Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li)

Size: px
Start display at page:

Download "Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li)"

Transcription

1 Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li) Department of Educational Psychology University of Illinois at Urbana-Champaign 1

2 Inferential methods are the main focus of the rest of the course. Understanding the concept of sampling distribution is crucial to understanding statistical inferences. 2

3 3

4 Key Points 1. Statistic vs. Parameter 2. Population Distribution, Data Distribution, and Sampling Distributions 3. Mean and Standard Deviation of the Sampling Distribution of a Proportion 4. Inference with Sampling Distribution of a Proportion 4

5 Example: Predicting California Election Results Using Exit Polls Using exit polls, polling organizations predict winners after learning how a small number of people voted, often only a few thousand out of possibly millions of voters. The total number of voters was over nine million, and the poll sampled a small portion of them. How do we know if the sample proportion from the California exit poll is a good estimate, falling close to the population proportion? This section introduces a type of probability distribution called the Sampling Distribution that helps us determine how close to the population parameter a sample statistic is likely to fall. 5

6 Example: Predicting California Election Results Using Exit Polls In California in November 2010, the gubernatorial race pitted the Republican candidate Meg Whitman against the Democratic candidate, Jerry Brown. After sampling 3889 randomly selected voters, 53.1% said they voted for Brown, 42.4% for Whitman. At the time of the exit poll, the percentage of the entire voting population (nearly 9.5 million people) that voted for Brown was unknown. 6

7 Example: Predicting Election Results Using Exit Polls How close can we expect a sample percentage to be to the population percentage? How does the sample size influence our analysis? The sampling distribution helps us determine how close to the population parameter a sample statistic is likely to fall. 7

8 Recall: Statistic and Parameter A statistic is a numerical summary of sample data such as a sample proportion or sample mean A parameter is a numerical summary of a population such as a population proportion or population mean. In practice, we seldom know the values of parameters. Parameters are estimated using sample data. We use statistics to estimate parameters. 8

9 Population Distribution Population distribution: the probability distribution of the random variable of interest in the whole population. Example: Let X = vote outcome, with x = 1 for Jerry Brown and x = 0 for all other responses. The possible values of the random variable X (0 and 1) and how often these values occurred in the whole population (0.462 and 0.538) give the population distribution. 9

10 Data Distribution Data distribution: probability distribution of the random variable of interest in one sample that we obtain from the population. Example: The possible values of the random variable X (0 and 1) and how often these values occurred (0.469 and 0.531) give the data distribution for this one sample. With random sampling, the larger the sample size n, the more closely the data distribution resembles the population distribution 10

11 Example: Predicting Election Results Using Exit Polls Figure 7.1 The population (9.5 million voters) and data (n=3889) distributions of candidate preference (0 = Not Brown, 1= Brown). 11

12 Sampling Distribution Sampling distribution: the probability distribution of a sample statistic. With random sampling, the sampling distribution provides probabilities for all the possible values the statistic can take. Example: the sampling distribution of a sample proportion the sampling distribution of a sample mean 12

13 Sampling Distribution A sampling distribution is different from population distribution and data distribution. Rather than giving probabilities for an observation for an individual subject (as in a population or data distribution), it gives probabilities for the value of a statistic for a sample of subjects. Sampling distributions describe the variability of the sample statistic (e.g., sample mean, sample proportion) that occurs from sample to sample. The sampling distribution provides the key for telling us how close a sample statistic falls to the corresponding unknown parameter. 13

14 True or False: For one population distribution there is only one data distribution. a) True b) False 14

15 Mean and SD of the Sampling Distribution of a Proportion For a random sample of size n from a population with proportion p of outcomes in a particular category, the sampling distribution of the proportion of the sample in that category has Mean = p Standard deviation = p(1-p) n 15

16 The Standard Error To distinguish the standard deviation of a sampling distribution from the standard deviation of an ordinary probability distribution, we refer to it as a standard error. The standard error of a sample statistic (e.g., sample mean, sample proportion) is the standard deviation of the sampling distribution of the sample statistic 16

17 Example: 2010 California Election Revisited Election results showed that 53.8% of the population of all voters voted for Brown. What was the mean and standard deviation of the sampling distribution of the sample proportion who voted for him? Given that the exit poll had 3889 people (n =3889) and 53.8% supported Brown (p =.538), Mean = p =.538 S.E. = p*(1- p) n =.538*(1-.538) 3889 =

18 Suppose that 40% of men over the age of 30 suffer from lower back pain. For a random sample of 50 men over the age of 30, find the mean and the standard error of the sampling distribution of the sample proportion of men over the age of 30 that suffer from lower back pain. a) Mean = 0.40 Standard Error = b) Mean= 20 Standard Error = c) Mean = 0.40 Standard Error = d) Mean = 20 Standard Error = e) Cannot be determined 18

19 Example: 2010 California Election Revisited Q1: Given the sampling distribution of the sample proportion who voted for Brown, what are the values of the sample proportion we would expect to observe from random sampling (data distribution)? 19

20 Example: 2010 California Election Revisited Mean 3*S.E.=.514 Mean=.538 Mean+3*S.E.=

21 Example: 2010 California Election Revisited Q1: Given the sampling distribution of the sample proportion who voted for Brown, what are the values of the sample proportion we would expect to observe from random sampling (data distribution)? Answer: given p=.538, it is likely that the sample proportion from a random sample taken from this population will fall within 3 S.E. from the mean, which is between.514 and

22 Example: 2010 California Election Revisited Q2: Based on the results of the exit poll, would you have been willing to predict Brown as the winner on election night while the votes were still being counted? 22

23 Example: 2010 California Election Revisited Think it through: Our inference on the plausible population proportion will help us predict the election result. When the votes are still being counted, we do not know the actual population proportion (p). Our best estimate of the population proportion is the sample proportion (p-hat) from the exit poll. We could estimate the standard error of a sample proportion by substituting p-hat for p ˆp =.531 S.E. - hat = ˆp*(1- ˆp) n =.531*(1-.531) 3889 =

24 Example: 2010 California Election Revisited Think it through: With the estimated mean and standard error of the sample proportion, we can find a range of plausible values for the actual population proportion as.531±3*.008 =[.507,.557] We observe that all the plausible values estimated for the population proportion of voters who will vote for Brown are above the value of 0.50 and give Brown a majority over any other candidate. Therefore, we would be willing to predict Brown as the winner. 24

25 25

26 Key Points Revisited 1. Statistic vs. Parameter 2. Population Distribution, Data Distribution, and Sampling Distributions 3. Mean and Standard Deviation of the Sampling Distribution of a Proportion 4. Inference with Sampling Distribution of a Proportion 26

27 Key Points 1. The Sampling Distribution of the Sample Mean 2. Effect of n on the Standard Error 3. Central Limit Theorem (CLT) 4. Calculating Probabilities of Sample Means 5. Binomial Distribution is a Sampling Distribution 27

28 The Sampling Distribution of the Sample Mean The sample mean, x, is a random variable. The sample mean varies from sample to sample. By contrast, the population mean, µ, is a single fixed number. 28

29 The Mean and Standard Deviation of the Sampling Distribution of the Sample Mean For a random sample of size n from a population having mean µ and standard deviation σ, the sampling distribution of the sample mean has: its center described by the mean µ (the same as the mean of the population). and the spread described by the standard error, which equals the population standard deviation divided by the square root of the sample size: S.E. x =s n 29

30 Example 1: Pizza Sales Daily sales at a pizza restaurant vary from day to day. The daily sales figures fluctuate around a mean µ = $900 with a standard deviation σ = $300. What are the center and spread of the sampling distribution of the average daily sales in a week? m = $900 S.E. = = $113 30

31 The Sampling Distribution of the Sample Mean When the Population Distribution is Normally Distributed For a random sample of size n from a normally distributed population having mean µ and standard deviation σ, the sampling distribution of the sample mean: is also normally distributed with its center described by the mean µ (the same as the mean of the population). and the spread described by the standard error, which equals the population standard deviation divided by the square root of the sample size: S.E. x =s n 31

32 The Sampling Distribution of the Sample Mean When the Population Distribution is NOT Normally Distributed For a random sample of size n from a NOT normally distributed population having mean µ and standard deviation σ, the sampling distribution of the sample mean: approaches an approximately normal distribution as the sample size increases has its center described by the mean µ (the same as the mean of the population). and the spread described by the standard error, which equals the population standard deviation divided by the square root of the sample size: S.E. x =s n 32

33 Central Limit Theorem (CLT) CLT: for a random sample of size n from a population having mean µ and standard deviation σ, the sampling distribution of the sample mean: Approaches an approximately normal distribution as the sample size increases has its center described by the mean µ (the same as the mean of the population). and the spread described by the standard error, which equals the population standard deviation divided by the square root of the sample size: S.E. x =s This result applies no matter what the shape of the probability distribution from which the samples are taken. n 33

34 CLT: How Large a Sample? The sampling distribution of the sample mean takes more of a bell shape as the random sample size n increases. The more skewed the population distribution, the larger n must be before the shape of the sampling distribution is close to normal. In practice, the sampling distribution is usually close to normal when the sample size n is at least about 30. If the population distribution is approximately normal, then the sampling distribution is approximately normal for all sample sizes. 34

35 CLT: Impact of increasing n 35

36 CLT Helps Us Make Inferences For large n, the sampling distribution is approximately normal even if the population distribution is not. This enables us to make inferences about population means regardless of the shape of the population distribution. 36

37 Effect of n on the Standard Error Knowing how to find a standard error gives us a mechanism for understanding how much variability to expect in sample statistics just by chance. s The standard error of the sample mean = n As the sample size n increases, the denominator increases, so the standard error decreases. With larger samples, the sample mean is more likely to fall closer to the population mean. 37

38 CLT: Impact of increasing n 38

39 Calculating Probabilities of Sample Means The distribution of weights of milk bottles is normally distributed with a mean of 1.1 lbs and a standard deviation (σ)=0.20 lbs. What is the probability that the mean of a random sample of 5 bottles will be greater than 0.99 lbs? Calculate the mean and standard error for the sampling distribution of a random sample of 5 milk bottles By the CLT, x is approximately normal with mean=1.1 and standard error = = æ P(X >.99) = PçZ > è ( ) ö = P(z > -1.23) =.89 ø 39

40 Binomial Distribution is a Sampling Distribution In binomial distribution, p, the probability of success in one trial, can also be regarded as the population proportion of success. The binomial distribution is the probability distribution of the number of successes in n independent trials, which can be regarded as the sampling distribution for the sample proportion of successes multiplied by n when the sample size is n. 40

41 Binomial Distribution is a Sampling Distribution For a random sample of size n from a population with proportion p of success, the sampling distribution of the proportion of the sample has Mean = p Standard error = n Now, if multiply them by n mean and sd for binomial distribution. The binomial distribution of the number of successes in n independent trials with probability of success p in each trial has: Mean = np Standard deviation = p(1- p) np(1- p) 41

42 Approximating the Binomial Distribution with the Normal Distribution The binomial distribution can be well approximated by the normal distribution when the expected number of successes, np, and the expected number of failures, n(1-p) are both at least 15. This is an application of CLT. 42

43 2000 Presidential Election The 2000 US presidential election came down to votes in Florida. The official results from the Florida Department of State, Division of Elections for the two top candidates on Sunday November 28, 2000 George W. Bush 2,912,790 Al Gore 2,912,253 Total 5,825,043 Bush only had a 537 vote lead. Distribution of proportion for Bush is approximate normal. 43

44 Example continued Proportion for Bush p = = se = p(1 p)/n = If the election was a tie, z = =.0222 p z >.0222 =.98, which equals probability of making a mistake if the election was a tie. (Bush would have had to win by 6,217 votes for a decisive victory) 44

45 Key Points Revisited 1. The Sampling Distribution of the Sample Mean 2. Effect of n on the Standard Error 3. Central Limit Theorem (CLT) 4. Calculating Probabilities of Sample Means 5. Binomial Distribution is a Sampling Distribution 45

46 46

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Sampling Distribution and Central Limit Theorem Monia Ranalli monia.ranalli@uniroma3.it Ranalli M. Theoretical Foundations - Sampling Distribution and Central Limit Theorem Lesson

More information

Sampling Distribution Models. Central Limit Theorem

Sampling Distribution Models. Central Limit Theorem Sampling Distribution Models Central Limit Theorem Thought Questions 1. 40% of large population disagree with new law. In parts a and b, think about role of sample size. a. If randomly sample 10 people,

More information

Chapter 15 Sampling Distribution Models

Chapter 15 Sampling Distribution Models Chapter 15 Sampling Distribution Models 1 15.1 Sampling Distribution of a Proportion 2 Sampling About Evolution According to a Gallup poll, 43% believe in evolution. Assume this is true of all Americans.

More information

Chapter 18: Sampling Distributions

Chapter 18: Sampling Distributions Chapter 18: Sampling Distributions All random variables have probability distributions, and as statistics are random variables, they too have distributions. The random phenomenon that produces the statistics

More information

Are data normally normally distributed?

Are data normally normally distributed? Standard Normal Image source Are data normally normally distributed? Sample mean: 66.78 Sample standard deviation: 3.37 (66.78-1 x 3.37, 66.78 + 1 x 3.37) (66.78-2 x 3.37, 66.78 + 2 x 3.37) (66.78-3 x

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Chapter 7. Sampling Distributions and the Central Limit Theorem If you can t explain it simply, you don t understand it well enough Albert Einstein. Theorem

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Chapter. Objectives. Sampling Distributions

Chapter. Objectives. Sampling Distributions Chapter Sampling Distributions 8 Section 8.1 Distribution of the Sample Mean Objectives 1. Describe the distribution of the sample mean: samples from normal populations 2. Describe the distribution of

More information

ST 371 (IX): Theories of Sampling Distributions

ST 371 (IX): Theories of Sampling Distributions ST 371 (IX): Theories of Sampling Distributions 1 Sample, Population, Parameter and Statistic The major use of inferential statistics is to use information from a sample to infer characteristics about

More information

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 1 CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 Outline 2 Sampling Distribution for Proportions Sample Proportions The mean The standard deviation The Distribution Model Assumptions and Conditions Sampling

More information

Sampling Distribution Models. Chapter 17

Sampling Distribution Models. Chapter 17 Sampling Distribution Models Chapter 17 Objectives: 1. Sampling Distribution Model 2. Sampling Variability (sampling error) 3. Sampling Distribution Model for a Proportion 4. Central Limit Theorem 5. Sampling

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

AP Statistics Review Ch. 7

AP Statistics Review Ch. 7 AP Statistics Review Ch. 7 Name 1. Which of the following best describes what is meant by the term sampling variability? A. There are many different methods for selecting a sample. B. Two different samples

More information

Lecture 20 Random Samples 0/ 13

Lecture 20 Random Samples 0/ 13 0/ 13 One of the most important concepts in statistics is that of a random sample. The definition of a random sample is rather abstract. However it is critical to understand the idea behind the definition,

More information

UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS

UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS 1. (5 points) You are a pollster for the 2016 presidential elections. You ask 0 random people whether they would vote for

More information

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N Probability Distributions Normal Probability Distribution N Chapter 6 Inference It was reported that the 2008 Super Bowl was watched by 97.5 million people. But how does anyone know that? They certainly

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

Gov 2000: 6. Hypothesis Testing

Gov 2000: 6. Hypothesis Testing Gov 2000: 6. Hypothesis Testing Matthew Blackwell October 11, 2016 1 / 55 1. Hypothesis Testing Examples 2. Hypothesis Test Nomenclature 3. Conducting Hypothesis Tests 4. p-values 5. Power Analyses 6.

More information

1. Sample Space and Probability Part IV: Pascal Triangle and Bernoulli Trials. ECE 302 Spring 2012 Purdue University, School of ECE Prof.

1. Sample Space and Probability Part IV: Pascal Triangle and Bernoulli Trials. ECE 302 Spring 2012 Purdue University, School of ECE Prof. 1. Sample Space and Probability Part IV: Pascal Triangle and Bernoulli Trials ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak ConnecGon between Pascal triangle and probability theory:

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 6 Sampling and Sampling Distributions Ch. 6-1 6.1 Tools of Business Statistics n Descriptive statistics n Collecting, presenting, and describing data n Inferential

More information

Chapter 8: Confidence Intervals

Chapter 8: Confidence Intervals Chapter 8: Confidence Intervals Introduction Suppose you are trying to determine the mean rent of a two-bedroom apartment in your town. You might look in the classified section of the newspaper, write

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Ch. 7: Estimates and Sample Sizes

Ch. 7: Estimates and Sample Sizes Ch. 7: Estimates and Sample Sizes Section Title Notes Pages Introduction to the Chapter 2 2 Estimating p in the Binomial Distribution 2 5 3 Estimating a Population Mean: Sigma Known 6 9 4 Estimating a

More information

Review. A Bernoulli Trial is a very simple experiment:

Review. A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: two possible outcomes (success or failure) probability of success is always the same (p) the

More information

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University richamar@gvsu.edu Overview of Lesson In this activity students explore the properties of the distribution

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

Business Statistics:

Business Statistics: Department of Quantitative Methods & Information Systems Business Statistics: Chapter 7 Introduction to Sampling Distributions QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Sections 7.1-7.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 17-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 1/15/008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Management Programme. MS-08: Quantitative Analysis for Managerial Applications

Management Programme. MS-08: Quantitative Analysis for Managerial Applications MS-08 Management Programme ASSIGNMENT SECOND SEMESTER 2013 MS-08: Quantitative Analysis for Managerial Applications School of Management Studies INDIRA GANDHI NATIONAL OPEN UNIVERSITY MAIDAN GARHI, NEW

More information

Chapters 3.2 Discrete distributions

Chapters 3.2 Discrete distributions Chapters 3.2 Discrete distributions In this section we study several discrete distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more. For

More information

CHAPTER 7. Parameters are numerical descriptive measures for populations.

CHAPTER 7. Parameters are numerical descriptive measures for populations. CHAPTER 7 Introduction Parameters are numerical descriptive measures for populations. For the normal distribution, the location and shape are described by µ and σ. For a binomial distribution consisting

More information

Section 7.5 Conditional Probability and Independent Events

Section 7.5 Conditional Probability and Independent Events Section 75 Conditional Probability and Independent Events Conditional Probability of an Event If A and B are events in an experiment and P (A) 6= 0,thentheconditionalprobabilitythattheevent B will occur

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure).

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). STAT 515 -- Chapter 13: Categorical Data Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). Many studies allow for more than 2 categories. Example

More information

STA 291 Lecture 16. Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal

STA 291 Lecture 16. Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal STA 291 Lecture 16 Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal X STA 291 - Lecture 16 1 Sampling Distributions Sampling

More information

Finite Dictatorships and Infinite Democracies

Finite Dictatorships and Infinite Democracies Finite Dictatorships and Infinite Democracies Iian B. Smythe October 20, 2015 Abstract Does there exist a reasonable method of voting that when presented with three or more alternatives avoids the undue

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10.2 Comparing Two Means

More information

Polling and sampling. Clement de Chaisemartin and Douglas G. Steigerwald UCSB

Polling and sampling. Clement de Chaisemartin and Douglas G. Steigerwald UCSB Polling and sampling. Clement de Chaisemartin and Douglas G. Steigerwald UCSB 1 What pollsters do Pollsters want to answer difficult questions: As of November 1 st 2016, what % of the Pennsylvania electorate

More information

NOWCASTING THE OBAMA VOTE: PROXY MODELS FOR 2012

NOWCASTING THE OBAMA VOTE: PROXY MODELS FOR 2012 JANUARY 4, 2012 NOWCASTING THE OBAMA VOTE: PROXY MODELS FOR 2012 Michael S. Lewis-Beck University of Iowa Charles Tien Hunter College, CUNY IF THE US PRESIDENTIAL ELECTION WERE HELD NOW, OBAMA WOULD WIN.

More information

13.1 Categorical Data and the Multinomial Experiment

13.1 Categorical Data and the Multinomial Experiment Chapter 13 Categorical Data Analysis 13.1 Categorical Data and the Multinomial Experiment Recall Variable: (numerical) variable (i.e. # of students, temperature, height,). (non-numerical, categorical)

More information

Problems Pages 1-4 Answers Page 5 Solutions Pages 6-11

Problems Pages 1-4 Answers Page 5 Solutions Pages 6-11 Part III Practice Problems Problems Pages 1-4 Answers Page 5 Solutions Pages 6-11 1. In estimating population mean or proportion what is the width of an interval? 2. If 25 college students out of 80 graduate

More information

Mean/Average Median Mode Range

Mean/Average Median Mode Range Normal Curves Today s Goals Normal curves! Before this we need a basic review of statistical terms. I mean basic as in underlying, not easy. We will learn how to retrieve statistical data from normal curves.

More information

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari DATA 8 Spring 2018 Lecture 27 Sample Averages Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Announcements Questions for This Week How can we quantify natural

More information

Math 124: Modules Overall Goal. Point Estimations. Interval Estimation. Math 124: Modules Overall Goal.

Math 124: Modules Overall Goal. Point Estimations. Interval Estimation. Math 124: Modules Overall Goal. What we will do today s David Meredith Department of Mathematics San Francisco State University October 22, 2009 s 1 2 s 3 What is a? Decision support Political decisions s s Goal of statistics: optimize

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 6 Sampling and Sampling Distributions Ch. 6-1 Populations and Samples A Population is the set of all items or individuals of interest Examples: All

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets

Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 10 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Q Scheme Marks AOs. Notes. Ignore any extra columns with 0 probability. Otherwise 1 for each. If 4, 5 or 6 missing B0B0.

Q Scheme Marks AOs. Notes. Ignore any extra columns with 0 probability. Otherwise 1 for each. If 4, 5 or 6 missing B0B0. 1a k(16 9) + k(25 9) + k(36 9) (or 7k + 16k + 27k). M1 2.1 4th = 1 M1 Þ k = 1 50 (answer given). * Model simple random variables as probability (3) 1b x 4 5 6 P(X = x) 7 50 16 50 27 50 Note: decimal values

More information

Chapter 3. Estimation of p. 3.1 Point and Interval Estimates of p

Chapter 3. Estimation of p. 3.1 Point and Interval Estimates of p Chapter 3 Estimation of p 3.1 Point and Interval Estimates of p Suppose that we have Bernoulli Trials (BT). So far, in every example I have told you the (numerical) value of p. In science, usually the

More information

AP Online Quiz KEY Chapter 7: Sampling Distributions

AP Online Quiz KEY Chapter 7: Sampling Distributions AP Online Quiz KEY Chapter 7: Sampling Distributions 1. A news website claims that 30% of all Major League Baseball players use performanceenhancing drugs ( PEDs ) Indignant at this claim, league officials

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

Ch. 7 Statistical Intervals Based on a Single Sample

Ch. 7 Statistical Intervals Based on a Single Sample Ch. 7 Statistical Intervals Based on a Single Sample Before discussing the topics in Ch. 7, we need to cover one important concept from Ch. 6. Standard error The standard error is the standard deviation

More information

Test 3 SOLUTIONS. x P(x) xp(x)

Test 3 SOLUTIONS. x P(x) xp(x) 16 1. A couple of weeks ago in class, each of you took three quizzes where you randomly guessed the answers to each question. There were eight questions on each quiz, and four possible answers to each

More information

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing Page Title PSY 305 Module 3 Introduction to Hypothesis Testing Z-tests Five steps in hypothesis testing State the research and null hypothesis Determine characteristics of comparison distribution Five

More information

Probability Distributions

Probability Distributions CONDENSED LESSON 13.1 Probability Distributions In this lesson, you Sketch the graph of the probability distribution for a continuous random variable Find probabilities by finding or approximating areas

More information

Lecture 10 and 11: Text and Discrete Distributions

Lecture 10 and 11: Text and Discrete Distributions Lecture 10 and 11: Text and Discrete Distributions Machine Learning 4F13, Spring 2014 Carl Edward Rasmussen and Zoubin Ghahramani CUED http://mlg.eng.cam.ac.uk/teaching/4f13/ Rasmussen and Ghahramani Lecture

More information

Business Statistics:

Business Statistics: Chapter 7 Student Lecture Notes 7-1 Department of Quantitative Methods & Information Systems Business Statistics: Chapter 7 Introduction to Sampling Distributions QMIS 220 Dr. Mohammad Zainal Chapter Goals

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial.

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial. Section 8.6: Bernoulli Experiments and Binomial Distribution We have already learned how to solve problems such as if a person randomly guesses the answers to 10 multiple choice questions, what is the

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

CMU Social choice 2: Manipulation. Teacher: Ariel Procaccia

CMU Social choice 2: Manipulation. Teacher: Ariel Procaccia CMU 15-896 Social choice 2: Manipulation Teacher: Ariel Procaccia Reminder: Voting Set of voters Set of alternatives Each voter has a ranking over the alternatives means that voter prefers to Preference

More information

The Central Limit Theorem

The Central Limit Theorem - The Central Limit Theorem Definition Sampling Distribution of the Mean the probability distribution of sample means, with all samples having the same sample size n. (In general, the sampling distribution

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Forecasting: Intentions, Expectations, and Confidence. David Rothschild Yahoo! Research, Economist December 17, 2011

Forecasting: Intentions, Expectations, and Confidence. David Rothschild Yahoo! Research, Economist December 17, 2011 Forecasting: Intentions, Expectations, and Confidence David Rothschild Yahoo! Research, Economist December 17, 2011 Forecasts: Individual-Level Information Gather information from individuals, analyze

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

Probability Distributions

Probability Distributions EXAMPLE: Consider rolling a fair die twice. Probability Distributions Random Variables S = {(i, j : i, j {,...,6}} Suppose we are interested in computing the sum, i.e. we have placed a bet at a craps table.

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Introduction to Statistical Data Analysis Lecture 5: Confidence Intervals

Introduction to Statistical Data Analysis Lecture 5: Confidence Intervals Introduction to Statistical Data Analysis Lecture 5: Confidence Intervals James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1

More information

Discussion 03 Solutions

Discussion 03 Solutions STAT Discussion Solutions Spring 8. A new flavor of toothpaste has been developed. It was tested by a group of people. Nine of the group said they liked the new flavor, and the remaining indicated they

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Outline of This Week Last week, we learned: Data representation: Object vs. Fieldbased approaches

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

THE SAMPLING DISTRIBUTION OF THE MEAN

THE SAMPLING DISTRIBUTION OF THE MEAN THE SAMPLING DISTRIBUTION OF THE MEAN COGS 14B JANUARY 26, 2017 TODAY Sampling Distributions Sampling Distribution of the Mean Central Limit Theorem INFERENTIAL STATISTICS Inferential statistics: allows

More information

Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion

Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion The number of tattoos was quantitative data so we found a sampling distribution for the mean of each sample. Now we are going to

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

MA/CS 109 The Art and Science of Quantitative Reasoning Estimation and Confidence: Opinion Polls

MA/CS 109 The Art and Science of Quantitative Reasoning Estimation and Confidence: Opinion Polls MA/CS 109 The Art and Science of Quantitative Reasoning Estimation and Confidence: Opinion Polls As we have noted, statistics is the science of learning from data. One important aspect of such learning

More information

CHAPTER 14 THEORETICAL DISTRIBUTIONS

CHAPTER 14 THEORETICAL DISTRIBUTIONS CHAPTER 14 THEORETICAL DISTRIBUTIONS THEORETICAL DISTRIBUTIONS LEARNING OBJECTIVES The Students will be introduced in this chapter to the techniques of developing discrete and continuous probability distributions

More information

Expected Value - Revisited

Expected Value - Revisited Expected Value - Revisited An experiment is a Bernoulli Trial if: there are two outcomes (success and failure), the probability of success, p, is always the same, the trials are independent. Expected Value

More information

Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions + Chapter 7: Sampling Distributions Section 7.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Chapter 7 Sampling Distributions n 7.1 What is a Sampling Distribution? n 7.2 n

More information

example: An observation X comes from a normal distribution with

example: An observation X comes from a normal distribution with Hypothesis test A statistical hypothesis is a statement about the population parameter(s) or distribution. null hypothesis H 0 : prior belief statement. alternative hypothesis H a : a statement that contradicts

More information

Lesson 19: Understanding Variability When Estimating a Population Proportion

Lesson 19: Understanding Variability When Estimating a Population Proportion Lesson 19: Understanding Variability When Estimating a Population Proportion Student Outcomes Students understand the term sampling variability in the context of estimating a population proportion. Students

More information

Chapter 1. The Mathematics of Voting

Chapter 1. The Mathematics of Voting Introduction to Contemporary Mathematics Math 112 1.1. Preference Ballots and Preference Schedules Example (The Math Club Election) The math club is electing a new president. The candidates are Alisha

More information

The Importance of the Median Voter

The Importance of the Median Voter The Importance of the Median Voter According to Duncan Black and Anthony Downs V53.0500 NYU 1 Committee Decisions utility 0 100 x 1 x 2 x 3 x 4 x 5 V53.0500 NYU 2 Single-Peakedness Condition The preferences

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability

More information

7.1: What is a Sampling Distribution?!?!

7.1: What is a Sampling Distribution?!?! 7.1: What is a Sampling Distribution?!?! Section 7.1 What Is a Sampling Distribution? After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution

More information

Inference for Proportions

Inference for Proportions Inference for Proportions Marc H. Mehlman marcmehlman@yahoo.com University of New Haven Based on Rare Event Rule: rare events happen but not to me. Marc Mehlman (University of New Haven) Inference for

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Events A and B are said to be independent if the occurrence of A does not affect the probability of B.

Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Independent Events Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Probability experiment of flipping a coin and rolling a dice. Sample Space: {(H,

More information

MATH 19-02: HW 5 TUFTS UNIVERSITY DEPARTMENT OF MATHEMATICS SPRING 2018

MATH 19-02: HW 5 TUFTS UNIVERSITY DEPARTMENT OF MATHEMATICS SPRING 2018 MATH 19-02: HW 5 TUFTS UNIVERSITY DEPARTMENT OF MATHEMATICS SPRING 2018 As we ve discussed, a move favorable to X is one in which some voters change their preferences so that X is raised, while the relative

More information

Stat 101: Lecture 12. Summer 2006

Stat 101: Lecture 12. Summer 2006 Stat 101: Lecture 12 Summer 2006 Outline Answer Questions More on the CLT The Finite Population Correction Factor Confidence Intervals Problems More on the CLT Recall the Central Limit Theorem for averages:

More information