Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes

Size: px
Start display at page:

Download "Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes"

Transcription

1 Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes Michael R. Salazar Department of Chemistry Union University, Jackson, TN msalazar@uu.edu (731) Material and Process Simulation Center California Institute of Technology January 22,

2 Outline Context and motivation Overview of complex reactions Challenges/Opportunities of complex chemical reactions Time-dependent group methodology Accelerated MD with Chemistry (AMolDC) outline Illustrative simulations Computational scaling Summary 2

3 Context/Motivation of Research How can we take first principles (ab initio) methods for the molecular dynamics (MD) simulations of: A + BC BC' + A' AB + C 3 atoms AC + B 6 species A + B + C 5 channels ABC and extend it to: C 2 H 4 + O 2 products or HMX(β) HMX(δ) HMX(δ) HMX(NO 2 ) HMX(NO 2 ) N 2 O + NO + CO + (intermediate products) N 2 O + NO + CO N 2 + CO 2 + (final gas products) 3

4 Overview of Complex Reactions soot pyrolysis C 2 H 4 + O 2 C 2 H 4 + 2O. C 2 H. 3 + OH + O C 2 H 4 time ~10 2 elementary steps O 2 CO + H 2 O CO 2 + H 2 O ns - µs oxidation exponential growth of species with steps: OH, C 2 H 3, C 2 H 3 OO, H 3 CCH 2, ~10 3 unique chemical species Combustion and detonation processes Oxidation and pyrolysis of fuels HMX/RDX decomposition 4

5 Current Theory (Kinetics) postulated kinetic mechanism fit rate constants or experiments of elementary reactions or ab initio MD or transition state theory Numerical Approaches to Combustion Modeling REACTIONS!! H2,O2, H,OH and O reactions! H2+OH=H2O+H 2.14E ! [Emdee et al. 1992] H2+O2=OH+OH 1.70E ! [Miller and Melius 1992] H+O2=OH+O 1.91E ! [Emdee et al. 1992] H+O2+M=HO2+M 1.41E ! [Baulch et al. 1994] for N2 H2/1.25/ H2O/6.0/ CO2/1.90/! relative to N2, based on Baulch et al H+M=H2+M 1.00E ! [Miller and Melius 1992] 2H+H2=2H2 9.20E ! [Miller and Melius 1992] 2H+H2O=H2+H2O 6.00E ! [Miller and Melius 1992] 2H+CO2=H2+CO2 5.49E ! [Miller and Melius 1992] H+OH+M=H2O+M 2.21E ! [Baulch et al. 1992] for N2 H2/1.25/ H2O/6.0/ CO2/1.90/! relative to N2, based on Baulch et al H+O+M=OH+M 6.02E ! [Miller and Melius 1992] H2O/5.0/ OH+H2O2=H2O+HO2 7.08E ! [Emdee et al. 1992] OH+OH=O+H2O 1.23E ! [Emdee et al. 1992] O+HO2=OH+O2 1.74E ! [Emdee et al. 1992] O+H2=OH+H 5.13E ! [Emdee et al. 1992] O+O+M=O2+M 5.04E ! [Tsang and Hampson 1986] corrected for N2 H2/1.25/ H2O/6.0/ CO2/1.90/! relative to N2, based on Baulch et al O+OH+M=HO2+M 1.00E ! [Zhang and McKinnon 1995]!!! HO2 peroxyl reactions! HO2+H=H2O+O 3.00E ! [Baulch et al. 1992] HO2+H=H2+O2 6.61E ! [Emdee et al. 1992] HO2+H=OH+OH 1.40E ! [Miller and Melius 1992] HO2+OH=H2O+O2 7.50E ! [Miller and Melius 1992] HO2+HO2=H2O2+O2 2.00E ! [Miller and Melius 1992]!!! H2O2 reactions! H2O2+M=OH+OH+M 1.21E ! [Baulch et al. 1992] for N2 H2/1.25/ H2O/6.0/ CO2/1.90/! relative to N2, based on Baulch et al H2O2+H=HO2+H2 4.79E ! [Emdee et al. 1992] H2O2+H=OH+H2O 1.00E ! [Emdee et al. 1992] H2O2+O=OH+HO2 9.55E ! [Emdee et al. 1992] H2O2+O=O2+H2O 9.55E ! [Emdee et al. 1992]!!! HCO (aldehyde) reactions 5

6 Current Theory (Dynamics) Classical MD simulations with ReaxFF for potential RDX decomposition products RDX/Estane decomposition 6

7 Challenges/Opportunities of MD Studies Challenges for ab initio MD studies: 1. System Size ~10 3 unique species NAtoms ~ PESs Reactive and non-reactive PESs Ee large dimensionality x 3. Time Scale i ns µs Opportunities: 1. Mechanism Species Branching ratios 2. Kinetics Dynamics determining kinetics rather than kinetics determining dynamics 3. Energetics = tr Bath gas collisional processes O 2 O 2, CO CO 2, Reactive processes C 2 H 3 + O 2 C 2 H 3 O 2, { P [ 2 T + 2Vn, e + J + K ] 2S PFP} + Vn, n Computational scaling factors: O(N) to O(N 7 ) N evaluations ~ for 100 ps 7

8 MD by Time Dependent Groups O 2 H 2 O V Total group Ni group N group Nm 1 l ( t) = Viα ( t) + Vlα, mβ ( t) α 2 α β i l m l C 2 H 3 CO Group interactions (QM/QM/QM ) Governed by spatial cutoffs Differing levels of ab initio theory over differing groups Group-group interactions (MM) Outside of spatial cutoffs Less important to reactive systems Fast-access PES database Interpolation force fields low level ab initio Salazar, M.R. J. Phys. Chem. A 2005, 109,

9 Accelerated MD with Chemistry (AMolDC) Input initial coordinates, T, and P MakeGroups Sum over groups Direct dynamics perform MD time step start Make groups in the simulation cell Have all atomic forces been calculated? Is there sufficient data to interpolate? Perform quantum chemical calculation time step limit reached? end interpolate Insert data into PES database PESDatabase 350 Link-listed subcells Interpolation group N i 1 group Nl group N m VTotal ( t) = Viα ( t) + Vlα, mβ ( t) i α 2 l α m l β Wall Clock Simulation time (ps) 9

10 Calculate Forces perform MD time step start Make groups in the simulation cell Have all atomic forces been calculated? Is there sufficient data to interpolate? Perform quantum chemical calculation time step limit reached? end interpolate Insert data into PES database 10

11 Discontinuities of V Total O 2 HF MP2 O 2 C 2 H 3 C 2 H 3 at spatial cutoff MCSCF O O V(C 2 H 3 ) + V(O 2 ) V(C 2 H 3 + O 2 ), but V 0,therefore, T 0 Shuffling of groups H. C C H H V Total Time 11

12 Illustrative Simulations N 2 system Reflective walls Variable simulation cell size T=1000K P~10 3 atm Variable spatial cutoff (ε) N Atoms = 12, P~ atm V dv/dr SpatialCutoff = 8.5 bohr SpatialCutoff = 6.9 bohr V T Total Energy V T Total Energy V,dV/dr (a.u.) ε = 6.9 ε = bohr 8.5 bohr Energy (Hartree) Energy (Hartree) r (bohr) time time (a.u.) (a.u.) 12

13 Illustrative Simulations (cont.) N 2 system Reflective walls Variable simulation cell size T=1000K P~10 3 atm Variable spatial cutoff (ε) N Atoms = 300, P~ atm V dv/dr 6 5 Spatial Cutoff = 6.9 bohr V T Total Energy V,dV/dr (a.u.) ε = 6.9 bohr Energy (Hartree) r (bohr) time (a.u.) 13

14 Canonical (NVT) Simulations 220 Atom simulation P ~ 1000 atm T = 1000 K Time step = 0.25 fs Energy (Hartree) V T E_total time (a.u.) T (Hartree) time (a.u.) Focus on thermalized region 14

15 Canonical (NVT) Simulations V E_total Energy (Hartree) T(Hartree) time (a.u.) time (a.u.) Temp (K) time (a.u.) Exceedingly discontinuous potential and total energy; however, smooth and continuous kinetic energy, smooth and continuous temperature, and, therefore, canonical (NVT) simulations. 15

16 MakeGroups perform MD time step start Make groups in the simulation cell Have all atomic forces been calculated? Is there sufficient data to interpolate? Perform quantum chemical calculation time step limit reached? end interpolate Insert data into PES database 16

17 Computational Scaling of MakeGroups Module Cost of MakeGroups for 3000 atoms = 440 sec. for 1000 MD steps MakeGroups(NSubCells,NGroups, Groups,Members) CPU time (seconds) O(N) O(N 2 ) Order of magnitude reduction of cost no MakeGroups 1 subcell 27 subcells 64 subcells 125 subcells 1000 subcells System Size (NAtoms) 17

18 PESDatabase perform MD time step start Make groups in the simulation cell Have all atomic forces been calculated? Is there sufficient data to interpolate? Perform quantum chemical calculation time step limit reached? end interpolate Insert data into PES database 18

19 PESDatabase Module perform MD time step start Make groups in the simulation cell Have all atomic forces been calculated? Is there sufficient data to interpolate? Perform quantum chemical calculation time step limit reached? end interpolate Insert data into PES database PESDatabase for Complex Systems Loop over subcells { Loop over Groups in subcells { r q P; Group = C H ) } } ( 2 3O A B C D E Groups Interpolation Module Fast Sorting Routine r r q, E, E, r),( q, E, E, ),... ( 1 r 2 q r, E, E Grid 19

20 Computational Scaling of PESDatabase Module Time Step 20

21

Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes

Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes Michael R. Salazar Department of Chemistry Union University, Jackson, TN 38305 msalazar@uu.edu

More information

Reducing the Carbon Footprint of Transportation Fuels through Computational Modelling

Reducing the Carbon Footprint of Transportation Fuels through Computational Modelling Reducing the Carbon Footprint of Transportation Fuels through Computational Modelling http://www.conserve-energy-future.com Computational Modelling Group Founded in 1999 Head Prof. Currently 20 members

More information

Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals

Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals The 7 th International Conference on Chemical Kinetics July 11, 2011 Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals Akira Matsugi and Akira Miyoshi Department of

More information

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel 4 th International Conference on Hydrogen Safety, 12-14 September 2011, San Francisco, USA Pressre limit of hydrogen spontaneos ignition in a T-shaped channel Maim Bragin, Dmitriy Makarov, Vladimir Molkov

More information

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein Goal Contribute to Improving the Accuracy of Mechanisms Theoretical Kinetics Predictions for Key Reactions Guided by Modeling Efforts Butanol

More information

HOW TO USE CHEMKIN 경원테크

HOW TO USE CHEMKIN 경원테크 HOW TO USE CHEMKIN 경원테크 Agenda CHEMKIN-PRO vs. Old Chemkin II CHEMKIN-PRO Overview Advanced Feature: Particle Tracking Advanced Feature: Reaction Path Analysis Example : Turbulent jet with kinetics & mixing

More information

Reduced Kinetic Mechanisms For Premixedhydrogen-air-cf3br Flames

Reduced Kinetic Mechanisms For Premixedhydrogen-air-cf3br Flames University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Reduced Kinetic Mechanisms For Premixedhydrogen-air-cf3br Flames 2004 Yi Zhang University of Central Florida

More information

High Pressure Single Pulse Shock Tube (HPST) Experiments

High Pressure Single Pulse Shock Tube (HPST) Experiments High Pressure Single Pulse Shock Tube (HPST) Experiments Kenneth Brezinsky Mechanical Engineering University of Illinois, Chicago 27 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Surrogate Kinetic

More information

Rate Constant for the NH 3 NO 2. HONO Reaction: Comparison of Kinetically Modeled and Predicted Results

Rate Constant for the NH 3 NO 2. HONO Reaction: Comparison of Kinetically Modeled and Predicted Results Rate Constant for the NH 3 HONO Reaction: Comparison of Kinetically Modeled and Predicted Results A. GRANT THAXTON, C.-C. HSU, M. C. LIN Department of Chemistry, Emory University, Atlanta, Georgia 30322

More information

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Pascal Brault GREMI, UMR7344 CNRS Université d Orléans, Orléans, France Outline Plasma- liquid interactions Reactive

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

Reaction kinetics & Chemical Reaction Models. Ivan A. Gargurevich, Ph.D.

Reaction kinetics & Chemical Reaction Models. Ivan A. Gargurevich, Ph.D. Reaction kinetics & Chemical Reaction Models Ivan A. Gargurevich, Ph.D. 2001 1 Reaction Kinetics & Chemical Reaction Models The fundamentals of chemical reaction kinetics will be presented with the purpose

More information

Oxidation of C 3 and n-c 4 aldehydes at low temperatures

Oxidation of C 3 and n-c 4 aldehydes at low temperatures Oxidation of C 3 and n-c 4 aldehydes at low temperatures M. Pelucchi*, A. Frassoldati*, E. Ranzi*, T. Faravelli* matteo.pelucchi@polimi.it * CRECK-Department of Chemistry, Materials and Chemical Engineering

More information

Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal 23955, Saudi

Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal 23955, Saudi Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information: Suppressing the formation of NOx and N2O

More information

Summary of the new Modelling Vocabulary

Summary of the new Modelling Vocabulary Summary of the new Modelling Vocabulary These two pages attempts to summarise in a concise manner the Modelling Vocabulary. What are Models? What are Simulations? Materials Models consist of Physics or

More information

Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development

Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development Renyi Zhang and Jun Zhao Department of Atmospheric Sciences Texas A&M University College Station, TX 77843 Presented at the international

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Energy and Resources Research Institute School of something FACULTY OF OTHER Faculty of Engineering THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Alison S. Tomlin Michael Davis, Rex Skodje, Frédérique

More information

Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data

Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data William H. Green, Michael Harper, Mary Schnoor, & Shamel Merchant CEFRC Annual Meeting

More information

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation 1040 J. Phys. Chem. A 2008, 112, 1040-1053 ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation Kimberly Chenoweth, Adri C. T. van Duin, and William A. Goddard, III*

More information

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Ying Li Collaboratory for Advanced Computing & Simulations Department of Chemical Engineering & Materials Science Department

More information

Study of mechanical and thermal behavior of polymeric ablator using MD

Study of mechanical and thermal behavior of polymeric ablator using MD Study of mechanical and thermal behavior of polymeric ablator using MD Abhishek Kumar PhD Student Veera Sundararaghavan Assistant Professor of Aerospace Engineering University of Michigan, Ann Arbor Outline

More information

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms PSAS 28 International Conference on Precision Physics of Simple Atomic Systems Windsor, July 21-26, 28 A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms M.P. Faifman

More information

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3 D. De Fazio, T. V. Tscherbul, S. Cavalli 3, and V. Aquilanti 3 1 Istituto di Struttura della Materia C.N.R., 00016 Roma, Italy Department of Chemistry, University of Toronto, M5S 3H6, Canada 3 Dipartimento

More information

Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical.

Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical. Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical John Alecu Second Annual CEFRC Conference August 17, 2011 Acknowledgments

More information

Ab initio molecular dynamics

Ab initio molecular dynamics Ab initio molecular dynamics Kari Laasonen, Physical Chemistry, Aalto University, Espoo, Finland (Atte Sillanpää, Jaakko Saukkoriipi, Giorgio Lanzani, University of Oulu) Computational chemistry is a field

More information

Flame Chemistry and Diagnostics

Flame Chemistry and Diagnostics Flame Chemistry and Diagnostics High-Temperature Oxidation of (1) n-butanol and (2) C 4 - Hydrocarbons in Low-Pressure Premixed Flames Nils Hansen, Michael R. Harper, William H. Green Bin Yang, Hai Wang,

More information

Electronic supplementary information to Heterogeneous OH oxidation. of biomass burning organic aerosol surrogate compounds: Assessment

Electronic supplementary information to Heterogeneous OH oxidation. of biomass burning organic aerosol surrogate compounds: Assessment Electronic supplementary information to Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: Assessment of volatilisation products and the role of OH concentration on the

More information

Fundamental Kinetics Database Utilizing Shock Tube Measurements

Fundamental Kinetics Database Utilizing Shock Tube Measurements Fundamental Kinetics Database Utilizing Shock Tube Measurements Volume 3: Reaction Rate Measurements D. F. Davidson and R. K. Hanson Mechanical Engineering Department Stanford University, Stanford CA 94305

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION

SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION G. W. Lawrence Indian Head Division Naval Surface Warfare Center Research and Technology Department Indian Head, MD 20640 Free field

More information

Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials. Gábor Csányi Engineering Laboratory

Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials. Gábor Csányi Engineering Laboratory Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials Gábor Csányi Engineering Laboratory Interatomic potentials for molecular dynamics Transferability biomolecular

More information

Homework Assignment 2 ATM 507 Fall 2014

Homework Assignment 2 ATM 507 Fall 2014 Due Tuesday, September 30th Homework Assignment ATM 507 Fall 014 1. Calculate H for the following reactions. Express your answer in kj/mole and kcal/mole: i) NO NO + O( 3 P) ii) NO + O 3 NO + O iii) H

More information

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface Supporting Information for Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite Edge Water Interface Zhen Jiang, Konstantin Klyukin, and Vitaly Alexandrov,, Department

More information

RECOMMENDED RATE CONSTANTS OF CHEMICAL REACTIONS IN AN H 2 -O 2 GAS MIXTURE WITH ELECTRONICALLY EXCITED SPECIES O 2 ( 1 ), O( 1 D), OH( 2 Σ) INVOLVED

RECOMMENDED RATE CONSTANTS OF CHEMICAL REACTIONS IN AN H 2 -O 2 GAS MIXTURE WITH ELECTRONICALLY EXCITED SPECIES O 2 ( 1 ), O( 1 D), OH( 2 Σ) INVOLVED RECOMMENDED RATE CONSTANTS OF CHEMICAL REACTIONS IN AN H 2 -O 2 GAS MIXTURE WITH ELECTRONICALLY EXCITED SPECIES O 2 ( 1 ), O( 1 D), OH( 2 Σ) INVOLVED L.B. Ibraguimova, G.D. Smekhov, O.P. Shatalov Institute

More information

Non-Equilibrium Reaction Rates in Hydrogen Combustion

Non-Equilibrium Reaction Rates in Hydrogen Combustion 25 th ICDERS August 2 7, 25 Leeds, UK Non-Equilibrium Reaction Rates in Hydrogen Combustion Stephen J. Voelkel, Venkat Raman 2, Philip Varghese The University of Texas at Austin, Austin, TX 7872, USA 2

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

Direct ab initio dynamics studies of N H 2^NH H reaction

Direct ab initio dynamics studies of N H 2^NH H reaction JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 15 15 OCTOBER 2000 Direct ab initio dynamics studies of N H 2^NH H reaction Shaowen Zhang and Thanh N. Truong a) Henry Eyring Center for Theoretical Chemistry,

More information

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF pubs.acs.org/jpca Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF Naomi Rom,*, Sergey V. Zybin, Adri C. T. van Duin, William A. Goddard, III, Yehuda

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Micro flow reactor with prescribed temperature profile

Micro flow reactor with prescribed temperature profile The First International Workshop on Flame Chemistry, July 28-29, 2012, Warsaw, Poland Micro flow reactor with prescribed temperature profile Toward fuel Indexing and kinetics study based on multiple weak

More information

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI Marta Włoch, a Jeffrey R. Gour, a and Piotr Piecuch a,b a Department of Chemistry,Michigan State University, East Lansing, MI 48824 b

More information

Accelerated Quantum Molecular Dynamics

Accelerated Quantum Molecular Dynamics Accelerated Quantum Molecular Dynamics Enrique Martinez, Christian Negre, Marc J. Cawkwell, Danny Perez, Arthur F. Voter and Anders M. N. Niklasson Outline Quantum MD Current approaches Challenges Extended

More information

Chemical Kinetics of Combustion Processes

Chemical Kinetics of Combustion Processes 2010 CEFRC Conference Chemical Kinetics of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California Benzene + O( 3 P) Products

More information

Efficient Engine CFD with Detailed Chemistry

Efficient Engine CFD with Detailed Chemistry www.cd-adapco.com Efficient Engine CFD with Detailed Chemistry Harry Lehtiniemi and Rajesh Rawat CD-adapco Karin Fröjd and Fabian Mauss Digital Analysis of Reaction Systems Challenges in CFD engine modeling

More information

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction Lecture Chemical Kinetics 1 One (elementary) step reaction im i i M i is the number of species i, i are the stoichiometric coefficients i i Chemical Kinetics =0ifi is not a reactant =0ifi is not a product

More information

Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada. Roman Krems

Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada. Roman Krems Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada Roman Krems Gaussian Process Model for Collision Dynamics of Complex Molecules, Jie Cui and

More information

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES Michael R. Harper, William H. Green* Massachusetts Institute of Technology, Department of Chemical

More information

Investigation of ethane pyrolysis and oxidation at high pressures using global optimization based on shock tube data

Investigation of ethane pyrolysis and oxidation at high pressures using global optimization based on shock tube data Investigation of ethane pyrolysis and oxidation at high pressures using global optimization based on shock tube data Viktor Samu 1, Tamás Varga 1,2, Tamás Turányi 1 1 Institute of Chemistry, Eötvös University

More information

High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas 1 st International Workshop on Flame Chemistry Warsaw, Poland July 28, 212 Michael P. Burke Chemical Sciences and Engineering Division,

More information

Combustion Chemistry

Combustion Chemistry Combustion Chemistry Hai Wang Stanford University 2015 Princeton-CEFRC Summer School On Combustion Course Length: 3 hrs June 22 26, 2015 Copyright 2015 by Hai Wang This material is not to be sold, reproduced

More information

Ab-initio simulation of liquid water by quantum Monte Carlo

Ab-initio simulation of liquid water by quantum Monte Carlo Ab-initio simulation of liquid water by quantum Monte Carlo Sandro Sorella G. Mazzola & Y. Luo SISSA, IOM DEMOCRITOS, Trieste A. Zen, L. Guidoni U. of L Aquila, L Aquila 28 July 2014, Mike Towler Institute,

More information

Optimizing GROMACS for parallel performance

Optimizing GROMACS for parallel performance Optimizing GROMACS for parallel performance Outline 1. Why optimize? Performance status quo 2. GROMACS as a black box. (PME) 3. How does GROMACS spend its time? (MPE) 4. What you can do What I want to

More information

Molecular Dynamics Study of C-C Bond Dissociation in Linear Alkanes and Polyethylene: Effects of Condensed Phase

Molecular Dynamics Study of C-C Bond Dissociation in Linear Alkanes and Polyethylene: Effects of Condensed Phase Eastern State Fall Technical Meeting Chemical & Physical Processes in Combustion University of Virginia October 21-25, 2007 Molecular Dynamics Study of C-C Bond Dissociation in Linear Alkanes and Polyethylene:

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph.

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Supplementary Materials Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Tao Cheng,, Lu Wang, Boris V Merinov, and William

More information

Combustion Chemistry of a New Biofuel: Butanol

Combustion Chemistry of a New Biofuel: Butanol Combustion Chemistry of a New Biofuel: Butanol William H. Green, D.F. Davidson, F. Egolfopoulos, N. Hansen, M. Harper, R.K. Hanson, S. Klippenstein, C.K. Law, C.J. Sung, D.R. Truhlar, & H. Wang Assessing

More information

Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel

Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel Article Subscriber access provided by Caltech Library Services Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel Kimberly Chenoweth, Adri C. T. van Duin, Siddharth

More information

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Florence Vermeire, Hans-Heinrich Carstensen, Olivier Herbinet, Frédérique Battin-Leclerc, Guy B. Marin and Kevin M. Van

More information

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas MARIO CAPITELLI Department of Chemistry, University of Bari (Italy) CNR Institute of Inorganic Methodologies and Plasmas Bari (Italy) MOLECULAR

More information

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 Molecular Dynamics What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 MSE485/PHY466/CSE485 1 The Molecular Dynamics (MD) method

More information

Methods and Code Integration. Ryan M. Olson University of Minnesota

Methods and Code Integration. Ryan M. Olson University of Minnesota Methods and Code Integration Ryan M. Olson University of Minnesota Overview Methods Electrostatically Embedded Many-Body Method Adaptive Partitioning Configurational-Biased Grand Canonical Monte Carlo

More information

Supporting Information

Supporting Information Supporting Information First-Principles-based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface Ivo A.W. Filot, Robin J.P. Broos, Jeaphianne P.M. van Rijn, Gerardus J.H.A.

More information

Rustam Z. Khaliullin University of Zürich

Rustam Z. Khaliullin University of Zürich Rustam Z. Khaliullin University of Zürich Molecular dynamics (MD) MD is a computational method for simulating time evolution of a collection of interacting atoms by numerically integrating Newton s equation

More information

Introduction to ReaxFF: Reactive Molecular Dynamics

Introduction to ReaxFF: Reactive Molecular Dynamics Introduction to ReaxFF: Reactive Molecular Dynamics Ole Carstensen carstensen@scm.com TCCM ADF Tutorial April 21 Amsterdam Outline ReaxFF - general aspects Molecular Dynamics Intro 200 DFT 100 ReaxFF Harmonic

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Fragmentation methods

Fragmentation methods Fragmentation methods Scaling of QM Methods HF, DFT scale as N 4 MP2 scales as N 5 CC methods scale as N 7 What if we could freeze the value of N regardless of the size of the system? Then each method

More information

Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur

Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur Under the supervision of: Dr. Marcel Nooijen Associate Professor Department of Chemistry University of Waterloo

More information

Plot the interatomic distances as a function of time and characterize the reactants and products through the plot. w

Plot the interatomic distances as a function of time and characterize the reactants and products through the plot. w Module 7 : Theories of Reaction Rates Lecture 35 : Potential Energy Surfaces (PES) II Objectives After studying this Lecture you will learn to do the following Relate a trajectory on a PES to a collision

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows

A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows Marco Panesi AFOSR YIP Grant No: FA9550-15-1-0132 DEF Department of Aerospace Engineering University

More information

Reactive Empirical Force Fields

Reactive Empirical Force Fields Reactive Empirical Force Fields Jason Quenneville jasonq@lanl.gov X-1: Solid Mechanics, EOS and Materials Properties Applied Physics Division Los Alamos National Laboratory Timothy C. Germann, Los Alamos

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Atomistic Origin of Brittle Failure of Boron Carbide from Large Scale Reactive Dynamics Simulations; Suggestions toward Improved Ductility Qi An and William A. Goddard III * Materials

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Kevin Wang (1), Pilar Ariza (2), and Michael Ortiz (3) (1) Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals K.G. Wang 1, M. and M. Ortiz 2 Universidad de Sevilla 1 Virginia Polytechnic Institute and State University 2 California Institute of Technology

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au Atoms

Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au Atoms Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 214 Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au

More information

DARS Digital Analysis of Reactive Systems

DARS Digital Analysis of Reactive Systems DARS Digital Analysis of Reactive Systems Introduction DARS is a complex chemical reaction analysis system, developed by DigAnaRS. Our latest version, DARS V2.0, was released in September 2008 and new

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023624 TITLE: Ignition Kinetics in Fuels Oxidation DISTRIBUTION: Approved for public release, distribution unlimited This paper

More information

REPORT DOCUMENTATION PAGE Form Approved OMB No

REPORT DOCUMENTATION PAGE Form Approved OMB No REPORT DOCUMETATIO PAGE Form Approved OMB o. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

COMBUSTION CHEMISTRY COMBUSTION AND FUELS COMBUSTION CHEMISTRY CHEMICAL REACTION AND THE RATE OF REACTION General chemical reaction αa + βb = γc + δd A and B are substracts and C and are products, α, β, γ and δ are stoichiometric coefficients.

More information

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations PIC Method for Numerical Simulation Ninad Joshi NNP Group 1 Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations Motivation 3 Particle simulation Ion beams and Plasmas Accelerators

More information

Dynamics of Excited Hydroxyl Radicals in Hydrogen-Based Mixtures Behind Reflected Shock Waves

Dynamics of Excited Hydroxyl Radicals in Hydrogen-Based Mixtures Behind Reflected Shock Waves Dynamics of Excited Hydroxyl Radicals in Hydrogen-Based Mixtures Behind Reflected Shock Waves R. MÉVEL a, S. PICHON b, L. CATOIRE c, N. CHAUMEIX b, C.-E. PAILLARD b and J.E. SHEPHERD a Abstract a Graduate

More information

The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University

The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University Traditional Approach to Reaction Mechanisms Traditional

More information

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS Proceedings of the 3rd Annual ISC Research Symposium ISCRS 9 April 14, 9, Rolla, Missouri PHOTO-DISSOCIATION OF CO GAS BY USING TWO LASERS Zhi Liang MAE department/zlch5@mst.edu Dr. Hai-Lung Tsai MAE department/tsai@mst.edu

More information

Hierarchical approach

Hierarchical approach Chemical mechanisms Examine (i) ways in which mechanisms are constructed, (ii)their dependence on rate and thermodynamic data and (iii) their evaluation using experimental targets Copyright 2011 by Michael

More information

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield Handbook of Computational Quantum Chemistry DAVID B. COOK The Department of Chemistry, University of Sheffield Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1998 CONTENTS 1 Mechanics and molecules 1 1.1

More information

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 21 1 JUNE 1999

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 21 1 JUNE 1999 JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 21 1 JUNE 1999 Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-c 4 H 3 formation from reaction of C 3 P j with

More information

5.68J/10.652J Spring 2003 Exam Question 3 with Solution

5.68J/10.652J Spring 2003 Exam Question 3 with Solution 5.68J/10.652J Spring 2003 Exam Question 3 with Solution The literature values for the Arrhenius parameters for OH + C(CH 3 ) 4 H 2 O+ (CH 3 ) 3 CCH 2 (Rxn 1) A= 10 9 liter/mole-second E a =20 kj/mole You

More information

Molecular Dynamics and Accelerated Molecular Dynamics

Molecular Dynamics and Accelerated Molecular Dynamics Molecular Dynamics and Accelerated Molecular Dynamics Arthur F. Voter Theoretical Division National Laboratory Lecture 3 Tutorial Lecture Series Institute for Pure and Applied Mathematics (IPAM) UCLA September

More information

Modeling of degradation mechanisms in low temperature fuel cells. Thomas Jahnke, Georg Futter

Modeling of degradation mechanisms in low temperature fuel cells. Thomas Jahnke, Georg Futter DLR.de Chart 1 Modeling of degradation mechanisms in low temperature fuel cells Thomas Jahnke, Georg Futter German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Computational Electrochemistry,

More information

Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2

Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2 Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2 Qian Mao 1, 1, 2, K. H. Luo 1 Center for Combustion Energy, Key Laboratory for Thermal Science and Power

More information

Robust Quantum Error-Correction. via Convex Optimization

Robust Quantum Error-Correction. via Convex Optimization Robust Quantum Error-Correction via Convex Optimization Robert Kosut SC Solutions Systems & Control Division Sunnyvale, CA Alireza Shabani EE Dept. USC Los Angeles, CA Daniel Lidar EE, Chem., & Phys. Depts.

More information

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions.

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions. Announcements Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class. 15-20 multiple choice questions. Updated projects Aug 28: answer what lab chemistry needs to get done to

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures

Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures 24 th ICDERS July 28 - August 2, 2013 Taipei, Taiwan Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures Rémy Mével and Joseph Shepherd Graduate Aerospace Laboratories, California

More information

Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves. Supplemental material

Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves. Supplemental material Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves Proceedings of the Combustion Institute 34, 22 Supplemental material R. MÉVEL, S. PICHON, L. CATOIRE, N. CHAUMEIX,

More information

Fundamental Kinetics Database Utilizing Shock Tube Measurements

Fundamental Kinetics Database Utilizing Shock Tube Measurements Fundamental Kinetics Database Utilizing Shock Tube Measurements Volume 6: Reaction Rate Measurements (January 2009 to January 2014) D. F. Davidson and R. K. Hanson Mechanical Engineering Department Stanford

More information

Multiscale simulations of complex fluid rheology

Multiscale simulations of complex fluid rheology Multiscale simulations of complex fluid rheology Michael P. Howard, Athanassios Z. Panagiotopoulos Department of Chemical and Biological Engineering, Princeton University Arash Nikoubashman Institute of

More information

Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole

Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 21 1 DECEMBER 2000 Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole Victor Guallar,

More information