nature and that are assigned an interval, (b) those whose standard atomic weights are not constants of nature and that are not assigned an interval, (c) those whose atomic weight is a constant of nature because they have one stable isotope, and (d) those that have no standard atomic weight because they have no stable isotopes. This fundamental change in the presentation of the atomic weights represents an important advance in our knowledge of the natural world and will underscore the significance and contributions of chemistry to the well-being of humankind in the International Year of Chemistry in Ty Coplen <tbcoplen@usgs.gov> and Norman Holden <holden@bnl.gov> are members of the IUPAC Inorganic Chemistry Division. Ty Coplen is with the U.S. Geological Survey, in Reston, Virginia, USA. Norman Holden is at the National Nuclear Data Center of the Brookhaven National Laboratory in Upton, New York CHEMISTRY International March-April 2011

6 No Longer Constants of Nature Figure 2. Potential illustrations for elements in IUPAC s new periodic table of the isotopes for the educational community 26 with stable isotopic abundances shown as pie diagrams (from left to right): Element (chlorine) whose standard atomic weight is not a constant of nature and is an interval. Element (mercury) whose standard atomic weight is not a constant of nature and is not an interval. Element (arsenic) whose standard atomic weight is a constant of nature because it has one stable isotope. Element (americium) that has no stable isotopes and thus no standard atomic weight. References 1. F.W. Clarke, The Constants of Nature, Part 5. Recalculation of the Atomic Weights, Smithsonian Misc. Publ. 441 i xiv, (1882) Internationale Atomgewichte, Ber. dt. chem. Ges. 35 (1902) Periodic_Table-22Jun07b.pdf 4. F. Soddy, The Chemistry of Mesothorium. J. Chem. Soc. 99, (1911). 5. F. Soddy, Intra-Atomic Charge, Nature 92, (1913). 6. J.J. Thompson. Phil. Mag. 24, (1912). 7. G.P. Baxter and J.H. Wilson. J. Am. Chem. Soc. 30, (1908). 8. F. Soddy and H. Hyman. J. Chem. Soc. 105, (1914). 9. T.W. Richards and M.E. Lembert. J. Am. Chem. Soc. 36, (1914). 10. M. Dole, The Relative Atomic Weight of Oxygen in Water and in Air. J. Am. Chem. Soc. 57, 2731 (1935). 11. A.O. Nier and E.A. Gulbransen, Variations in the Relative Abundances of the Carbon Isotopes, J. Am. Chem. Soc. 61, (1939). 12. E. Wichers, J. Am. Chem. Soc. 74, (1952). 13. A.E. Cameron and E. Wichers, J. Am. Chem. Soc. 84, (1962). 14. IUPAC, Pure Appl. Chem. 21, (1970). 15. CIAAW, as of 10 October N.E. Holden. Pure Appl. Chem. 52, (1980). 17. T.B. Coplen, J.K. Böhlke, P. De Bièvre, T. Ding, N.E. Holden, J.A. Hopple, H. R. Krouse, A. Lamberty, H.S. Peiser, K.M. Révész, S. E. Rieder, K.J.R. Rosman, E. Roth, P.D.P. Taylor, R.D. Vocke, Jr., and Y.K. Xiao. Pure Appl. Chem. 74, (2002). 18. T.B. Coplen, J.A. Hopple, J.K. Böhlke, H.S. Peiser, S.E. Rieder, H.R. Krouse, K.J.R. Rosman, T. Ding, R.D. Vocke, Jr., K.M. Révész, A. Lamberty, P. Taylor, and P. De Bièvre. Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents: U.S. Geological Survey Water- Resources Investigations Report , 98 p (2001). 19. M. Butzenlechner, A. Rossmann, and H.-L. Schmidt. J. Agric. Food Chem. 37, (1989). 20. M. Berglund and M.E. Wieser. Pure Appl. Chem. 83, (2011) and reference 29 therein. 21. H.S. Peiser, N.E. Holden, P. De Bièvre, I.L. Barnes, R. Hagemann, J.R. De Laeter, T.J. Murphy, E. Roth, M. Shima, and H.G. Thode. Pure Appl. Chem. 56, (1984). 22. N.E. Holden and R.L. Martin, Pure Appl. Chem. 55, (1983). 23. M.E. Wieser and M. Berglund. Pure Appl. Chem. 81, (2009). 24. M.E. Wieser and T.B. Coplen. Pure Appl. Chem. 83, (2011). 25. JCGM 200:2008, International Vocabulary of Metrology Basic and General Concepts and Associated Terms (VIM, 3rd ed.), CHEMISTRY International March-April

Subcommittee on Natural Assessment of Fundamental Understanding of Isotopes of IUPAC

Subcommittee on Natural Assessment of Fundamental Understanding of Isotopes of IUPAC Subcommittee on Natural Assessment of Fundamental Understanding of Isotopes of IUPAC Summary Minutes of Meeting December 5 6, 2016, U.S. Geological Survey, Reston, Virginia, USA IUPAC Project 2015-030-2-200

More information

Unit 3 Atomic Structure

Unit 3 Atomic Structure Name: Unit 3 Atomic Structure Scientist Year Contribution and/ or Experimental Work Democritus Aristotle Alchemists Boyle Franklin Dalton Avogadro Mendeleev Moseley 1 Scientist Year Contribution and/ or

More information

1 Arranging the Elements

1 Arranging the Elements CHAPTER 12 1 Arranging the Elements SECTION The Periodic Table BEFORE YOU READ After you read this section, you should be able to answer these questions: How are elements arranged on the periodic table?

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 25 g sample of sugar is found to contain 51.4% oxygen by mass. Another 250 g sample

More information

Unit 2.3 Atomic Theory & Periodic Table

Unit 2.3 Atomic Theory & Periodic Table Unit 2.3 Atomic Theory & Periodic Table Dalton s Atomic Theory (1804) From his experiments and observations, as well as the work from peers of his time, Dalton proposed a new theory of the atom. This later

More information

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists:

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists: EXTRA HOMEWORK 1A 1. When Dalton proposed that matter was composed of atoms, why was his Atomic Theory accepted? 2. For the following two compounds between oxygen and hydrogen: Mass of O Mass of H Compound

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol.

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. Teacher Workbooks Science and Nature Series Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. 1 Copyright 23 Teachnology Publishing Company A Division of Teachnology,

More information

Unit 3. Atoms and molecules

Unit 3. Atoms and molecules Unit 3. Atoms and molecules Index. s and compounds...2.. Dalton's Atomic theory...2 2.-The atom...2 3.-Atomic number and mass number...2 4.-Isotopes, atomic mass unit and atomic mass...3 5.- configuration...3

More information

Activity # 2. Name. Date due. Assignment on Atomic Structure

Activity # 2. Name. Date due. Assignment on Atomic Structure Activity # 2 10 Name Date Date due Assignment on Atomic Structure NOTE: This assignment is based on material on the Power Point called Atomic Structure, as well as pages 167-173 in the Science Probe textbook.

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

1 Arranging the Elements

1 Arranging the Elements CHAPTER 11 1 Arranging the Elements SECTION The Periodic Table BEFORE YOU READ After you read this section, you should be able to answer these questions: How are elements arranged on the periodic table?

More information

Atoms, Elements, and the Periodic Table Part 1: The Atomic Model

Atoms, Elements, and the Periodic Table Part 1: The Atomic Model Atoms, Elements, and the Periodic Table Part 1: The Atomic Model Atomic Theory Timeline The atomic model has changed over time. For over two centuries, scientists have created different models of the atom.

More information

All atoms of an element must have the same number of protons but not neutrons.

All atoms of an element must have the same number of protons but not neutrons. Counting Atoms Key Terms atomic number nuclide mole isotope unified atomic mass unit Avogadro s number mass number average atomic mass molar mass Consider neon, Ne, the gas used in many illuminated signs.

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

CHAPTER 3 THE ATOM. 1. Matter is composed extremely small particles called atoms

CHAPTER 3 THE ATOM. 1. Matter is composed extremely small particles called atoms CHAPTER 3 THE ATOM Read pgs. 107-110 I. History Democritus Greek philosopher, 400 B.C., said all matter is made up of small, indivisible particles he called atoms (Greek for indivisible ). He wasn t believed

More information

Chapter 4 What are Atoms?

Chapter 4 What are Atoms? Chapter 4 What are Atoms? For over two thousand years, learned people wondered what matter was made of. In the 1800s, scientists found evidence that all matter was comprised of atoms. Now in the twenty-first

More information

Dear PAP Chemistry Students,

Dear PAP Chemistry Students, Dear PAP Chemistry Students, Welcome to Pre-AP Chemistry. We hope you are as excited to take this course as we are excited to teach this course. You have chosen to study one of the building blocks of science.

More information

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements Multiple Choice Questions 1) In a chemical reaction, matter is neither created or destroyed. Which law does this refer to? A) Law

More information

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc.

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc. Chapter 3 Atoms and Elements 3.1 Classification of Matter Copyright 2009 by Pearson Education, Inc. 1 Matter Matter is the stuff that makes up all things. Copyright 2009 by Pearson Education, Inc. 2 Pure

More information

Atomic Number. Mass Number. Counting Subatomic Particles

Atomic Number. Mass Number. Counting Subatomic Particles Counting Subatomic Particles Now that scientists have discovered that atoms can be subdivided into subatomic particles, there was a new problem. How do we count subatomic particles? We use terms like atomic

More information

CHEMISTRY - ZUMDAHL 2E CH.1 - CHEMICAL FOUNDATIONS.

CHEMISTRY - ZUMDAHL 2E CH.1 - CHEMICAL FOUNDATIONS. !! www.clutchprep.com CONCEPT: MATTER Chemistry is the study of matter and the changes it undergoes, with the being its basic functional unit. When two or more of these elements chemically bond together

More information

UNIT 4 ATOMIC THEORY

UNIT 4 ATOMIC THEORY UNIT 4 ATOMIC THEORY 1. Atomic theory: Dalton s model Thomson s model Rutherford s model Bohr s model Electron cloud model 2. Particles inside the atom Atomic number Mass number 3. Ions Cations Anions

More information

Chapter 2 Atoms and Elements

Chapter 2 Atoms and Elements 1 Chapter 2 Atoms and Elements Sec 2.3 Modern Atomic Theory and the Laws That Led to it Law of conservation of mass states that in a chemical reaction, matter is neither created nor destroyed. Law of definite

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

VIII. Progression of the atomic model Democritus/Dalton --> Thomson --> Rutherford --> Bohr --> Quantum Mechanical

VIII. Progression of the atomic model Democritus/Dalton --> Thomson --> Rutherford --> Bohr --> Quantum Mechanical HISTORY OF ATOMIC THEORY NOTES I. Ancient Greeks A. Aristotle ~ believed there were 4 elements: B. Democritus ~ believed in the "particle theory": ~ named the small particles "atoms" which means II. Dalton

More information

Chemistry: The Study of Change Chang & Goldsby 12 th edition

Chemistry: The Study of Change Chang & Goldsby 12 th edition Chemistry: The Study of Change Chang & Goldsby 12 th edition modified by Dr. Hahn Chapter 1 Chemistry: A Science for the 21 st Century (2) Materials and Technology Polymers, liquid crystals photovoltaic

More information

Unit 2: Atomic Structure Additional Practice

Unit 2: Atomic Structure Additional Practice Name: Unit 2: Atomic Structure Additional Practice Period: 1. Which particles have approximately the same mass? an electron and an alpha particle an electron and a proton a neutron and an alpha particle

More information

In this activity, you will use the same information they had to construct your own periodic table.

In this activity, you will use the same information they had to construct your own periodic table. Building the Periodic Table from Scratch Name: Period: Introduction: Before the periodic table could be built, the individual elements had to be found and their properties tested. Although elements such

More information

Full file at

Full file at 16 Chapter 2: Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element. a.

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Properties of Atoms and The Periodic Table. Ch 16, pg

Properties of Atoms and The Periodic Table. Ch 16, pg Properties of Atoms and The Periodic Table Ch 16, pg. 488-506 Today s Learning Objectives Describe the 5 models of the atom. Be able to arrange the 5 models of the atom in order. Explain why the models

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

CHEMISTRY - TRO 4E CH.2 - ATOMS & ELEMENTS.

CHEMISTRY - TRO 4E CH.2 - ATOMS & ELEMENTS. !! www.clutchprep.com CONCEPT: GROUP NAMES AND CLASSIFICATIONS Ever wonder where did this periodic table ever come from? At the end of the 18 th century, Lavoisier compiled a list of the 23 elements known

More information

CHEMISTRY - MCMURRY 7E CH.2 - ATOMS, MOLECULES AND IONS.

CHEMISTRY - MCMURRY 7E CH.2 - ATOMS, MOLECULES AND IONS. !! www.clutchprep.com CONCEPT: GROUP NAMES AND CLASSIFICATIONS Ever wonder where did this periodic table ever come from? At the end of the 18 th century, Lavoisier compiled a list of the 23 elements known

More information

Ch. 3 Answer Key. O can be broken down to form two atoms of H and 1 atom of O. Hydrogen and oxygen are elements.

Ch. 3 Answer Key. O can be broken down to form two atoms of H and 1 atom of O. Hydrogen and oxygen are elements. Ch. 3 Answer Key 1. The Greeks believed that all matter is made of elements. We currently believe the same thing. However, the Greeks believed that there were 4 elements: earth, water, air and fire. Instead,

More information

Unit: Food and Cooking Sternberg Task It s Elementary

Unit: Food and Cooking Sternberg Task It s Elementary The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Page 1 of 9. Website: Mobile:

Page 1 of 9. Website:    Mobile: Question 1: Did Dobereiner s triads also exist in the columns of Newlands Octaves? Compare and find out. Only one triad of Dobereiner s triads exists in the columns of Newlands octaves. The triad formed

More information

A pure substance that cannot be broken down into simpler substances Elements are made up of identical atoms

A pure substance that cannot be broken down into simpler substances Elements are made up of identical atoms Atoms and Elements Objective: S1-2-03 Define element and identify symbols of some common elements & S1-2-04 Explain the atomic structure of an element in terms of the number of protons, electrons, and

More information

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram: Teacher: Mr. gerraputa Print Close Name: 1. Given the electron dot diagram: The valence electrons represented by the electron dot diagram could be those of atoms in Group 1. 13 3. 3 2. 15 4. 16 2. Which

More information

Exam Accelerated Chemistry Study Sheet Chap 04 The Atom/Periodic Table

Exam Accelerated Chemistry Study Sheet Chap 04 The Atom/Periodic Table Exam Accelerated Chemistry Study Sheet Chap 04 The Atom/Periodic Table Name /87 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statements by changing

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory Review of the Discovery of the Atom 1803 John Dalton discovered that elements are made of atoms. He thought that atoms were solid, like a marble. 1875 Crooks discovered the electron.

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information

Periodic Table Practice Questions

Periodic Table Practice Questions Periodic Table Practice Questions 1. Elements in the Periodic Table are arranged according to their (1) atomic number (3) relative activity (2) atomic mass (4) relative size 2. Elements in a given period

More information

Drake Chemistry Isotopic Pennies Name: Atomic Structure Unit Isotopic Pennies

Drake Chemistry Isotopic Pennies Name: Atomic Structure Unit Isotopic Pennies Introduction At the beginning of the 19 th century, John Dalton proposed a new atomic theory all atoms of the same element are identical to one another and equal in mass. It was a simple yet revolutionary

More information

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4)

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) Unit 3 Assignment Packet Name: Period: A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) 1. Democritus, who lived in Greece during the 4 th century B.C., suggested that is made up of tiny particles

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

Week 2/Tu: Lecture Units 2 & 3

Week 2/Tu: Lecture Units 2 & 3 Week 2/Tu: Lecture Units 2 & 3 Unit 1: Introduction -- Course Outline & Rules -- SI units & Dimensions -- Calculations, Accuracy & Precision Unit 2: Atomic Theory & Nomenclature -- States of Matter --

More information

Chapter 2: Atoms. 2.1 (a) NaClO3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222.

Chapter 2: Atoms. 2.1 (a) NaClO3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222. 2.1 (a) NaClO3 (b) AlF3 2.2 (a) The mass number is 15 + 16 = 31. (b) The mass number is 86 + 136 = 222. 2.3 (a) The element has 15 protons, making it phosphorus (P); its symbol is 31 P 15. (b) The element

More information

History of the Periodic Table

History of the Periodic Table SECTION 5.1 History of the Periodic Table By 60, more than 60 elements had been discovered. Chemists had to learn the properties of these elements as well as those of the many compounds that the elements

More information

Early Models of the Atom

Early Models of the Atom Early Models of the Atom An atom is the smallest particle of an element that retains its identity in a chemical reaction. Although early philosophers and scientists could not observe individual atoms,

More information

Atomic Structure. 1. Democritus 2. Dalton 3. Thompson 4. Millikan 5. Moseley 6. Bohr 7. Rutherford 8. Schrodinger. October 03, 2014.

Atomic Structure. 1. Democritus 2. Dalton 3. Thompson 4. Millikan 5. Moseley 6. Bohr 7. Rutherford 8. Schrodinger. October 03, 2014. October 03, 2014 Atomic Structure Chapter 4 Democritus's Atomic Philosophy 1. Democritus 2. Dalton 3. Thompson 4. Millikan 5. Moseley 6. Bohr 7. Rutherford 8. Schrodinger Aristotle -Rejected the idea of

More information

Atoms and The Periodic Table

Atoms and The Periodic Table Atoms and The Periodic Table A. Early Models of the Atom 1. The earliest models of the atom came in the 5 th century B.C. when In the 4 th century, B.C., rejected this idea and proposed that earthly matter

More information

4.1 Structure of the Atom

4.1 Structure of the Atom 4.1 Structure of the Atom How do atoms differ from each other? What are atoms composed of? What are the subatomic particles? 2-1 Structure of the Atom Atoms actually are divisible. They are composed of

More information

Unit Two: Atomic Structure

Unit Two: Atomic Structure Unit Two: Atomic Structure TEKS 5: The student understands the historical development of the Periodic Table and can apply its predictive power. (b) use the Periodic Table to identify and explain the properties

More information

Chapter 2: Atoms. 2.1 (a) NaClO 3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222.

Chapter 2: Atoms. 2.1 (a) NaClO 3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222. 2.1 (a) NaClO 3 (b) AlF 3 2.2 (a) The mass number is 15 + 16 = 31. (b) The mass number is 86 + 136 = 222. 2.3 (a) The element has 15 protons, making it phosphorus (P); its symbol is 31 P 15. (b) The element

More information

Unit 2. Chemical Foundations: Elements, Atoms, and Ions

Unit 2. Chemical Foundations: Elements, Atoms, and Ions Unit 2 Chemical Foundations: Elements, Atoms, and Ions Memorize the list of elements You will have a quiz on this list. All of the elements will be on the quiz! Elements in the Earth System (% mass in

More information

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

IB Chemistry : Atomic Structure & History with Boardworks Enabled Interactives

IB Chemistry : Atomic Structure & History with Boardworks Enabled Interactives Atomic Structure Contents INTRODUCING ATOMS SUB ATOMIC PARTICLES HISTORY ATOMIC # & MASS # AVERAGE ATOMIC MASS MASS SPECTROMETER ELECTRON CONFIGURATION ISOTOPES SUMMARY ACTIVITIES ELEMENTS DIFFERENT TYPES

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

CHEM 171 EXAMINATION 1. October 9, Dr. Kimberly M. Broekemeier. NAME: Key

CHEM 171 EXAMINATION 1. October 9, Dr. Kimberly M. Broekemeier. NAME: Key CHEM 171 EXAMINATION 1 October 9, 008 Dr. Kimberly M. Broekemeier NAME: Key I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gase s 1 H 1.008 Li.941 11 Na.98 19 K 9.10 7

More information

- Dalton's theory sets LIMITS on what can be done with chemistry. For example:

- Dalton's theory sets LIMITS on what can be done with chemistry. For example: 34 - Dalton's theory sets LIMITS on what can be done with chemistry. For example: Chemistry can't convert lead (an element) into gold (another element). Sorry, alchemists! You can't have a compound form

More information

Atomic structure. The subatomic particles. - a small, but relatively massive particle that carres an overall unit POSITIVE CHARGE

Atomic structure. The subatomic particles. - a small, but relatively massive particle that carres an overall unit POSITIVE CHARGE 35 Atomic structure - Until the early 20th century, chemists considered atoms to be indivisible particles. - The discovery of SUBATOMIC PARTICLES changed the way we view atoms! PROTON NEUTRON ELECTRON

More information

Work hard. Be nice. Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule. Nitrogen Neon Carbon He

Work hard. Be nice. Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule. Nitrogen Neon Carbon He Name: Period: Date: UNIT 3: Electrons Lesson 4: The Octet Rule Do Now: By the end of today, you will have an answer to: What role do valence electrons play in chemical changes? Draw the following lewis

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

A few elements, including copper, silver, and gold, have been known for thousands of years.

A few elements, including copper, silver, and gold, have been known for thousands of years. CHEMISTRY & YOU Chapter The Periodic Organizing the Elements Classifying the Elements Periodic Trends How can you organize and classify elements? If you have ever played a card game, then you have probably

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Q1. The periodic table on the Data Sheet may help you to answer this question.

Q1. The periodic table on the Data Sheet may help you to answer this question. Q1. The periodic table on the Data Sheet may help you to answer this question. (a) Newlands and Mendeleev both designed periodic tables in which the elements were put in the order of their relative atomic

More information

TEST REVIEW GCAA Chemistry Atoms. A. Excited B. Energy C. Orbital D. Plum Pudding Model

TEST REVIEW GCAA Chemistry Atoms. A. Excited B. Energy C. Orbital D. Plum Pudding Model TEST REVIEW GCAA Chemistry Atoms From the Hangman Game-----Match the answers correctly! A. Excited B. Energy C. Orbital D. Plum Pudding Model E. Bohr F. Electron G. Frequency H. Neutron I. Thomson J. alpha

More information

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00 Chem 1711 Exam 1 September 26, 2013 Dr. Susan E. Bates Name 9:00 OR 10:00 N A = 6.022 x 10 23 mol 1 I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gases 1 H 1.008 3 Li

More information

A. Element 1. The number of protons and neutrons of an atom.

A. Element 1. The number of protons and neutrons of an atom. Unit 03: Test Review Atoms and Elements Key Term Definition A. Element 1. The number of protons and neutrons of an atom. B. Atom 2. The smallest particle of an element. C. Atomic Number 3. A primary substance

More information

SUMMARY (p. 44) The atom is % empty space and is composed of three particles. a. b. c.

SUMMARY (p. 44) The atom is % empty space and is composed of three particles. a. b. c. 2.1 Atomic Structure and Subatomic Particles (p. 40) There are two types of charge. 1. _ 2. Electrons In 1897 J. J. Thomson, using a cathode ray tube, measured the ratio of the charge-to-mass of the electron:

More information

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s Electronic Structure of Atoms and the Periodic table Chapter 6 & 7, Part 3 October 26 th, 2004 Homework session Wednesday 3:00 5:00 Electron Spin Quantum # m s Each electron is assigned a spinning motion

More information

1. Explain the law of conservation of mass in your own words. Matter is neither created nor destroyed in a chemical reaction.

1. Explain the law of conservation of mass in your own words. Matter is neither created nor destroyed in a chemical reaction. Chapter 3 Exam Review KEY I. Atomic Theory 1. Explain the law of conservation of mass in your own words. Matter is neither created nor destroyed in a chemical reaction. 2. What were Rutherford s two main

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table Name: Per: Test date: In-Class Quiz: Moodle Quiz: preap Learning Objectives Trace the historical development of the periodic table Identify the major groups and key features

More information

CHAPTER 3. Atoms: The Building Blocks of Matter

CHAPTER 3. Atoms: The Building Blocks of Matter CHAPTER 3 Atoms: The Building Blocks of Matter Origins of the Atom Democritus: Greek philosopher (460 BC - 370 BC) Coined the term atom from the Greek word atomos Democritus believes that atoms were indivisible

More information

Regents review Atomic & periodic

Regents review Atomic & periodic 2011-2012 1. The diagram below represents the nucleus of an atom. What are the atomic number and mass number of this atom? A) The atomic number is 9 and the mass number is 19. B) The atomic number is 9

More information

History of the Periodic Table

History of the Periodic Table Passage History of the Open just about any chemistry textbook and you will see a copy of the periodic table of elements. The periodic table is a framework for classifying information about the properties

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the Atom

More information

NUCLEAR MODEL. Electron cloud. Electron cloud. Nucleus. Nucleus

NUCLEAR MODEL. Electron cloud. Electron cloud. Nucleus. Nucleus 37 NUCLEAR MODEL - Atoms are mostly empty space - NUCLEUS, at the center of the atom, contains protons and neutrons. This accounts for almost all the mass of an atom - Electrons are located in a diffuse

More information

Discovered the electron

Discovered the electron Aubrey High School AP Chemistry 8 Atomic Theory Name Period Date / / 8.0 Prep Problems History of the Atom 1. Describe the contributions of the following scientists and their research to the theory of

More information

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his "periodic law" Modern periodic table

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his periodic law Modern periodic table 74 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

PERIODIC CLASSIFICATION

PERIODIC CLASSIFICATION 5 PERIODIC CLASSIFICATION OF ELEMENTS TEXTBOOK, QUESTIONS AND THEIR ANSWERS Q.1. Do Dobereiner s triads also exist in the columns of Newland s octaves? Compare and find out. Ans. Triad of Li, Na and K

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

Chapter 4: Atomic Structure Section 4.1 Defining the Atom

Chapter 4: Atomic Structure Section 4.1 Defining the Atom Chapter 4: Atomic Structure Section 4.1 Defining the Atom Early Models of the Atom atom the smallest particle of an element that retains its identity in a chemical reaction Democritus s Atomic Philosophy

More information

Putting it together... - In the early 20th century, there was a debate on the structure of the atom. Thin gold foil

Putting it together... - In the early 20th century, there was a debate on the structure of the atom. Thin gold foil 36 Putting it together... - In the early 20th century, there was a debate on the structure of the atom. RUTHERFORD EXPERIMENT Where do the particles go? Radioactive material A few bounce back A few particles

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above is a metal. Ans: A Difficulty:

More information

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 2 3 It s Elemental DIRECTIONS: Use the reading below to answer the questions that follow. We all know by now that

More information

Chemistry for Today General Organic and Biochemistry 9th Edition Seager

Chemistry for Today General Organic and Biochemistry 9th Edition Seager Chemistry for Today General Organic and Biochemistry 9th Edition Seager TEST BANK Full download at: https://testbankreal.com/download/chemistry-today-general-organic-biochemistry-9thedition-seager-test-bank/

More information

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding Chemistry 11 Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding 1. Atomic Models and Subatomic Particles: A. Subatomic Particles and Average Atomic Mass: - Subatomic

More information

ATOMS AND ELEMENTS. Democritus 400 B.C. Atomic Theory of Matter. Dalton s Postulates (1803) Page 1

ATOMS AND ELEMENTS. Democritus 400 B.C. Atomic Theory of Matter. Dalton s Postulates (1803) Page 1 ATOMS AND ELEMENTS Democritus 400 BC Believed that matter was composed of invisible particles of matter he called atoms According to Democritus, atoms could not be broken into smaller particles Atomic

More information