Background and Present Status from AMO Instrument Team

Size: px
Start display at page:

Download "Background and Present Status from AMO Instrument Team"

Transcription

1 Background and Present Status from AMO Instrument Team 1. Team Organization. 2. Proposed Scientific Plan. 3. The First Experiment. 4. Future Plan.

2 Historical Facts April 2004: LCLS puts out a call for Letters of Intent (LOI) category A: science & end-station construction category B: science category C: instrument design July 2004: LCLS SAC makes recommendation that two AMO proposals of the category A LOI collaborative teams merge October 2004: Ultra-fast science workshop

3 October 2004: Ultra-fast science workshop Workshop Objective: solicit input & participation from the AMOP community for the LCLS project - shape the scientific program: Scientists ideas - help define the critical XFEL machine parameters - help define the designs of an AMOP end-station(s) - interaction of the five collaborative teams Five LCLS collaborative teams: - Atomic, Molecular & Optical Science - Optical pump x-ray probe studies in chemistry, biology & material science - Diffraction imaging of single objects approaching atomic scale resolution - Coherent x-ray scattering for the study of dynamics - High-energy density science

4 AMO Collaborative Team ( Original Merged LOIs A) Marriage of Synchrotrons + Ultrafast Communities Lou DiMauro (OSU) & Nora Berrah (WMU) (co-t. Leaders) John Bozek (Instrument Scientist) Pierre Agostini OSU John Bozek LBL Roy Clarke UM Paul Fuoss ANL Chris Greene U Colorado Bertold Kraessig ANL Dan Neumark UC Berkeley Steve Pratt ANL John Reading Texas A&M Steve Southworth ANL Linda Young ANL Musahid Ahmed LBL Philip H. Bucksbaum SU/SLAC Todd Ditmire UT Austin Ernie Glover LBL Elliot Kantor ANL Steve Leone UC Berkeley Gerhard Paulus Texas A&M Alexei Sokolov Texas A&M David Reis UM Linn Van Woerkom OSU ~ Twenty Additional Scientists Expressed Interest at the October 2004 Workshop

5 Update on AMO Organization/Activities 1. Instrument Scientist, John Bozek, Hired (Jan 2006) 2. Regular Teleconference (Berrah, Bozek, DiMauro, Young) 3. N. Berrah on Sabbatical FY06 4. Periodic visits by DiMauro/Berrah 5. Communication with Broader Team at Conferences (Wisconsin W. 8/04; DOE M. 9/05; DAMOP 5/06) 6. Updates to Broader Team when Necessary (seek input, communicate news) Discussions/communication led to determine the instrumentation needs for first experiments! 7. Conceptual Design and Instrument Budget was submitted and Accepted by LCLS.

6 Update on AMO Activities/ Organization (cont..) 8. Synergy between the PULSE Center and AMOS 9. Workshop to Stimulate Theory (ITAMP 06-06) 10. Met with: -----LCLS Optics Group Pump-Probe Team to Explore Common Interest and will Continue to Meet. 11. Plan to Meet with Imaging Group to Explore Shared Experimental System? 12. Held Ultrafast x-ray Summer School June 2007

7 Team Major Scientific Thrusts: Multiphoton and High-Field X-Ray Processes in Atoms, Molecules, Clusters,& Biological Molecules. Time-Resolved Phenomena in Atoms, Molecules (bio-molecules) and Clusters using Ultrafast X-Rays

8 AMO LOIs Collaborative Team Science: 1. Multiple core excitation in atoms, molecules and clusters 2. Timing experiments: Inner-shell side band experiments Photoionization of aligned molecules Temporal evolution of state-prepared systems 3. Nonlinear physics 4. Ion (positive/negative) studies 5. Pump-probe, X-X or X-laser or X-e 6. Raman processes 7. Cluster dynamics (Diffraction of size-selected clusters) 8. Photoionization dynamics of biomolecules

9 Science discussed at 2004 October AMOS forum Ken Taylor (Ireland) David Reis (UM) Robin Santra (ITAMP) Anders Nielsson (SSRL) Chris Greene (UCB) John Bozek (ALS, LBNL) Ali Belkacem (LBNL) Keith Nelson (MIT) Ernie Glover (LBNL) Elliott Kanter (ANL) Possibilities for few- and many-electron atoms & ions in XFEL pulses Synchronization issues for pump-probe experiments at LCLS Cluster physics at high photon energies Time resolved spectroscopy for studies in surface chemistry and electron driven processes in aqueous systems Multiphoton ionization processes in free atoms and clusters Atoms, molecules, clusters and their ions studied with two or more Photons Inner-shell ionization and de-excitation pathways of laser-dressed atoms and molecules Give him 10 minutes max and then let's get back to reality X-ray/optical wave mixing Hollow neon atoms

10 LCLS Characteristics The LCLS beam intensity (~10 13 x-rays/200 fs) is greater than the current 3rd generation sources (10 4 x-rays/100 ps). Extreme focusing (KB pairs) leads to intensity ~10 35 photons/s/cm 2 (~ W/cm 2 for 800 ev x- rays) Nonlinear and strong-field effects are expected when the LCLS beam is focused to a spot diameter of 1μm. BUT, electron s ponderomotive (quiver motion) important at low frequencies IS negligible in the x-ray regime (λ 2 ).

11 AMOS Inst.Team Short-Long Range Plans: High Field: Using the extremely high brightness of the LCLS we propose to study: multiple ionization atoms & simple molecules with angle-resolved spectroscopy and ion imaging to understand basic phenomena in highly excited matter High-field photoionization in clusters (of various types) Low density ionic targets: atoms, molecules, fragments, clusters, biomolecules by photoelectron and ion imaging techniques Time-Resolved: Temporal resolution will be used to perform: Inner-shell photoelectron spectroscopy of molecules (pump-probe using lasers) into specific states. Inner-shell photoelectron imaging of isolated biomolecules to follow their chemistry in natural time scale

12 Double K Vacancy in Gas-Phase Systems Possible Consequences The decay of the KK-vacancy state will produce higher charge states This process extensive fragmentation in molecules This process damage consideration in experiments on Bio-molecules?

13 LCLS High Field Beam will Probe: Auger Decay Auger Decay Sequential (or Cascade ) Multi-Auger Decay Photodetachment (or Ionization) Simultaneous Double-Auger Decay ( 3-10% of single Auger)

14 Some Examples High Field Studies in Atoms

15 X-Ray Strong Field Experiment x-ray multiphoton ionization photoionization correlated ionization Auger sequential 2-photon, 2-electron

16 Low-Frequency Physics High Frequency IR: Low frequency regime VUV FEL: Intense photon source XFEL FEL: Highly ionizing source -I p -I p -I p 10 x20 W/cm W/cm 2 Keldysh parameter γ <<1 Tunnel / over the barrier ionisation Ponderomotive energy ev W/cm 2 Keldysh parameter γ >>1 Multi-photon ionisation Ponderomotive energy 10 mev Angstrom wavelength Direct multiphoton ionisation Secondary processes γ Optical Frequency = (I p /2U p ) 1/2 λ -1 ; U p =I/4ω 2 (au) Tunneling Frequency

17 Intensity, Wavelength and Ponderomotive Energy (Lambropoulos) λ (nm) ћω (ev) U p (ev) I (U p ћω ) W/cm

18 FLASH Experiments PRL 94, (2005) Theory Available! Calculate the rate of production of highly charged Xe i+ ions produced by direct multiphoton absorption, to compare with experiment.

19 TOF Spectrum for Atomic Xenon Multiphoton Ionization (Wabnitz et al. 05 )

20 Wabnitz et al. 05

21 First LCLS Experiment: K-Shell in Ne 1. Photoionization 2. Auger Decay 3. Sequential Multiphoton Ionization 4. Direct Multiphoton Ionization LCLS Theory: Double-K ionization in Ne due to absorption of 2-photons by 1 atom for hγ>932 ev is predicted to be 100%

22 Ne K-edge ~ 870 ev The probability of twophoton absorption by 1s 2 - shell accompanied by the creation of double 1svacancies predominates over the probability of the process of two-photon oneelectron excitation/ionization of the 1s 2 shell in the range of x-ray photon energies 930 ev. 2 e-out 1e-out

23 Ne Charge State vs Intensity Rohringer & Santra, PRA 76, ev

24 Probable Ne Charge State with beamsize Rohringer & Santra, PRA 76, (2007)

25 Power of TOFs: Inner-Shell Resonances in Ar; 2 p Excitation to Rydberg States(ALS) LCLS: K-Shell Ar How would the ratio of Doubly Ionized Ions (Auger decay) Compares to Singly Ionized Ions due to spectator Auger decay? Resonant shake-off of two electrons.

26 High Field Studies in Molecules

27 Resonant Auger Electron Spectroscopy Interesting in molecules too CO resonant Auger:

28 Probe Auger(2+)/Spectator Auger (1+) Decay & Fragmentation Pathways Spectator Auger

29 HBr 3d (ALS) Excitation/Ionization 2D Map; Angle- Resolved;e- TOFs LCLS: HBr, Br 2 2p & 2s Ionization

30 Ion Imaging : Fragmentation Decay Channels of CO 2 2+ Subsequent to K- Shell Photoionization and Auger Decay of CO 2. Identify different fragmentation mechanisms

31 Fragment Momentum Correlation Plots: Fragmentation Decay Channels of CO 2 2+ Subsequent to K-shell Photoionization and Auger Decay of CO 2.

32 High Field Studies in Clusters

33 Cluster Studies at FLASH in Hamburg

34 Cluster Studies, FLASH Xenon Cluster size 2500 atoms Intensity (arb. units) Xe 2+ P FEL =2.5*10 13 W /cm 2 T 8 76 puls =50 fs λ FEL =98 nm 6* *10 11 Unusually high energy absorption in cluster Fragmentation starting at W/cm 2 8*10 10 Xe Time of flight (ns) 2*10 10 Wabnitz et al, Nature 420, 482 (2002)

35 Molecular dynamics simulations indicate that standard collisional heating cannot fully account for the strong energy absorption.

36 In contrast with earlier studies in IR and VUV spectral regime, we find NO evidence for electron emission from plasma heating processes; Multistep ionization process is dominant hν=37.8 ev, <N>~100, I=3x10 13 W/cm fs

37 Proposed at LCLS: Ion, e-, and Scattering Experiments on Clusters Study the Dynamics of Cluster Explosion as a Function of Cluster Size, Wavelengths, Intensity: Is it a Coulomb Explosion Picture (as in intense optical or near IR ultrafast laser pulses) OR Explosion due to Hot Nanoplasma (multiple scattering from the cluster atoms can confine electrons yielding a nanoplasma); Explosion Time can be Different OR, New mechanisms?? Will Collective Electron Effects be important as in the dynamics of IR irradiated large clusters?

38 n1 4d Photoelectron Spectrum of Xe Clusters at hν=135 ev

39 Slide 38 n1 berrah, 6/3/2008

40 Velocity Map Imaging Coincidence System ALS Electron Detection Ion Detection 80 mm position-sensitive multi-hit hexanode detector (Roentdek) Rolles et al. Nucl. Instr. and Meth. B 261, 170 (2007).

41 Fragmentation of Rare Gas ALS

42 n2 PEPIPICO coincidence map for photoionization at hv=216 ev

43 Slide 41 n2 berrah, 6/3/2008

44 High Field Studies in Ions

45 Movable Ion-Photon Beamline for ions & size-selected clusters Size Selected Production Size and Charge Selected Detection Absolute cross sections: measurements of overlaps, photon & ion fluxes and detector efficiencies.

46 High Charge State Formation Following 2p Photodetachment of S - (ALS) LCLS: S K-shell S 2+ /S + 60% Li 3+ /Li 2+ <1% PR A 72, (R), 05 Th, Sim-Auger Int, K-Out H, S-Off; S-Up+Seq-Aug

47 Ion Studies: Measure electron spectra of ionic species Si - S + Si + Si 2 + Si 3 +

48 Photoionization Dynamics of Clusters or Biomolecules Biomolecules injected via electrospray

49 Time-Resolved Studies of Molecules Pump-probe experiments of molecules (state-selected): - Launch a molecule on a particular potentially energy surface - Watch temporal evolution with angle-resolved inner-shell PES

50 Photodissociation Dynamics of I 2- : Pump-Probe Experiments Short delay times photodetachment accesses bound vibrational levels of I 2 states Longer times, dissociation to I - + I I 2 Complete dissociation photodetaching free I - LCLS, Probe with >800 ev photons I 2 -

51 Photodissociation Dynamics of I 2-2P 1/2 and 2P 3/2 spin-orbit states of I. I - photoelectron spectrum Neumark et al. Chem. Phys. Lett, 258 (1996) 523.

52 Photodissociation Dynamics of I 2 - I 2 P 3/2 Dissociation Time scale: Rise time of electron signal reaches 50% of its maximum value by 100 fs. I 2 P 1/2

53 END

54 Molecular Fragmentation: Ion Momentum Imaging of Molecules (ALS)

55 Photodissociation Dynamics of I 2 - Kolsoff et al.

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

Clusters in intense x-ray pulses from 100 nm to.7 nm

Clusters in intense x-ray pulses from 100 nm to.7 nm Clusters in intense x-ray pulses from 100 nm to.7 nm Linac Coherent Light Source, SLAC National Accelerator Laboratory Outline: Introduction and motivation Spectroscopy of clusters Single shot imaging

More information

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH)

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Hamburg Oct. 8 10, 2008 P. Lambropoulos in collaboration with

More information

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons: Experience at FLASH AMO at FLASH FELs provide unique opportunities and challenges for AMO physics due to essentially three reasons: AMO at FLASH 1. huge integrated flux dilute samples Highly charged ions

More information

XMDYN: Modeling radiation damage of XFEL irradiated samples

XMDYN: Modeling radiation damage of XFEL irradiated samples XMDYN: Modeling radiation damage of XFEL irradiated samples 16.09.2014 Zoltan Jurek, Beata Ziaja, Robin Santra Theory Division, Center for Free-Electron Laser Science, DESY Outline > Introduction modeling

More information

Theoretical approach to estimate radiation damage within FEL irradiated samples. Beata Ziaja

Theoretical approach to estimate radiation damage within FEL irradiated samples. Beata Ziaja Theoretical approach to estimate radiation damage within FEL irradiated samples Beata Ziaja Hasylab, DESY Hamburg and INP, Krakow Prague, 23-24 November 2006 I. Mechanisms 2 Radiation damage Contribution

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry D. Frank Ogletree Molecular Foundry, Berkeley Lab Berkeley CA USA Our Berkeley Lab Team EUV Lithography and Pattern

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

Laser-controlled Molecular Alignment and Orientation. Marc Vrakking FOM Institute AMOLF

Laser-controlled Molecular Alignment and Orientation. Marc Vrakking FOM Institute AMOLF Laser-controlled Molecular Alignment and Orientation Marc Vrakking FOM Institute AMOLF Summer School Cargese - Tuesday August 19 th 2008 Contents What is molecular alignment resp. orientation, and why

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

X-Ray Probing of Atomic and Molecular Dynamics in the Attosecond Limit

X-Ray Probing of Atomic and Molecular Dynamics in the Attosecond Limit X-Ray Probing of Atomic and Molecular Dynamics in the Attosecond Limit Produce high order harmonics (soft x-rays) and use them for ultrafast time-resolved femtosecond dynamics experiments and attosecond

More information

X-ray production from resonant coherent excitation of relativistic HCIs in crystals as a model for polarization XFEL studies in the kev range

X-ray production from resonant coherent excitation of relativistic HCIs in crystals as a model for polarization XFEL studies in the kev range X-ray production from resonant coherent excitation of relativistic HCIs in crystals as a model for polarization XFEL studies in the kev range V.V.Balashov, A.A.Sokolik, A.V.Stysin D.V.Skobeltsyn Institute

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

NONLINEAR PROCESSES IN THE EXTREME ULTRAVIOLET REGION USING THE FEL

NONLINEAR PROCESSES IN THE EXTREME ULTRAVIOLET REGION USING THE FEL NONLINEAR PROCESSES IN THE EXTREME ULTRAVIOLET REGION USING THE FEL FERMI@ELETTRA A. Dubrouil, M. Reduzzi, C. Feng, J. Hummert, P. Finetti, O. Plekan, C. Grazioli, M. Di Fraia, V. Lyamayev,A. LaForge,

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Exploring ICD and Dynamic Interference by Free Electron Lasers

Exploring ICD and Dynamic Interference by Free Electron Lasers Exploring ICD and Dynamic Interference by Free Electron Lasers Lorenz Cederbaum Theoretische Chemie Physikalisch-Chemisches Institut Universität Heidelberg Exploring Intermolecular Coulombic Decay by Free

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Chapter 5 Strong-Field Atomic Physics in the X-ray Regime

Chapter 5 Strong-Field Atomic Physics in the X-ray Regime Chapter 5 Strong-Field Atomic Physics in the X-ray Regime Louis F. DiMauro and Christoph A. Roedig Abstract In 1999 the DOE Basic Energy Sciences Advisory Committee defined an innovative scientific direction

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Atomic Photoionization Dynamics in Intense Radiation Fields

Atomic Photoionization Dynamics in Intense Radiation Fields Atomic Photoionization Dynamics in Intense Radiation Fields M. Meyer LIXAM, Centre Universitaire Paris Sud, Orsay France - Introduction - Two-Color (XUV + NIR) Experiments - intense NIR - intense XUV -

More information

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o Strong Field Quantum Control CAMOS Spring Meeting 2012 o p Motivation & Outline Motivation: Want to control molecular dynamics and develop control based spectroscopy 1. Controlling Molecular Dissociation

More information

An Investigation of Benzene Using Ultrafast Laser Spectroscopy. Ryan Barnett. The Ohio State University

An Investigation of Benzene Using Ultrafast Laser Spectroscopy. Ryan Barnett. The Ohio State University An Investigation of Benzene Using Ultrafast Laser Spectroscopy Ryan Barnett The Ohio State University NSF/REU/OSU Advisor: Linn Van Woerkom Introduction Molecular spectroscopy has been used throughout

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

Ionization of Rydberg atoms in Intense, Single-cycle THz field

Ionization of Rydberg atoms in Intense, Single-cycle THz field Ionization of Rydberg atoms in Intense, Single-cycle THz field 4 th year seminar of Sha Li Advisor: Bob Jones Dept. of Physics, Univ. of Virginia, Charlottesville, VA, 22904 April. 15 th, 2013 Outline

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

TTF FEL Results Jacek Krzywinski TTF FEL Performance FEL Physics Experiments FELIS (Free Electron Laser - Interaction with Solids Cluster Experiment

TTF FEL Results Jacek Krzywinski TTF FEL Performance FEL Physics Experiments FELIS (Free Electron Laser - Interaction with Solids Cluster Experiment TTF FEL Results Jacek Krzywinski TTF FEL Performance FEL Physics Experiments FELIS (Free Electron Laser - Interaction with Solids Cluster Experiment TTF FEL Performance Photon Beam Diagnostic Team Scientists:

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

XUV frequency comb development for precision spectroscopy and ultrafast science

XUV frequency comb development for precision spectroscopy and ultrafast science XUV frequency comb development for precision spectroscopy and ultrafast science R. Jason Jones (PI) College of Optical Sciences, University of Arizona email: rjjones@optics.arizona.edu Collaborators Graduate

More information

Lecture 1 August 29

Lecture 1 August 29 HASYLAB - Facility - Free Electron Laser (FEL) http://www-hasylab.desy.de/facility/fel/main.htm Page 1 of 1 8/23/2006 HASYLAB Facility Free Electron Laser Overview FLASH FLASH User Info Events Job Offers

More information

Inner-Shell Ionization in Strong High-Frequency Laser Fields and Formation of Hollow-Ions

Inner-Shell Ionization in Strong High-Frequency Laser Fields and Formation of Hollow-Ions Laser Physics, Vol. 13, No. 4, 003, pp. 430 434. Original Text Copyright 003 by Astro, Ltd. Copyright 003 by MAIK Nauka /Interperiodica (Russia). STRONG FIELD PHENOMENA Inner-Shell Ionization in Strong

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

Current Research and Future Plans

Current Research and Future Plans Current Research and Future Plans Bhas Bapat PRL, Ahmedbad At IISER Pune, Jan 2014 Bhas Bapat (PRL, Ahmedbad) Current Research and Future Plans At IISER Pune, Jan 2014 1 / 21 Contents Broad Areas Dissociative

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Pump-Probe Experiments in the Gas Phase using the TESLA-FEL

Pump-Probe Experiments in the Gas Phase using the TESLA-FEL Pump-Probe Experiments in the Gas Phase using the TESLA-FEL Michael Meyer, L.U.R.E., Orsay, France Introduction Pump-Probe Experiments SR + opt. Laser FEL + opt. Laser FEL characterization Cross correlation

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

An introduction to X- ray photoelectron spectroscopy

An introduction to X- ray photoelectron spectroscopy An introduction to X- ray photoelectron spectroscopy X-ray photoelectron spectroscopy belongs to a broad class of spectroscopic techniques, collectively called, electron spectroscopy. In general terms,

More information

Cluster fusion in a high magnetic field

Cluster fusion in a high magnetic field Santa Fe July 28, 2009 Cluster fusion in a high magnetic field Roger Bengtson, Boris Breizman Institute for Fusion Studies, Fusion Research Center The University of Texas at Austin In collaboration with:

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Study of matter in extreme conditions using 4th generation FEL light sources

Study of matter in extreme conditions using 4th generation FEL light sources Study of matter in extreme conditions using 4th generation FEL light sources Sam Vinko Department of Physics Clarendon Laboratory University of Oxford Workshop on Science with Free Electron Lasers Shanghai,

More information

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact J. Liu 1, R. Camacho 2, X. Sun 2, J. Bessette 2, Y. Cai 2, X. X. Wang 1, L. C. Kimerling 2 and J. Michel 2 1 Thayer School, Dartmouth College;

More information

Coulomb explosion of Ar n clusters irradiated by intense femtosecond laser fields

Coulomb explosion of Ar n clusters irradiated by intense femtosecond laser fields JOURNAL OF INTENSE PULSED LASERS AND APPLICATIONS IN ADVANCED PHYSICS Vol., No. 1, p. 17-1 Coulomb explosion of Ar n clusters irradiated by intense femtosecond laser fields N. BOUCERREDJ *, A. BRICHENI,

More information

Laser-controlled Molecular Alignment and Orientation at FLASH and XFEL

Laser-controlled Molecular Alignment and Orientation at FLASH and XFEL Laser-controlled Molecular Alignment and Orientation at FLASH and XFEL Marc Vrakking FOM Institute AMOLF XFEL Workshop Hamburg October 8-10, 2008 Acknowledgements FOM-AMOLF,NL +technical support Per Johnsson

More information

Non-sequential and sequential double ionization of NO in an intense femtosecond Ti:sapphire laser pulse

Non-sequential and sequential double ionization of NO in an intense femtosecond Ti:sapphire laser pulse J. Phys. B: At. Mol. Opt. Phys. 30 (1997) L245 L250. Printed in the UK PII: S0953-4075(97)80013-2 LETTER TO THE EDITOR Non-sequential and sequential double ionization of NO in an intense femtosecond Ti:sapphire

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

time is defined by physical processes

time is defined by physical processes frontiers in attosecond science Louis F. DiMauro as 100 as as as n as 10-18 s 25 as 1 as 10-18 s 1 as n as modified from LCLS/SLAC website time is defined by physical processes a history of ultra-fast:

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Connecting Attosecond Science and XUV FEL Research

Connecting Attosecond Science and XUV FEL Research Connecting Attosecond Science and XUV FEL Research Marc Vrakking Attosecond Workshop Imperial College, May 13th 2008 Overview Present status of attosecond science - recent example: electron localization

More information

Delay-Line Imaging and XPCS

Delay-Line Imaging and XPCS . Delay-Line Imaging and XPCS Gerhard Grübel W.Roseker, F. Lehmkühler, L. MüIler, S. Schleitzer, M. Berntsen, H. Schulte-Schrepping, M. Walther DESY Deutsches Elektronen Synchrotron, Notkestr. 85, 22607

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

ICPEAC XXX, Carins, Australia. Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme 2017/07/31

ICPEAC XXX, Carins, Australia. Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme 2017/07/31 ICPEAC XXX, Carins, Australia Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme Song-Bin Zhang Shaanxi Normal University, Xi an, China 2017/07/31 Acknowledgements Victor Kimberg

More information

Ultrafast nanophotonics - optical control of coherent electron -

Ultrafast nanophotonics - optical control of coherent electron - ICTP 18.2.8 Ultrafast nanophotonics - optical control of coherent electron - Hirofumi Yanagisawa LMU, MPQ Hirofumi Yanagisawa Japan (Tokyo) Switzerland (Zurich) Germany (Munich) http://roundtripticket.me/world-map-labled.html/best-image-of-diagram-world-map-and-labeled-for-labled

More information

XFEL project overview

XFEL project overview EUROPEAN STRATEGY FORUM on RESEARCH INFRASTRUCTURES ESFRI workshop on Technical Challenges at the Proposed European XFEL Laboratory 30-31 October 2003 XFEL project overview Jochen R. Schneider (DESY) Scientific

More information

Uncertainty in Molecular Photoionization!

Uncertainty in Molecular Photoionization! Uncertainty in Molecular Photoionization! Robert R. Lucchese! Department of Chemistry! Texas A&M University Collaborators:! At Texas A&M: R. Carey, J. Lopez, J. Jose! At ISMO, Orsay, France: D. Dowek and

More information

Numerical Modeling of Radiative Kinetic Plasmas

Numerical Modeling of Radiative Kinetic Plasmas 2014 US-Japan JIFT Workshop on Progress in kinetic plasma simulations Oct.31-Nov.1, 2014, Salon F, New Orleans Marriott, New Orleans, LA, U.S.A Numerical Modeling of Radiative Kinetic Plasmas T. Johzaki

More information

Aarhus University Denmark

Aarhus University Denmark Participant presentation: Aarhus University Denmark Lars Bojer Madsen Department of Physics and Astronomy Henrik Stapelfeldt Department of Chemistry MEDEA Kick-off MBI, Berlin January 19-20, 2015 Alignment

More information

Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals Journal of Physics: Conference Series OPEN ACCESS Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals To cite this article: Y Hikosaka et al 2014 J. Phys.:

More information

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR.

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. DANIEL ROLLES PHYSICS DEPARTMENT 2018 REU KANSAS STATE UNIVERSITY MOTIVATION

More information

High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays

High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays Electronic & nuclear coupling Emergent properties Materials heterogeneity lattice spin charge orbital LCLS-II-HE provides: Ultrafast

More information

Pump/Probe Experiments

Pump/Probe Experiments Cheiron School 2008 Pump/Probe Experiments T. Gejo (University of Hyogo) Today s Topics Univ. of Hyogo? Where is it? General aspects of pump/probe experiments Laser/Synchrotron pump/probe experiments FEL/Laser

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases - Part II 27 / 115 - 2-28 / 115 Bohr model recap. At the Bohr radius - a B = the electric field strength is: 2 me 2 = 5.3 10 9 cm, E a = e ab 2 (cgs) 5.1 10 9 Vm 1. This leads to the atomic intensity:

More information

WHAT IS SILMI? SILMI is a Research Networking Programme of the European Science Foundation ( ESF ) in the Physical and Engineering Sciences ( PESC ).

WHAT IS SILMI? SILMI is a Research Networking Programme of the European Science Foundation ( ESF ) in the Physical and Engineering Sciences ( PESC ). THE SILMI PROGRAMME WHAT IS SILMI? SILMI is a Research Networking Programme of the European Science Foundation ( ESF ) in the Physical and Engineering Sciences ( PESC ). Full title: «Super-Intense Laser-Matter

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

Ultrafast XUV Sources and Applications

Ultrafast XUV Sources and Applications Ultrafast XUV Sources and Applications Marc Vrakking Workshop Emerging Sources Lund, June 12th 2007 Overview: Attosecond Science from a user perspective What do we want? What do we use as our starting

More information

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Pump-probe Ultrafast Surface Chemistry (PES, XES) station for Real Time Electronic Structure Mapping of Catalytic Reactions: Instrumentation Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Stanford

More information

ATTOSECOND AND ANGSTROM SCIENCE

ATTOSECOND AND ANGSTROM SCIENCE ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 54 ATTOSECOND AND ANGSTROM SCIENCE HIROMICHI NIIKURA 1,2 and P.B. CORKUM 1 1 National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario,

More information

Breakout Session Deliverables

Breakout Session Deliverables Workshop Charge Identify most important science drivers (transformational, grand challenge level) that can uniquely be addressed using capabilities of LCLS-II (high rep rate

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques ENGLISH NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS Contact during exam: Magnus Borstad Lilledahl Telefon: 73591873 (office) 92851014 (mobile) Solution set for EXAM IN TFY4265/FY8906

More information

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information