All you need is Neutrons season 2, episode 6 Part 1. PhD Student: Andrea TUMMINO Supervisors: Richard CAMPBELL (ILL); Imre VARGA (ELTE)

Size: px
Start display at page:

Download "All you need is Neutrons season 2, episode 6 Part 1. PhD Student: Andrea TUMMINO Supervisors: Richard CAMPBELL (ILL); Imre VARGA (ELTE)"

Transcription

1 ELTE University Chemistry Department Budapest Institut Laue-Langevin LSS group Grenoble All you need is Neutrons season 2, episode 6 Part 1 PhD Student: Andrea TUMMINO Supervisors: Richard CAMPBELL (ILL); Imre VARGA (ELTE)

2 Outline Polyelectrolytes and surfactants: a bit of chemistry; Some applications: from shampoos to biomedical; Bulk interactions and non-equilibrium effects: tuning surface properties; Aim of the project; Protein and polyelectrolyte/surfactant spread films at the air water interface: In the PSCM labs (surface tensiometry and ellipsometry); On FIGARO: compositional analysis by Neutron Reflectometry. Conclusions and future works

3 POLYELECTROLYTES AND SURFACTANTS Polyelectrolytes: a polymer (macromolecule) containing ionizable functional groups (amine, sulfonic acids, carboxylates ) in aqueous solution. PAA NaPSS NaDS DTAB Surfactants: Class of organic compounds composed of a hydrophilic head group and hydrophobic carbon chain. Their main feature is the ability to adsorb at the air/water interface, lowering the surface tension of the solution.

4 POLYELECTROLYTE/SURFACTANT MIXTURES IN EVERYDAY LIFE Polyelectrolyte-surfactant mixtures are widely used in everyday products 1 (detergents, shampoos etc.) Some biological polyelectrolytes, like proteins and DNA, are vital for life and can be exploited in applications such as drug & gene delivery 2. More work is required to underline the key factors of their interaction at interfaces and to understand the relation between surface and bulk properties.

5 POLYELECTROLYTE/SURFACTANT AGGREGATES: GOOD CANDIDATES FOR DRUG DELIVERY Drugs interaction with surfactant micelles and layers have been quite investigated 3,4. Oppositely charged polyelectrolytes multilayer have been used to improve stability of drug delivery systems 5,6 Oppositely charged polyelectrolyte/surfactant (P/S) aggregates could be used to enhance drug delivery in a trapped film at the air/water interace.

6 POLYELECTROLYTE/SURFACTANT MIXTURES: BULK INTERACTIONS AND NON EQUILIBRIUM EFFECTS 1.Mixing polyelectrolytes and surfactants close to the charge neutralization point results in the formation of aggregates; 2.Precipitation with sedimentation or creaming depletes the surface from active material; 3.Non equilibrium effects are observed: the sample history (the mixing order, redispersion) affects the properties of these systems, both at surfaces and in the bulk 7 ; Fixed polymer concentration: 100 ppm x-axis: surfactant concentration

7 POLYELECTROLYTE/SURFACTANT MIXTURES: BULK INTERACTIONS AND NON EQUILIBRIUM EFFECTS 1.Mixing polyelectrolytes and surfactants close to the charge neutralization point results in the formation of aggregates; O.D Fresh 1 day 1 week 1 month A 2.Precipitation with sedimentation or creaming depletes the surface from active material; DTAB B 3.Non equilibrium effects are observed: the sample history (the mixing order, redispersion) affects the properties of these systems, both at surfaces and in the bulk 7 ; [mn/m] Fresh 1 month 1 10 c SURF [mm] Fixed polymer concentration: 100 ppm x-axis: surfactant concentration

8 POLYELECTROLYTE/SURFACTANT MIXTURES: BULK INTERACTIONS AND NON EQUILIBRIUM EFFECTS 1.Mixing polyelectrolytes and surfactants close to the charge neutralization point results in the formation of aggregates; 2.Precipitation with sedimentation or creaming depletes the surface from active material; 3.Non equilibrium effects are observed: the sample history (the mixing order, redispersion) affects the properties of these systems, both at surfaces and in the bulk 7 ; Fixed polymer concentration: 100 ppm x-axis: surfactant concentration

9 AIM OF THE PROJECT 1) To investigate the penetration of polyelectrolyte-surfactant aggregates at the airwater interface and their spreading; 2) To understand the surface tension behaviour in relation to the changes taking place in the bulk; 3) To see if the surface behaviour can be explained in term of non equilibrium effects; 4) To investigate a surprising range of aggregate structures created; 5) Encapsulation and delivery of functional molecules (such as drugs) at the air/water interface TECHNIQUES Using: Surface Tensiometry; Ellipsometry; Brewster Angle Microscopy (BAM); Electrophoretic Mobility; UV-Vis Spectroscopy; Gravimetric Analysis, Neutron Reflectometry.

10 SURFACE TENSIOMETRY (1) The surface tension (γ) of a system is equal to its surface free energy 8 ; All the phenomena taking place spontaneously on a surface or at an interface (wetting, spreading, adhesion ) are driven by the principle of minimization of energy. Under thermodynamic control, several models can be used to predict the surface tension in relation to surface excess, Г. Those models fail when dealing with out of equilibrium systems.

11 SURFACE TENSIOMETRY (2): Surface pressure-area (π-a) isotherms Surface tension isotherms are useful tools to study adsorption at liquid interfaces. A typical measure system for π-a experiments is a very sensitive scale (tensiometer), a trough and two moving barriers (usually in PTFE). The isotherm is recorded during compression/expansion cycles: compressibility of the adsorbed film, molecular areas, collapse pressure, viscoelastic behaviour (and more) can be investigated through π-a isotherms.

12 Surface pressure (mn/m) Surface pressure (mn/m) DEFATTED HUMAN SERUM ALBUMIN (DFHSA) π-a ISOTHERMS expansion Barrier position (mm) Barrier position (mm) Series1 Series2 Series3 Series4 Series5 compression Series1 Series2 Series3 Series4 Series5 Premixed samples 20 drops DFHSA 0,1 mg/ml in 100 ml pure water; Surface cleaned; 5 compression/expansion cycles: barriers rate set at 8,2 mm/min. Slow adsorption, diffusion Spread samples 10 drops DFHSA 0,1 mg/ml spread on 50 ml pure water (the same concentration!); 5 compression/expansion cycles: barriers rate set at 8,2 mm/min. Film trapped and hysteresis, no collapse!

13 ELLIPSOMETRY In ellipsometry, a polarized monochromatic light beam is reflected from a surface and the change in the polarization of the light is detected. The relative attenuation, Ψ, and the relative phase shift, Δ, depend on the optical properties (dielectric function, ε) of the interface and on the angle of incidence θ. Ψ and Δ are related to the ellipticity coefficient, ρ:

14 Surface pressure (mn/m) COMBINED ELLIPSOMETRY AND π-a ISOTHERMS OF DFHSA FILM Series1 Series2 Series3 Series4 Series Barrier position (mm) The surface excess is periodic. Maxima at full compression and minima when the trough is fully expanded do not vary significantly: No depletion of material, film annealed to a more stable and durable morphology

15 NEUTRON REFLECTOMETRY Specular neutron reflectometry (NR) is a powerful technique that allows us to obtain structural and compositional information of thin films and interfaces (thickness, density, roughness). A reflectivity profile is usually plotted as intensity of the reflected beam/intensity of the direct beam vs. the momentum transfer normal to the interface, Q z D2O 50 nm (SLD=3.5)

16 NEUTRON REFLECTOMETRY ON FIGARO NR in general allows us to obtain different information in the same measurement: 1. Thickness of the adsorbed layer and the surface roughness (specular); 2. Composition of the adsorbed layer (specular); 3. Detailed information about surface structures (specular and off-specular); FIGARO s advantages 9,10,11 : a. Low natural incident angle and maximized flux with versatility from choppers; b. Broad range of Q (relevant for kinetics), scattering investigated through a Time of Flight 2D detector; c. Optimized for liquid interfaces.

17 COMPOSITIONAL ANALISYS BY NEUTRON REFLECTOMETRY ON FIGARO (1) measure in water contrast matched to air (SLD=0) in 2 isotopic contrasts: I. with polymer & deuterated surfactant II. with polymer & surfactant that is contrast matched to the air record data only at low Q to get 2 effective scattering excesses (SLD x d); solve simultaneous equations to calculate directly the surface excesses: (SLD x d) 1 = Na x (Γ surf x SL surf + Γ poly x SL poly ) (SLD x d) 2 = Na x Γ poly x SL poly For a single component DTAB NaPSS

18 NaPSS COMPOSITIONAL ANALISYS BY NEUTRON REFLECTOMETRY ON FIGARO (2) DTAB Only a few hours of beam time on FIGARO were used to study 2 sample histories at 2 ionic strengths in 2 isotopic contrasts. Double surface excess from spreading than adsorption (trapped films direct proof); Interfacial composition is equivalent in both ionic strengths (driven by electrostatics) System Γ surf Γ poly Adsorb/no salt Adsorb/salt Spread/no salt Spread/salt dark green overlapping dark blue: d-dtab, spread (salt and water) brown overlapping dark orange: d-dtab, adsorbed (salt and water) light blue / light green: cm-dtab, spread (salt and water) red overlapping yellow: cm-dtab, adsorbed (salt and water)

19 Surface pressure (mn/m) Surface pressure (mn/m) Surface pressure (mn/m) Surface pressure (mn/m) NaPSS/DTAB TRAPPED FILM: π-a ISOTHERMS Water 100 ppm PSS + 6 mm DTAB: 500 μl spread on 125 ml subphase NaCl 100 mm Series1 Series2 Series3 Series4 Series5 Series6 Series7 Series Barrier position (mm) expansion compression expansion Barrier position (mm) compression Series1 Series2 Series3 Series4 Series5 Series6 Series7 Series Series1 30 Series Series2 Series3 Series4 Series Series2 Series3 Series4 Series Barrier position (mm) Series6 10 Series7 5 Series Barrier position (mm) Series6 Series7 Series8

20 NaPSS/DTAB MIXTURES π-a ISOTHERMS 100 ppm PSS + 6 mm DTAB: 500 μl spread on 125 ml pure water Large hysteresis after the first cycle; Collapse pressure of 28 mn/m; Behaviour approaching a limiting cycle. Questions 1) Is the large hysteresis related to material loss? 2) Is the film durable? 3) Does the composition of the adsorbed layer change during the consecutive cycles? 4) Can we use NR to answer these questions?

21 REAL TIME, IN SITU COMPOSITIONAL ANALISYS (1) Significant loss of material during the first cycle; After, a limit cycle is reached highlighting the trapped nature of the film; Surfactant/polymer ratio: 1/1 at higher compression, more surfactant when fully expanded; With the new Low Q approach, two minutes scans are enough to obtain the composition (only on FIGARO).

22 REAL TIME, IN SITU COMPOSITIONAL ANALISYS (1) Significant loss of material during the first cycle; After, a limit cycle is reached highlighting the trapped nature of the film; Surfactant/polymer ratio: 1/1 at higher compression, more surfactant when fully expanded; With the new Low Q approach, two minutes scans are enough to obtain the composition (only on FIGARO).

23 CONCLUSIONS Techniques 1. Ellipsometry is an easy, cheap and fast way to obtain the surface excess of single component system; 2. Neutron reflectometry is needed to resolve the interfacial properties of more complex mixtures; 3. Neutrons are the most powerful and most direct probe to quantify the amount of organic material at the air/water interface. HSA I. The surface tension behaviour of HSA spread film can be related to morphological changes of the interface; II. The annealing of the layer produces a more stable and durable film. PSS/DTAB mixtures A. It has been shown that it is possible to tune surface properties by exploiting non equilibrium effects; B. For PSS/DTAB spread films, the ionic strength does not affect the chemical composition of the layer; C. The presence of NaCl does not compromise the film stability under the conditions studied which was a surprise; D. For the first time, it has been possible on FIGARO to follow quantitatively the evolution of a mixed system at the air/water interface in a Langmuir experiment.

24 FOR THE FUTURE a) Explore the behaviour of other polyelectrolyte/surfactant aggregates; b) Investigate the effect of temperature on trapped film and aggregates spreading; c) Investigate further the role of ionic strength on film stability; d) To study the behavior of polyelectrolyte/surfactant aggregates under flowing condition (overflowing cylinder); e) Encapsulation of molecules relevant for biomedical application; f) To exploit aggregates spreading to trigger the delivery of functional molecules, such as drugs and genes, to liquid interfaces. References: [1] Kwak, J. C. T., Ed. Polymer-surfactant systems, Marcel Dekker: New York, 1998, Vol. 77; [2] Donkuru, M.; Badea, I.; Wettig, S.; Verrall, R.; Elsabahy, M.; Foldvari, M. Nanomedicine 2010, 5, 1103; [3] P. Talele, S. Choudhary, N. Kishore, The Journal of Chemical Thermodynamics 2016, 92,182; [4] MF. Nazar et al, Fluid Phase Equilibra 2015, 406, 47; [5] S. Jeon, C. Young Yoo, S. Nam Park, Colloids and Surfaces B: Biointerfaces 2015, 129, 7; [6] M. Adamczack, A. Kupiec, E. Jarek K. Szczepanowicz, P. Warszynski, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 462, 147; [7] Mészáros, R.; Thompson, L.; Bos, M.; Varga, I.; Gilányi, T. Langmuir 2003, 19, 609; [8] S. W. Ip, J. M. Toguri Journal, Of Material Science, 29 (1994) 688; [9] Á. Ábraham, R. A. Campbell & I. Varga, Langmuir, 2013, 29, 11554;.[10] Á. Ábrahám, A. Kardos, A. Mezei, R. A. Campbell & I. Varga,, Langmuir, 2014, 30, 4970; [11] H. Fauser, R. von Klitzing & R. A. Campbell, J. Phys. Chem. B, 2015, 119, 348.

25 THANKS FOR YOUR ATTENTION!

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support Monolayers Adsorption as process Adsorption of gases on solids Adsorption of solutions on solids Factors affecting the adsorption from solution Adsorption of amphiphilic molecules on solid support Adsorption

More information

Electronic Supporting Information. Adsorption versus aggregation of NIPAM nanogels: new insight into their

Electronic Supporting Information. Adsorption versus aggregation of NIPAM nanogels: new insight into their Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supporting Information Adsorption versus aggregation of NIPAM nanogels:

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

Critical Micellization Concentration Determination using Surface Tension Phenomenon

Critical Micellization Concentration Determination using Surface Tension Phenomenon Critical Micellization Concentration Determination using Phenomenon 1. Introduction Surface-active agents (surfactants) were already known in ancient times, when their properties were used in everyday

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Lecture 4. Donnan Potential

Lecture 4. Donnan Potential Lecture 4 Langmuir-Blodgett films II Langmuir Blodgett films. II. Donnan Potential Floating monolayers Generally, amphiphilic molecules adsorb on the liquid-air interface Insoluble amphiphiles can create

More information

Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry

Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry R. Krastev, N. Ch. Mishra, Chr. Delajon, H. Möhwald Max-Planck Institute of Colloids and Interfaces, Golm/Potsdam Th. Gutberlet

More information

The Origins of Surface and Interfacial Tension

The Origins of Surface and Interfacial Tension The Origins of Surface and Interfacial Tension Imbalance of intermolecular forces exists at the liquid-air interface γ la= the surface tension that exists at the liquid-air interface Suppose we have a

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surfaces and Interfaces Defining of interfacial region Types of interfaces: surface vs interface Surface

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surfaces and Interfaces Defining of interfacial region Types

More information

R =! Aco! What is formulation?

R =! Aco! What is formulation? 1 / 36! AIChE 1rst International Conference on Upstream Engineering and Flow Assurance Houston April 1-4, 2012 2 / 36! Physico-chemical Formulation! Emulsion Properties vs Formulation! Applications! Jean-Louis

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

AMOR the time-of-flight neutron reflectometer at SINQ/PSI

AMOR the time-of-flight neutron reflectometer at SINQ/PSI PRAMANA c Indian Academy of Sciences Vol. 63, No. 1 journal of July 2004 physics pp. 57 63 AMOR the time-of-flight neutron reflectometer at SINQ/PSI MUKUL GUPTA 1, T GUTBERLET 1, J STAHN 1, P KELLER 1

More information

Langmuir and Langmuir-Blodgett Deposition Troughs

Langmuir and Langmuir-Blodgett Deposition Troughs Langmuir and Langmuir-Blodgett Deposition Troughs Thin Film Coatings with Controlled Packing Density Sophisticated Thin Film Technology Thin film coatings Coatings and thin films made from nanoparticles

More information

Adsorption and desorption of lysozyme on thermosensitive nano-sized magnetic particles and its conformational changes

Adsorption and desorption of lysozyme on thermosensitive nano-sized magnetic particles and its conformational changes Adsorption and desorption of lysozyme on thermosensitive nano-sized magnetic particles and its conformational changes N. Shamim, L. Hong, K. Hidajat, M. S. Uddin * Department of Chemical and Biomolecular

More information

IPR Temperature Response of Aqueous Solutions of a Series of Pyrene End- Labeled Poly(N-isopropylacrylamide)s Probed by Fluorescence

IPR Temperature Response of Aqueous Solutions of a Series of Pyrene End- Labeled Poly(N-isopropylacrylamide)s Probed by Fluorescence Temperature Response of Aqueous Solutions of a Series of Pyrene End- Labeled Poly(N-isopropylacrylamide)s Probed by Fluorescence M. Fowler, J. Duhamel, F. M. Winnik, X.-P. Qiu IPR Symposium, University

More information

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity Surfaces of Biomaterials Three lectures: 1.23.05 Surface Properties of Biomaterials 1.25.05 Surface Characterization 1.27.05 Surface and Protein Interactions Review Bulk Materials are described by: Chemical

More information

Fundamentals of Interfacial Science Adsorption of surfactants

Fundamentals of Interfacial Science Adsorption of surfactants Fundamentals of Interfacial Science This brief introduction into interfacial phenomena is thought to help users of interfacial measuring technique to better understand what instrument is most suitable

More information

SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM

SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM SYNTHESIS AND PROCESSING OF METALLIC NANOMATERIALS USING CO 2 EXPANDED LIQUIDS AS A GREEN SOLVENT MEDIUM Christopher Kitchens Dept. of Chemical and Biomolecular Engineering Clemson University, SC ENGINEERED

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

SUPPLEMENTARY MATERIAL FOR. Active rheology of membrane actin: sliding vs. sticking conditions

SUPPLEMENTARY MATERIAL FOR. Active rheology of membrane actin: sliding vs. sticking conditions FOR Active rheology of membrane actin: sliding vs. sticking conditions Silvia Isanta a, Gabriel Espinosa b, Ruddi Rodríguez-García a, Paolo Natale c, Ivan López-Montero a, Dominique Langevin b and Francisco

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Interactions of PAMAM Dendrimers with SDS at the Solid Liquid Interface

Interactions of PAMAM Dendrimers with SDS at the Solid Liquid Interface pubs.acs.org/langmuir Terms of Use Interactions of PAMAM Dendrimers with SDS at the Solid Liquid Interface Marianna Yanez Arteta,*, Felix Eltes, Richard A. Campbell, and Tommy Nylander Department of Physical

More information

Ionic-Self Assembly (ISA) as a route towards (highly ordered,liquid crystalline) nanomaterials with new architecture

Ionic-Self Assembly (ISA) as a route towards (highly ordered,liquid crystalline) nanomaterials with new architecture Ionic-Self Assembly (ISA) as a route towards (highly ordered,liquid crystalline) nanomaterials with new architecture Markus Antonietti Max Planck Institute of Colloids and Interfaces Research Campus Golm,

More information

Solid-liquid interface

Solid-liquid interface Lecture Note #9 (Spring, 2017) Solid-liquid interface Reading: Shaw, ch. 6 Contact angles and wetting Wetting: the displacement from a surface of one fluid by another. A gas is displaced by a liquid at

More information

Molecular Insights in the Structure and Layered Assembly of Polyelectrolytes at the Oil/Water Interface

Molecular Insights in the Structure and Layered Assembly of Polyelectrolytes at the Oil/Water Interface pubs.acs.org/jpcc Molecular Insights in the Structure and Layered Assembly of Polyelectrolytes at the Oil/Water Interface Ellen J. Robertson and Geraldine L. Richmond* Department of Chemistry, University

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Colloid Science Principles, methods and applications

Colloid Science Principles, methods and applications Colloid Science Principles, methods and applications Second Edition Edited by TERENCE COSGROVE School of Chemistry, University of Bristol, Bristol, UK WILEY A John Wiley and Sons, Ltd, Publication Contents

More information

Module 4: "Surface Thermodynamics" Lecture 22: "" The Lecture Contains: Examples on Effect of surfactant on interfacial tension. Objectives_template

Module 4: Surface Thermodynamics Lecture 22:  The Lecture Contains: Examples on Effect of surfactant on interfacial tension. Objectives_template The Lecture Contains: Examples on Effect of surfactant on interfacial tension file:///e /courses/colloid_interface_science/lecture22/22_1.htm[6/16/2012 1:10:07 PM] Example Consider liquid, its vapors and

More information

SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE

SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE Denny Vitasari 1*, Paul Grassia 2, Peter Martin 2 1 Chemical Engineering Department, Universitas Muhammadiyah Surakarta

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Protein Synthetic Lipid Interactions

Protein Synthetic Lipid Interactions Acta Biophysica Romana 2006 22-24 Febbraio Università di Roma - Tor Vergata Protein Synthetic Lipid Interactions Silvia Tardioli and Adalberto Bonincontro CNISM-Dipartimento di Fisica Camillo La Mesa Dipartimento

More information

Structure of Polystyrenesulfonate/Surfactant Mixtures at Air Water Interfaces and Their Role as Building Blocks for Macroscopic Foam

Structure of Polystyrenesulfonate/Surfactant Mixtures at Air Water Interfaces and Their Role as Building Blocks for Macroscopic Foam This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation

More information

Electrostatic Self-assembly : A New Route Towards Nanostructures

Electrostatic Self-assembly : A New Route Towards Nanostructures 1 Electrostatic Self-assembly : A New Route Towards Nanostructures J.-F. Berret, P. Hervé, M. Morvan Complex Fluids Laboratory, UMR CNRS - Rhodia n 166, Cranbury Research Center Rhodia 259 Prospect Plains

More information

In-situ ellipsometry studies of thin swollen films, a review

In-situ ellipsometry studies of thin swollen films, a review In-situ ellipsometry studies of thin swollen films, a review Wojciech Ogiegło, Herbert Wormeester, Klaus-Jochen Eichhorn, Matthias Wessling, Nieck E. Benes 1 Thin polymer films Why are they important?

More information

Article. Adsorption Mechanism of Lignosulfonate at the Air/Liquid Interface. Mingfang Yan*,a and Dongjie Yang b. Introduction

Article. Adsorption Mechanism of Lignosulfonate at the Air/Liquid Interface. Mingfang Yan*,a and Dongjie Yang b. Introduction Article A http://dx.doi.org/1.5935/13-553.2151 J. Braz. Chem. Soc., Vol. 26, No. 3, 555-561, 215. Printed in Brazil - 215 Sociedade Brasileira de Química 13-553 $6.+. Mingfang Yan*,a and Dongjie Yang b

More information

Tunable Nanoparticle Arrays at Charged Interfaces

Tunable Nanoparticle Arrays at Charged Interfaces Tunable Nanoparticle Arrays at Charged Interfaces Supporting Material Sunita Srivastava 1, Dmytro Nykypanchuk 1, Masafumi Fukuto 2 and Oleg Gang 1* 1 Center for Functional Nanomaterials, Brookhaven National

More information

Adsorption at Fluid Fluid Interfaces: Part II

Adsorption at Fluid Fluid Interfaces: Part II NPTEL Chemical Engineering Interfacial Engineering Module 4: Lecture 2 Adsorption at Fluid Fluid Interfaces: Part II Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati,

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

THE STUDY OF ION SORPTION PERFORMANCES OF STOICHIOMETRIC AND NON-STOICHIOMETRIC POLYELECTROLYTE COMPLEXES.

THE STUDY OF ION SORPTION PERFORMANCES OF STOICHIOMETRIC AND NON-STOICHIOMETRIC POLYELECTROLYTE COMPLEXES. THE STUDY OF ION SORPTION PERFORMANCES OF STOICHIOMETRIC AND NON-STOICHIOMETRIC POLYELECTROLYTE COMPLEXES. Pha-sita Plengplung a and Stephan T. Dubas *,a,b a The Petroleum and Petrochemical College, Chulalongkorn

More information

Film Formation from Industrial Waterborne Latices

Film Formation from Industrial Waterborne Latices Film Formation from Industrial Waterborne Latices I. Ludwig*, W. Schabel*, J.-C. Castaing**, P. Ferlin**, M. Kind* *Universität Karlsruhe (TH), Germany **Rhodia Recherches, Aubervilliers, France Abstract

More information

Hydrophilization of Fluoropolymers and Silicones

Hydrophilization of Fluoropolymers and Silicones 2017 Adhesive and Sealant Council Spring Meeting Hydrophilization of Fluoropolymers and Silicones Aknowledgements: Wei Chen Mount Holyoke College NSF, NIH, Dreyfus, ACS-RF, MHC Bryony Coupe, Mamle Quarmyne,

More information

Wettability of polymeric solids by aqueous solution of surfactants

Wettability of polymeric solids by aqueous solution of surfactants A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A VOL. LX, 8 SECTIO AA 2005 Wettability of polymeric solids by aqueous solution of surfactants

More information

Dynamic Behavior of Self-Assembled Langmuir Films Composed of Soluble Surfactants and Insoluble Amphiphiles DISSERTATION

Dynamic Behavior of Self-Assembled Langmuir Films Composed of Soluble Surfactants and Insoluble Amphiphiles DISSERTATION Dynamic Behavior of Self-Assembled Langmuir Films Composed of Soluble Surfactants and Insoluble Amphiphiles DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Supporting Information. Correlation of surface pressure and hue of planarizable. push pull chromophores at the air/water interface

Supporting Information. Correlation of surface pressure and hue of planarizable. push pull chromophores at the air/water interface Supporting Information for Correlation of surface pressure and hue of planarizable push pull chromophores at the air/water interface Frederik Neuhaus 1,2, Fabio Zobi 1, Gerald Brezesinski 3, Marta Dal

More information

Colloidal dispersion

Colloidal dispersion Dispersed Systems Dispersed systems consist of particulate matter, known as the dispersed phase, distributed throughout a continuous or dispersion medium. The dispersed material may range in size from

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Engineering Nanomedical Systems. Zeta Potential

Engineering Nanomedical Systems. Zeta Potential BME 695 Engineering Nanomedical Systems Lecture 7 Zeta Potential James F. Leary, Ph.D. SVM Endowed Professor of Nanomedicine Professor of Basic Medical Sciences and Biomedical Engineering Member: Purdue

More information

Effect of Fragrances on Perfume Emulsion Stability. Matt Vanden Eynden, Ph.D. Formulaction, Inc.

Effect of Fragrances on Perfume Emulsion Stability. Matt Vanden Eynden, Ph.D. Formulaction, Inc. Effect of Fragrances on Perfume Emulsion Stability Matt Vanden Eynden, Ph.D. Formulaction, Inc. Presentation Outline Fragrances, once introduced into cosmetic and personal care applications, can occasionally

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Contents XVII. Preface

Contents XVII. Preface V Preface XVII 1 General Introduction 1 1.1 Suspensions 1 1.2 Latexes 2 1.3 Emulsions 2 1.4 Suspoemulsions 3 1.5 Multiple Emulsions 3 1.6 Nanosuspensions 4 1.7 Nanoemulsions 4 1.8 Microemulsions 5 1.9

More information

ROPERS Marie-Hélène 1, MEISTER Annette 2, RALET Marie-Christine 1

ROPERS Marie-Hélène 1, MEISTER Annette 2, RALET Marie-Christine 1 ROPERS Marie-élène 1, MEISTER Annette 2, RALET Marie-Christine 1 1 Institut National de la Recherche Agronomique, Unité Biopolymères, Interactions, Assemblages, Nantes (France 2 Institute of Physical Chemistry,

More information

Macroscopic Modeling of the Surface Tension of Polymer Surfactant Systems

Macroscopic Modeling of the Surface Tension of Polymer Surfactant Systems Research Article Subscriber access provided by OXFORD UNIV LIBR SVCS Macroscopic Modeling of the Surface Tension of Polymer Surfactant Systems Christopher G. Bell, Christopher J. W. Breward, Peter D. Howell,

More information

Surface and Interfacial Aspects of Biomedical Polymers

Surface and Interfacial Aspects of Biomedical Polymers Surface and Interfacial Aspects of Biomedical Polymers Volume 1 Surface Chemistry and Physics Edited by Joseph D. Andrade University of Utah Salt Lake City, Utah PLENUM PRESS NEW YORK AND LONDON Contents

More information

Fundamental study of emulsions stabilized by soft and rigid. particles

Fundamental study of emulsions stabilized by soft and rigid. particles Supporting information Fundamental study of emulsions stabilized by soft and rigid particles Zifu Li, 1 David Harbottle, 1,2 Erica Pensini, 1 To Ngai, 3 Walter Richtering, 4 Zhenghe Xu 1,5* 1, Department

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

Thermodynamics of cationic and anionic surfactant interaction

Thermodynamics of cationic and anionic surfactant interaction Thermodynamics of cationic and anionic surfactant interaction Vytautas Petrauskas Department of Biothermodynamics and Drug Design Institute of Biotechnology, Vilnius University October 16, 2014 Vytautas

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Competitive Adsorption of Lung Surfactant and Serum Proteins at the Air-Liquid Interface: A Grazing Incidence X-Ray Diffraction Study

Competitive Adsorption of Lung Surfactant and Serum Proteins at the Air-Liquid Interface: A Grazing Incidence X-Ray Diffraction Study Mater. Res. Soc. Symp. Proc. Vol. 127 28 Materials Research Society 127-D5-9 Competitive Adsorption of Lung Surfactant and Serum Proteins at the Air-Liquid Interface: A Grazing Incidence X-Ray Diffraction

More information

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France Outline IV - FORMATION OF SOLIDS FROM SOLUTIONS 1) Glass

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Phagocytosis- inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects Laura Rodríguez- Arco, Mei Li and Stephen

More information

Methods for charge and size characterization colloidal systems

Methods for charge and size characterization colloidal systems Methods for charge and size characterization colloidal systems Content General Basics Stabino Measurement basics Applications NANO-flex Measurement basics Applications Nanoparticles Bulkphase of gold gold

More information

Adhesion Cohesion Surface tension Polarity

Adhesion Cohesion Surface tension Polarity Adhesion Cohesion Surface tension Polarity Water molecules have an area that is negatively charged and another positively charged, and this will be responsible for many of the water properties The molecules

More information

AIR BUBBLE STABILITY MECHANISM OF AIR-ENTRAINING ADMIXTURES AND AIR VOID ANALYSIS OF HARDENED CONCRETE

AIR BUBBLE STABILITY MECHANISM OF AIR-ENTRAINING ADMIXTURES AND AIR VOID ANALYSIS OF HARDENED CONCRETE AIR BUBBLE STABILITY MECHANISM OF AIR-ENTRAINING ADMIXTURES AND AIR VOID ANALYSIS OF HARDENED CONCRETE Bei Ding, Jiaping Liu, Jianzhong Liu Jiangsu Academy of Building Science Co., Ltd, Nanjing, China

More information

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS CHAPTER 8 MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS Reproduced with permission from: Li, B.; Esker, A. R. Molar Mass Dependent Growth of Poly(ε-caprolactone) Crystals

More information

Supporting Information

Supporting Information 1 Supporting Information Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers Andrew J. Erwin, Weinan Xu,, Hongkun He, Krzysztof Matyjaszewski, and Vladimir V. Tsukruk*, School

More information

Module 4: "Surface Thermodynamics" Lecture 21: "" The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template

Module 4: Surface Thermodynamics Lecture 21:  The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template The Lecture Contains: Effect of surfactant on interfacial tension file:///e /courses/colloid_interface_science/lecture21/21_1.htm[6/16/2012 1:10:36 PM] Surface Thermodynamics: Roles of Surfactants and

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

Perfect mixing of immiscible macromolecules at fluid interfaces

Perfect mixing of immiscible macromolecules at fluid interfaces Perfect mixing of immiscible macromolecules at fluid interfaces Sergei S. Sheiko, 1* Jing Zhou, 1 Jamie Boyce, 1 Dorota Neugebauer, 2+ Krzysztof Matyjaszewski, 2 Constantinos Tsitsilianis, 4 Vladimir V.

More information

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution A. Wittemann, B. Haupt, University of Bayreuth E. Breininger, T. Neumann, M. Rastätter, N. Dingenouts, University of Karlsruhe

More information

Application Report. Textile cleaning, washing, rewetting, surfactant, cotton, interfacial tension

Application Report. Textile cleaning, washing, rewetting, surfactant, cotton, interfacial tension Application Report Cleaning of textiles Application report: AR231e Industry section: Textiles Author: C. Bilke-Krause Date: 01/2003 Method: Force Tensiometer K100 Drop Shape Analysis System DSA10 Keywords:

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

CHAPTER 10. Characteristics of the Surfaces of Biomaterials

CHAPTER 10. Characteristics of the Surfaces of Biomaterials CHAPTER 10 Characteristics of the Surfaces of Biomaterials 10.1 Surface Characteristics Related to Chemical Bonding 10.2 Surface Chemistry Related to Bonding of Biological Molecules 10.3 Porosity 10.4

More information

ULTRATHIN ORGANIC FILMS

ULTRATHIN ORGANIC FILMS An Introduction to ULTRATHIN ORGANIC FILMS From Langmuir-Blodgett to Self-Assembly Abraham Ulman Corporate Research Laboratories Eastman Kodak Company Rochester, New York Academic Press San Diego New York

More information

STABILITY OF PIGMENT INKJET INKS

STABILITY OF PIGMENT INKJET INKS Application paper (2009) 1-5 Ink STABILITY OF PIGMENT INKJET INKS Abstract Stability is a key issue for the formulator developing new inkjet ink formulations using pigments. can take place in such systems

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Dr Mike Kaszuba Technical Support Manager E-mail: michael.kaszuba@malvern.com Contents Zetasizer Nano ZSP Software Enhancements Protein

More information

Particle-stabilized foams

Particle-stabilized foams Particle-stabilized foams Brent S. Murray, Bernie P. Binks*, Eric Dickinson, Zhiping Du, Rammile Ettelaie & Thomas Kostakis Food Colloids Group Procter Department of Food Science, University of Leeds,

More information

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 Classes: Thurs, 6-9 pm; Ball Hall Room 208 Professor: Dr. B. Budhlall Office: Ball Hall 203B, Phone: 978-934-3414 Email: Bridgette_Budhlall@uml.edu

More information

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup Christos Ritzoulis Translated by Jonathan Rhoades INTRODUCTION TO THE PHYSICAL CHEMISTRY of FOODS CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis

More information

- Supporting Information - Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles

- Supporting Information - Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles - Supporting Information - S1 Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles Tao Chen, Miaoxin Yang, Xinjiao Wang, Li Huey Tan, Hongyu Chen* Division of Chemistry and Biological Chemistry,

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Investigations of RhB Langmuir monolayer by Fluorescence Imaging Microscopy

Investigations of RhB Langmuir monolayer by Fluorescence Imaging Microscopy Indian J. Phys. 84 (6), 729-733 (2010) Investigations of RhB Langmuir monolayer by Fluorescence Imaging Microscopy S A Hussain, S Chakraborty and D Bhattacharjee* Department of Physics, Tripura University,

More information

Recommended Adsorption and Covalent CouplingProcedures

Recommended Adsorption and Covalent CouplingProcedures Recommended Adsorption and Covalent CouplingProcedures Introduction Our strength is in offering you a complete microparticle technology. We give you simple, validated protocols for coupling proteins to

More information

BIJEL CAPSULES. Institute for Condensed Matter and Complex Systems and The Edinburgh Complex Fluid Partnership

BIJEL CAPSULES. Institute for Condensed Matter and Complex Systems and The Edinburgh Complex Fluid Partnership BIJEL CAPSULES J.W. Tavacoli, E.M. Herzig, and P.S Clegg Institute for Condensed Matter and Complex Systems and The Edinburgh Complex Fluid Partnership School of Physics, University of Edinburgh Bijel

More information

CHEM1612 Answers to Problem Sheet 10

CHEM1612 Answers to Problem Sheet 10 CHEM1612 Answers to Problem Sheet 10 1. For light nuclei, the most nuclides tend to have N ~ Z. If N > Z, the nucleus has too many neutrons (and decay by beta decay: conversion of a neutron into a proton

More information

Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature

Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature Radhakrishnan Ranjini, Murukeshan Vadakke Matham *, Nam-Trung Nguyen Department of Mechanical and Aerospace

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information