Statistics for Business and Economics

Size: px
Start display at page:

Download "Statistics for Business and Economics"

Transcription

1 Statistics for Business and Economics Chapter 6 Sampling and Sampling Distributions Ch. 6-1

2 6.1 Tools of Business Statistics n Descriptive statistics n Collecting, presenting, and describing data n Inferential statistics n Drawing conclusions and/or making decisions concerning a population based only on sample data Ch. 6-2

3 Populations and Samples n A Population is the set of all items or individuals of interest n Examples: All likely voters in the next election All parts produced today All sales receipts for November n A Sample is a subset of the population n Examples: 1000 voters selected at random for interview A few parts selected for destructive testing Random receipts selected for audit Ch. 6-3

4 Population vs. Sample Population a b c d ef gh i jk l m n o p q rs t u v w x y z Sample b c g i n o r u y Ch. 6-4

5 Why Sample? n Less time consuming than a census n Less costly to administer than a census n It is possible to obtain statistical results of a sufficiently high precision based on samples. Ch. 6-5

6 Simple Random Samples n n n Every object in the population has an equal chance of being selected Objects are selected independently Samples can be obtained from a table of random numbers or computer random number generators n A simple random sample is the ideal against which other sample methods are compared Ch. 6-6

7 Inferential Statistics n Making statements about a population by examining sample results Sample statistics Population parameters (known) Inference (unknown, but can be estimated from sample evidence) Sample Population Ch. 6-7

8 Inferential Statistics Drawing conclusions and/or making decisions concerning a population based on sample results. n Estimation n e.g., Estimate the population mean weight using the sample mean weight n Hypothesis Testing n e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds Ch. 6-8

9 6.2 Sampling Distributions n A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population Ch. 6-9

10 Chapter Outline Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Sampling Distribution of Sample Variance Ch. 6-10

11 Sampling Distributions of Sample Means Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Sampling Distribution of Sample Variance Ch. 6-11

12 Developing a Sampling Distribution n Assume there is a population n Four types of people A B C D n Random variable, X, is age of individuals n Possible Values of X: 18, 20, 22, 24 (years) Ch. 6-12

13 Developing a Sampling Distribution (continued) Summary Measures for the Population Distribution: P(x) µ = = σ 2 = (X i µ) 2 4 = A B C D x Uniform Distribution Ch. 6-13

14 Developing a Sampling Distribution Now consider all possible samples of size n = 2 1 st 2 nd Observation Obs ,18 18,20 18,22 18, ,18 20,20 20,22 20, ,18 22,20 22,22 22, ,18 24,20 24,22 24,24 16 possible samples (sampling with replacement) (continued) 16 Sample Means 1st 2nd Observation Obs Ch. 6-14

15 Developing a Sampling Distribution Sampling Distribution of All Sample Means (continued) 16 Sample Means 1st 2nd Observation Obs P(X) _ Sample Means Distribution (no longer uniform) _ X Ch. 6-15

16 Developing a Sampling Distribution Summary Measures of this Sampling Distribution: (continued) µ X = ! = 21 σ X = (18-21)2 + 2 (19-21) 2 +!+ (24-21) 2 16 =1.58 Ch. 6-16

17 Comparing the Population with its Sampling Distribution P(X).3.2 Population µ = 21 σ = Sample Means Distribution n = 2 P(X).3.2 µ X = 21 σ X =1.58 _ A B C D X _ X Ch. 6-17

18 Expected Value of Sample Mean n Let X 1, X 2,... X n represent a random sample from a population n The sample mean value of these observations is defined as X = 1 n n i= 1 X i Ch. 6-18

19 Standard Error of the Mean n n Different samples of the same size from the same population will yield different sample means A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean: σ X = σ n n n Note that the standard error of the mean decreases as the sample size increases If n=2, then σ /σ X = 2 = Ch. 6-19

20 If the Population is Normal n If a population is normal with mean µ and standard deviation σ, the sampling distribution of is also normally distributed with X µ X = µ and σ X = σ n Ch. 6-20

21 Z-value for Sampling Distribution of the Mean n Z-value for the sampling distribution of : X Z = (X µ) σ X where: X µ σ x = sample mean = population mean = standard error of the mean Ch. 6-21

22 Sampling Distribution Properties µ x = µ Normal Population Distribution x (i.e. is unbiased ) Normal Sampling Distribution (has the same mean) µ x µ x x Ch. 6-22

23 Sampling Distribution Properties (continued) n For sampling with replacement: As n increases, σ x decreases Larger sample size Smaller sample size µ x Ch. 6-23

24 If the Population is not Normal n We can apply the Central Limit Theorem: n Even if the population is not normal, n sample means from the population will be approximately normal as long as the sample size is large enough. Properties of the sampling distribution: µ x = µ and σ x = σ n Ch. 6-24

25 Central Limit Theorem As the sample size gets large enough n the sampling distribution becomes almost normal regardless of shape of population x Ch. 6-25

26 If the Population is not Normal (continued) Sampling distribution properties: Central Tendency Variation µ x = µ σ x = σ n Population Distribution Sampling Distribution (becomes normal as n increases) Smaller sample size µ Larger sample size x µ x x Ch. 6-26

27 Example n Suppose a large population has mean µ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected. n What is the probability that the sample mean is between 7.8 and 8.2? Ch. 6-27

28 Example Solution: (continued) n Even though the population is not normally distributed, we use the central limit theorem to get an approximated solution n the sampling distribution of approximately normal x is µ x n with mean = 8 n and standard deviation σ 3 σ x = = = n Ch. 6-28

29 Example Solution (continued): (continued) P(7.8 < X < 8.2) X - µ = P < < 3 3 σ 36 n 36 = P(-0.4 < Z < 0.4) = Population Distribution???????????? Sampling Distribution Sample Standard Normal Distribution Standardize µ = 8 X µ X = 8 µ z = 0 x Z Ch. 6-29

30 Acceptance Intervals n Goal: determine a range within which sample means are likely to occur, given a population mean and variance n n n By the Central Limit Theorem, we know that the distribution of X is approximately normal if n is large enough, with mean µ and standard deviation Let z α/2 be the z-value that leaves area α/2 in the upper tail of the normal distribution (i.e., the interval - z α/2 to z α/2 encloses probability 1 α) Then σ X µ ± zα /2σ X is the interval that includes X with probability 1 α Ch. 6-30

31 6.3 Sampling Distributions of Sample Proportions Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Sampling Distribution of Sample Variance Ch. 6-31

32 Sampling Distributions of Sample Proportions p = the proportion of the population having some characteristic n Sample proportion ( pˆ ) provides an estimate of p: ˆp = number of items in the sample having the characteristic of interest sample size n 0 pˆ 1 n pˆ has a binomial distribution, but can be approximated by a normal distribution when n is large Ch. 6-32

33 Sampling Distribution of p ^ n Normal approximation: P(ˆp) Sampling Distribution ˆp Properties: E(ˆp) = p and σ 2 ˆp = Var ( ˆp ) = p(1 p) n (where p = population proportion) Ch. 6-33

34 Z-Value for Proportions Standardize pˆ to a Z value with the formula: Z = ˆp p σ ˆp = ˆp p p(1 p) n Ch. 6-34

35 Example n If the true proportion of voters who support Proposition A is p =.4, what is the probability that a sample of size 200 yields a sample proportion between.40 and.45? i.e.: if p =.4 and n = 200, what is P(.40 pˆ.45)? Ch. 6-35

36 n Example if p =.4 and n = 200, what is pˆ P(.40.45)? (continued) σp ˆ Find : σ ˆp = p(1 p) n =.4(1.4) 200 = Convert to standard normal: P(.40 pˆ.45) = = P Z P(0 Z 1.44) Ch. 6-36

37 n Example if P =.4 and n = 200, what is pˆ P(.40.45)? (continued) Use standard normal table: P(0 Z 1.44) =.4251 Sampling Distribution Standardized Normal Distribution.4251 Standardize pˆ Z Ch. 6-37

38 6.4 Sampling Distributions of Sample Variance Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Sampling Distribution of Sample Variance Ch. 6-38

39 Sample Variance n Let x 1, x 2,..., x n be a random sample from a population. The sample variance is s 2 = 1 n 1 n i= 1 (x i x) 2 n the square root of the sample variance is called the sample standard deviation n the sample variance is different for different random samples from the same population Ch. 6-39

40 Sampling Distribution of Sample Variances n The sampling distribution of s 2 has mean σ 2 n 2 E(s ) = If the population distribution is normal, then Var(s 2 σ 2 4 2σ ) = n 1 n If the population distribution is normal then 2 (n-1)s 2 σ has a χ 2 distribution with n 1 degrees of freedom Ch. 6-40

41 The Chi-square Distribution n The chi-square distribution is a family of distributions, depending on degrees of freedom: n d.f. = n 1 χ 2 χ 2 χ d.f. = 1 d.f. = 5 d.f. = 15 n Text Table 7 contains chi-square probabilities Ch. 6-41

42 Degrees of Freedom (df) Idea: Number of observations that are free to vary after sample mean has been calculated Example: Suppose the mean of 3 numbers is 8.0 Let X 1 = 7 Let X 2 = 8 What is X 3? If the mean of these three values is 8.0, then X 3 must be 9 (i.e., X 3 is not free to vary) Here, n = 3, so degrees of freedom = n 1 = 3 1 = 2 (2 values can be any numbers, but the third is not free to vary for a given mean) Ch. 6-42

43 Chi-square Example n A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees 2 ). A sample of 14 freezers is to be tested What is the upper limit (K) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4, is less than 0.05? Ch. 6-43

44 Finding the Chi-square Value χ 2 = (n 1)s 2 σ 2 Is chi-square distributed with (n 1) = 13 degrees of freedom n Use the the chi-square distribution with area 0.05 in the upper tail: χ 2 13 = (α =.05 and 14 1 = 13 d.f.) probability α =.05 χ 2 χ 2 13 = Ch. 6-44

45 Chi-square Example (continued) χ 2 13 = (α =.05 and 14 1 = 13 d.f.) So: P(s 2 2 (n 1)s > K) = P > χ = 0.05 or (n 1)K 16 = (where n = 14) (22.36)(16) so K = = (14 1) If s 2 from the sample of size n = 14 is greater than 27.52, there is strong evidence to suggest the population variance exceeds 16. Ch. 6-45

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 6 Sampling and Sampling Distributions Ch. 6-1 Populations and Samples A Population is the set of all items or individuals of interest Examples: All

More information

Business Statistics:

Business Statistics: Department of Quantitative Methods & Information Systems Business Statistics: Chapter 7 Introduction to Sampling Distributions QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Business Statistics:

Business Statistics: Chapter 7 Student Lecture Notes 7-1 Department of Quantitative Methods & Information Systems Business Statistics: Chapter 7 Introduction to Sampling Distributions QMIS 220 Dr. Mohammad Zainal Chapter Goals

More information

Business Statistics: A First Course

Business Statistics: A First Course Business Statistics: A First Course 5 th Edition Chapter 7 Sampling and Sampling Distributions Basic Business Statistics, 11e 2009 Prentice-Hall, Inc. Chap 7-1 Learning Objectives In this chapter, you

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 7 Estimates and Sample Sizes 7-1 Overview 7-2 Estimating a Population Proportion 7-3

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

CH.8 Statistical Intervals for a Single Sample

CH.8 Statistical Intervals for a Single Sample CH.8 Statistical Intervals for a Single Sample Introduction Confidence interval on the mean of a normal distribution, variance known Confidence interval on the mean of a normal distribution, variance unknown

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Why Sample? Selecting a sample is less time-consuming than selecting every item in the population (census).

Why Sample? Selecting a sample is less time-consuming than selecting every item in the population (census). Why Sample? Selecting a sample is less time-consuming than selecting every item in the population (census). Selecting a sample is less costly than selecting every item in the population. An analysis of

More information

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals Chapter 6 Student Lecture Notes 6-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 6 Introduction to Sampling Distributions Chap 6-1 Chapter Goals To use information from the sample

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 7 Inferences Based on Two Samples: Confidence Intervals & Tests of Hypotheses Content 1. Identifying the Target Parameter 2. Comparing Two Population Means:

More information

Statistics for Managers Using Microsoft Excel 5th Edition

Statistics for Managers Using Microsoft Excel 5th Edition Statistics for Managers Using Microsoft Ecel 5th Edition Chapter 7 Sampling and Statistics for Managers Using Microsoft Ecel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 7-12 Why Sample? Selecting a sample

More information

Chapter 6 Estimation and Sample Sizes

Chapter 6 Estimation and Sample Sizes Chapter 6 Estimation and Sample Sizes This chapter presents the beginning of inferential statistics.! The two major applications of inferential statistics! Estimate the value of a population parameter!

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 6: Tests of Hypotheses Contingency Analysis Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Chapter 8. Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis

Chapter 8. Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis Chapter 8 Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis Copyright 2018, 2014, and 2011 Pearson Education, Inc. Slide - 1 Content 1. Identifying the Target Parameter 2.

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers Nominal Data Greg C Elvers 1 Parametric Statistics The inferential statistics that we have discussed, such as t and ANOVA, are parametric statistics A parametric statistic is a statistic that makes certain

More information

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Sections 7.1 and 7.2 This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Estimate the value of a population parameter Test some claim (or

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Chapter 10: Inferences based on two samples

Chapter 10: Inferences based on two samples November 16 th, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

The t-statistic. Student s t Test

The t-statistic. Student s t Test The t-statistic 1 Student s t Test When the population standard deviation is not known, you cannot use a z score hypothesis test Use Student s t test instead Student s t, or t test is, conceptually, very

More information

Chapter 6. Estimates and Sample Sizes

Chapter 6. Estimates and Sample Sizes Chapter 6 Estimates and Sample Sizes Lesson 6-1/6-, Part 1 Estimating a Population Proportion This chapter begins the beginning of inferential statistics. There are two major applications of inferential

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Sampling, Sampling Distribution and Normality

Sampling, Sampling Distribution and Normality 4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig

More information

Mathematical statistics

Mathematical statistics November 15 th, 2018 Lecture 21: The two-sample t-test Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Examine characteristics of a sample and make inferences about the population

Examine characteristics of a sample and make inferences about the population Chapter 11 Introduction to Inferential Analysis Learning Objectives Understand inferential statistics Explain the difference between a population and a sample Explain the difference between parameter and

More information

Introduction to Probability and Statistics Slides 1 Chapter 1

Introduction to Probability and Statistics Slides 1 Chapter 1 1 Introduction to Probability and Statistics Slides 1 Chapter 1 Prof. Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2010 Course outline

More information

Chapter 5 Confidence Intervals

Chapter 5 Confidence Intervals Chapter 5 Confidence Intervals Confidence Intervals about a Population Mean, σ, Known Abbas Motamedi Tennessee Tech University A point estimate: a single number, calculated from a set of data, that is

More information

Tables Table A Table B Table C Table D Table E 675

Tables Table A Table B Table C Table D Table E 675 BMTables.indd Page 675 11/15/11 4:25:16 PM user-s163 Tables Table A Standard Normal Probabilities Table B Random Digits Table C t Distribution Critical Values Table D Chi-square Distribution Critical Values

More information

Inference for Proportions, Variance and Standard Deviation

Inference for Proportions, Variance and Standard Deviation Inference for Proportions, Variance and Standard Deviation Sections 7.10 & 7.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 12 Cathy

More information

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments /4/008 Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University C. A Sample of Data C. An Econometric Model C.3 Estimating the Mean of a Population C.4 Estimating the Population

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 17, 2008 Liang Zhang (UofU) Applied Statistics I July 17, 2008 1 / 23 Large-Sample Confidence Intervals Liang Zhang (UofU)

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

1 MA421 Introduction. Ashis Gangopadhyay. Department of Mathematics and Statistics. Boston University. c Ashis Gangopadhyay

1 MA421 Introduction. Ashis Gangopadhyay. Department of Mathematics and Statistics. Boston University. c Ashis Gangopadhyay 1 MA421 Introduction Ashis Gangopadhyay Department of Mathematics and Statistics Boston University c Ashis Gangopadhyay 1.1 Introduction 1.1.1 Some key statistical concepts 1. Statistics: Art of data analysis,

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 9.1-1 Chapter 9 Inferences

More information

Chapter 3. Comparing two populations

Chapter 3. Comparing two populations Chapter 3. Comparing two populations Contents Hypothesis for the difference between two population means: matched pairs Hypothesis for the difference between two population means: independent samples Two

More information

Chapter 12: Inference about One Population

Chapter 12: Inference about One Population Chapter 1: Inference about One Population 1.1 Introduction In this chapter, we presented the statistical inference methods used when the problem objective is to describe a single population. Sections 1.

More information

Inferences About Two Population Proportions

Inferences About Two Population Proportions Inferences About Two Population Proportions MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Background Recall: for a single population the sampling proportion

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

1; (f) H 0 : = 55 db, H 1 : < 55.

1; (f) H 0 : = 55 db, H 1 : < 55. Reference: Chapter 8 of J. L. Devore s 8 th Edition By S. Maghsoodloo TESTING a STATISTICAL HYPOTHESIS A statistical hypothesis is an assumption about the frequency function(s) (i.e., pmf or pdf) of one

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Chapter 7. Sampling Distributions and the Central Limit Theorem If you can t explain it simply, you don t understand it well enough Albert Einstein. Theorem

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

ECON1310 Quantitative Economic and Business Analysis A

ECON1310 Quantitative Economic and Business Analysis A ECON1310 Quantitative Economic and Business Analysis A Topic 1 Descriptive Statistics 1 Main points - Statistics descriptive collecting/presenting data; inferential drawing conclusions from - Data types

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies The t-test: So Far: Sampling distribution benefit is that even if the original population is not normal, a sampling distribution based on this population will be normal (for sample size > 30). Benefit

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

AP Statistics Cumulative AP Exam Study Guide

AP Statistics Cumulative AP Exam Study Guide AP Statistics Cumulative AP Eam Study Guide Chapters & 3 - Graphs Statistics the science of collecting, analyzing, and drawing conclusions from data. Descriptive methods of organizing and summarizing statistics

More information

p = q ˆ = 1 -ˆp = sample proportion of failures in a sample size of n x n Chapter 7 Estimates and Sample Sizes

p = q ˆ = 1 -ˆp = sample proportion of failures in a sample size of n x n Chapter 7 Estimates and Sample Sizes Chapter 7 Estimates and Sample Sizes 7-1 Overview 7-2 Estimating a Population Proportion 7-3 Estimating a Population Mean: σ Known 7-4 Estimating a Population Mean: σ Not Known 7-5 Estimating a Population

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 8 Confidence Interval Estimation Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 8-1 Learning

More information

Formulas and Tables. for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. ˆp E p ˆp E Proportion

Formulas and Tables. for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. ˆp E p ˆp E Proportion Formulas and Tables for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. Ch. 3: Descriptive Statistics x Sf. x x Sf Mean S(x 2 x) 2 s Å n 2 1 n(sx 2 ) 2 (Sx)

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Chapter 8 of Devore , H 1 :

Chapter 8 of Devore , H 1 : Chapter 8 of Devore TESTING A STATISTICAL HYPOTHESIS Maghsoodloo A statistical hypothesis is an assumption about the frequency function(s) (i.e., PDF or pdf) of one or more random variables. Stated in

More information

Point Estimation and Confidence Interval

Point Estimation and Confidence Interval Chapter 8 Point Estimation and Confidence Interval 8.1 Point estimator The purpose of point estimation is to use a function of the sample data to estimate the unknown parameter. Definition 8.1 A parameter

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Formulas and Tables. for Essentials of Statistics, by Mario F. Triola 2002 by Addison-Wesley. ˆp E p ˆp E Proportion.

Formulas and Tables. for Essentials of Statistics, by Mario F. Triola 2002 by Addison-Wesley. ˆp E p ˆp E Proportion. Formulas and Tables for Essentials of Statistics, by Mario F. Triola 2002 by Addison-Wesley. Ch. 2: Descriptive Statistics x Sf. x x Sf Mean S(x 2 x) 2 s Å n 2 1 n(sx 2 ) 2 (Sx) 2 s Å n(n 2 1) Mean (frequency

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Ch. 1: Data and Distributions

Ch. 1: Data and Distributions Ch. 1: Data and Distributions Populations vs. Samples How to graphically display data Histograms, dot plots, stem plots, etc Helps to show how samples are distributed Distributions of both continuous and

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

STAT 536: Genetic Statistics

STAT 536: Genetic Statistics STAT 536: Genetic Statistics Tests for Hardy Weinberg Equilibrium Karin S. Dorman Department of Statistics Iowa State University September 7, 2006 Statistical Hypothesis Testing Identify a hypothesis,

More information

χ L = χ R =

χ L = χ R = Chapter 7 3C: Examples of Constructing a Confidence Interval for the true value of the Population Standard Deviation σ for a Normal Population. Example 1 Construct a 95% confidence interval for the true

More information

Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li)

Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li) Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li) Department of Educational Psychology University of Illinois at Urbana-Champaign 1 Inferential

More information

Today: Cumulative distributions to compute confidence limits on estimates

Today: Cumulative distributions to compute confidence limits on estimates Model Based Statistics in Biology. Part II. Quantifying Uncertainty. Chapter 7.5 Confidence Limits ReCap. Part I (Chapters 1,2,3,4) ReCap Part II (Ch 5, 6) 7.0 Inferential Statistics 7.1 The Logic of Hypothesis

More information

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9 The Common Factor Model Measurement Methods Lecture 15 Chapter 9 Today s Class Common Factor Model Multiple factors with a single test ML Estimation Methods New fit indices because of ML Estimation method

More information

Outline. Unit 3: Inferential Statistics for Continuous Data. Outline. Inferential statistics for continuous data. Inferential statistics Preliminaries

Outline. Unit 3: Inferential Statistics for Continuous Data. Outline. Inferential statistics for continuous data. Inferential statistics Preliminaries Unit 3: Inferential Statistics for Continuous Data Statistics for Linguists with R A SIGIL Course Designed by Marco Baroni 1 and Stefan Evert 1 Center for Mind/Brain Sciences (CIMeC) University of Trento,

More information

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p.

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. Preface p. xi Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. 6 The Scientific Method and the Design of

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Hypothesis testing. 1 Principle of hypothesis testing 2

Hypothesis testing. 1 Principle of hypothesis testing 2 Hypothesis testing Contents 1 Principle of hypothesis testing One sample tests 3.1 Tests on Mean of a Normal distribution..................... 3. Tests on Variance of a Normal distribution....................

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

7 Estimation. 7.1 Population and Sample (P.91-92)

7 Estimation. 7.1 Population and Sample (P.91-92) 7 Estimation MATH1015 Biostatistics Week 7 7.1 Population and Sample (P.91-92) Suppose that we wish to study a particular health problem in Australia, for example, the average serum cholesterol level for

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 10 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Note: Solve these papers by yourself This VU Group is not responsible for any solved content. Paper 1. Question No: 3 ( Marks: 1 ) - Please choose one

Note: Solve these papers by yourself This VU Group is not responsible for any solved content. Paper 1. Question No: 3 ( Marks: 1 ) - Please choose one Paper Composed & Solved STA30 Finalterm Papers 7 Papers Solved.. By Arman Makhani Statistic and Probability STA30 7Final term paper Question No: ( Marks: ) - Please choose one Mean deviation is always:

More information

Medical statistics part I, autumn 2010: One sample test of hypothesis

Medical statistics part I, autumn 2010: One sample test of hypothesis Medical statistics part I, autumn 2010: One sample test of hypothesis Eirik Skogvoll Consultant/ Professor Faculty of Medicine Dept. of Anaesthesiology and Emergency Medicine 1 What is a hypothesis test?

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Section 9.5. Testing the Difference Between Two Variances. Bluman, Chapter 9 1

Section 9.5. Testing the Difference Between Two Variances. Bluman, Chapter 9 1 Section 9.5 Testing the Difference Between Two Variances Bluman, Chapter 9 1 This the last day the class meets before spring break starts. Please make sure to be present for the test or make appropriate

More information

Statistics II Lesson 1. Inference on one population. Year 2009/10

Statistics II Lesson 1. Inference on one population. Year 2009/10 Statistics II Lesson 1. Inference on one population Year 2009/10 Lesson 1. Inference on one population Contents Introduction to inference Point estimators The estimation of the mean and variance Estimating

More information

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012 STA30- Statistics and Probability Solved Subjective From Final term Papers Feb 6,03 MC004085 Moaaz.pk@gmail.com Mc004085@gmail.com PSMD0 STA30- Statistics and Probability Final Term Examination - Spring

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Hypothesis Testing Problem. TMS-062: Lecture 5 Hypotheses Testing. Alternative Hypotheses. Test Statistic

Hypothesis Testing Problem. TMS-062: Lecture 5 Hypotheses Testing. Alternative Hypotheses. Test Statistic Hypothesis Testing Problem TMS-062: Lecture 5 Hypotheses Testing Same basic situation as befe: Data: random i. i. d. sample X 1,..., X n from a population and we wish to draw inference about unknown population

More information

Chapter 7: Hypothesis Testing

Chapter 7: Hypothesis Testing Chapter 7: Hypothesis Testing *Mathematical statistics with applications; Elsevier Academic Press, 2009 The elements of a statistical hypothesis 1. The null hypothesis, denoted by H 0, is usually the nullification

More information

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing & z-test Lecture Set 11 We have a coin and are trying to determine if it is biased or unbiased What should we assume? Why? Flip coin n = 100 times E(Heads) = 50 Why? Assume we count 53 Heads... What could

More information

The variable θ is called the parameter of the model, and the set Ω is called the parameter space.

The variable θ is called the parameter of the model, and the set Ω is called the parameter space. Lecture 8 What is a statistical model? A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced the data. The variable θ is called

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information