Homework Assignment 2 ATM 507 Fall 2014

Size: px
Start display at page:

Download "Homework Assignment 2 ATM 507 Fall 2014"

Transcription

1 Due Tuesday, September 30th Homework Assignment ATM 507 Fall Calculate H for the following reactions. Express your answer in kj/mole and kcal/mole: i) NO NO + O( 3 P) ii) NO + O 3 NO + O iii) H + OH H O + H iv) ClO + BrO Br + OClO. The H values for the individual species are given on the attached table.. The collision frequency is the starting point for calculating the A-factor of a temperature dependent rate constant. The frequency (per cubic centimeter) for a pure gas is given by π d = Z < v > where d is the molecular diameter, n is the number density, and v is the average speed given by n < v >= 8 k BT π m (NOTE: m is the mass of a single molecule.) a) Nitrogen, N, has a molecular weight of 8 g/mole and a molecular diameter of 1.1x10-8 cm. What is the collision frequency in pure nitrogen at i) STP? ii) 1000K, 1 atm? iii) 100K, 0.5atm? (NOTE: for units change (molecule) to collisions (no conversion required, just use collisions in place of (molecule) ); then express your answer in collisions cm -3 s -1.) b) The mean free path is defined as λ = 1 π d n Calculate the mean free path of nitrogen for each of the above temperature and pressure conditions. Express your answer in cm. NOTE: k B = Boltzmann's constant = 1.38x10-16 erg K -1 (or g cm s - K -1 )

2 A couple of hints for problems on this page 1. The best units to use for the Gas Constant (or R) in Arrhenius expressions are the ones with Joules or calories, i.e., R = J mole -1 K -1 = calories mole -1 K -1.. Most reactions (esp. bimolecular reactions) are reasonably well described by the Arrhenius expression. Unless you know or are told otherwise, assume it applies. 3. The reaction of hydroxyl radical with methyl chloride, OH + CH 3 Cl CH Cl + H O, has the following rate constants: at 98K, k = 4.4x10-14 cm 3 molecule -1 s -1 ; and at 400K, k = 1.18x10-13 cm 3 molecule -1 s -1. What is the A-factor and activation energy (in kj/mole) for this reaction? (NOTE: the reaction is properly described by an Arrhenius expression.) 4. The rate constant for a reaction at 30 C is exactly twice the value at 0 C. Calculate the activation energy in kj/mole. 5. Two second-order reactions have identical pre-exponential factors ("A" factors), but their activation energies differ by 0 kjoule mole -1. Calculate the ratio of their rate constants at (a) 0 C and (b) 1000 C. Assume that the Arrhenius equation applies; that is, the activation energies are temperature independent. 6. Peroxyacetyl nitrate (commonly called "PAN") decomposes in the following way PAN PA + NO (using chemical formulae this is:) {CH 3 C(O)OONO CH 3 C(O)OO + NO } Write a rate equation for the decomposition process. (Use PAN instead of the chemical formula.) Integrate the rate equation to obtain an expression for [PAN] as a function of the initial concentration of PAN ([PAN] 0 ), the rate constant, and the time t. If the rate constant at 5 C is 3.6x10-4 s -1, what is the chemical lifetime of PAN? How long does it take before an initial concentration of PAN is reduced to one half its starting value? (This is referred to as its "half life".) 7. (Also S&P problem 4.10) What is the longest wavelength of light, absorption of which by NO leads to dissociation at least 50% of the time? At 0 km, what are the lifetimes of NO by photolysis at solar zenith angles of 0º and 85º? (Hint: use tables and figures in section 4.10.)

3 Enthalpies of Formation of Some Gaseous Molecules, Atoms, and Free Radicals at 98 K Note: 1 calorie = Joule Species H ο f (98 K) kcal mole -1 H 5.1 O (or O( 3 P)) 59.6 O( 1 D) O 0.0 O OH 9.3 HO 3.5 H O H 0.0 H O -3.6 NO 1.6 NO 7.9 NO HNO HO NO -13 CH C H 6-0 CO -6.4 CO HCO 9.0 HCHO -6.0 CH CH 3 O 4.1 CH 3 O 5.5 CH 3 OH Cl 9.0 Cl (g) 0.0 ClO 4. Br 6.7 Br (g) 7.4 BrO 30.4 OClO 5 ClONO 6.3 HCl -.1 H S -4.9 HS 34.9 SO H SO These enthalpies of formation are largely taken from Finlayson-Pitts and Pitts (1986), and originally from Baulch, et al., J. Phys. Chem. Ref. Data, 13, 159 (1984).

4 Homework part worth 4 points. The attached tables list F λ (actinic flux) values for solar zenith angles between 0 and 86 ; and the absorption cross sections and quantum yields for the following reactions at a range of temperatures: 1. H CO + hv H + HCO;. NO + hv NO + O. Your assignment is to calculate rate constants for these photolysis reactions. Perform these calculations in 5 or 10 nm bins. That is, first calculate the contribution to the total rate constant for each bin (think about the best way to average the cross sections and quantum yields to match the bins for the actinic flux) and then sum the results to obtain the overall photolysis rate constant. The cross section and quantum yield data for NO is given in Table 4.5 in the textbook. Note that you are calculating the rate constant for only one of the two possible product channels for the H CO photolysis reaction. Show your work and calculate 4 photolysis rate constants: (Express the result in min -1.) I. k 1 (H CO) at 0 SZA and 93 K; II. k 1 (H CO) at 40 SZA and 93 K; III. k (NO ) at 0 SZA and 98 K; IV. k (NO ) at 60 SZA and 98 K.

5

6

7

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept. ATM 507 Lecture 4 Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review Problem Set 1: due Sept. 11 Temperature Dependence of Rate Constants Reaction rates change

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals for today: Loose ends from last lecture Overview of Chemical Kinetics

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2013 Goals for today: Overview of Chemical Kinetics in the context of

More information

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Review of Problem Set #4 will be held Mon, 13 April 6:30 pm Unfortunately the

More information

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern Institute of Applied Physics University of Bern Outline Introduction Chemical reactions between stable molecules are quite slow in planetary s Absorption of solar UV-radiation leads to the production of

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Spectroscopy & Photochemistry I

Spectroscopy & Photochemistry I Spectroscopy & Photochemistry I Required Reading: FP Chapter 3B, 3C, 4 Required Reading: Jacob Chapter 7 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2013 Jose-Luis Jimenez Importance of Spectroscopy

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Chemistry General Chemistry II Spring 2006 Test #1

Chemistry General Chemistry II Spring 2006 Test #1 Name: KEY Chemistry 122-04 -- General Chemistry II Spring 2006 Test #1 Organic molecules, molecular structure and bonding theory, solubility, (breathe now) phase transitions, spectroscopy, and kinetics

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

1. How many electrons, protons and neutrons does 87 Sr 2+ have?

1. How many electrons, protons and neutrons does 87 Sr 2+ have? ***This is a sample exam is lacking some questions over chapter 12 as this is a new chapter for the general chemistry sequence this semester. For a sampling of some chapter 12 problems, see the additional

More information

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4.

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4. Name: ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion Useful data and information: k = 1.38 x 10-23 J/K h = 6.62 x 10-34 J s Energy conversion factor: 1 calorie = 4.2 J 1. (40 points)

More information

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2:

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2: Chem 101B Study Questions Name: Chapters 12,13,14 Review Tuesday 2/28/2017 Due on Exam Thursday 3/2/2017 (Exam 2 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

Calculations Involving the Equilibrium Constant K eq )

Calculations Involving the Equilibrium Constant K eq ) Calculations Involving the Equilibrium Constant K eq ) 1. Given the equilibrium equation below: A 2(g) + B 2(g) 2AB (g) If, at equilibrium, the concentrations are as follows: [A 2 ] = 3.45 M, [B 2 ] =

More information

Conjugate Pairs Practice #1

Conjugate Pairs Practice #1 Name: Key Skill: Learning to Draw Tie Lines Conjugate Pairs Practice #1 Look at each example drawn below. Sets of partners (called s) are matched with tie lines. HNO3 + OH - NO3 - + H2O CH3NH2 + H2O CH3NH3

More information

0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing!

0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing! 0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing! mixing times: vertically lower few kilometers (boundary layer) 1h-1d,

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 2. Determine the relative reaction rates of

More information

Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet

Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet C h e m i s t r y 1 2 U n i t 3 R e v i e w P a g e 1 Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet 1. What is miscible? Immiscible? 2. What is saturated? Unsaturated? Supersaturated? 3. How does

More information

Useful Information is Located at the End of the Exam. 1. An Elementary Step in a reaction mechanism tells us:

Useful Information is Located at the End of the Exam. 1. An Elementary Step in a reaction mechanism tells us: CHEM 122 General Chemistry Summer 2014 Name: Midterm Examination 2 Useful Information is Located at the End of the Exam. Multiple Choice Questions 1. An Elementary Step in a reaction mechanism tells us:

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

1. Determine the mass of water that can be produced when 10.0g of hydrogen is combined with excess oxygen. 2 H 2 + O 2 2 H 2 O

1. Determine the mass of water that can be produced when 10.0g of hydrogen is combined with excess oxygen. 2 H 2 + O 2 2 H 2 O Pre-AP Chemistry Spring 2016 Final Review Objective 6.1: Students will recognize indicators of chemical change write balanced chemical equations to describe them based on common reactivity patterns. [S.12.C.1,

More information

Stratosphere and Ozone

Stratosphere and Ozone Stratosphere and Ozone Ozone (Greek, ozein, to smell) O 3 Chapman Mechanism O 2 + hv O + O O + O 3 2O 2 O 3 + hv O 2 + O O + O 2 + M O 3 + M third-body. anything What units are used to report the amount

More information

ACID, BASE, AND ph STUDYGUIDE

ACID, BASE, AND ph STUDYGUIDE ACID, BASE, AND ph STUDYGUIDE Naming Acids: (back of PT) Binary acid (Only 2 elements): Hydro- ic acid Oxyacid (More than 2 elements): Name of anion with new ending If anion ends with ate If anion ends

More information

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 1. Definitions can be found in the end-of-chapter reviews and in the glossary at the end of the textbook! 2. Conjugate Base Conjugate Acid Compound

More information

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

Kinetics problems: 2. Why do we use initial rates to determine the order of the rate law? 2NO + O 2 2NO 2. rate dt [O 2 ] 0

Kinetics problems: 2. Why do we use initial rates to determine the order of the rate law? 2NO + O 2 2NO 2. rate dt [O 2 ] 0 Kinetics problems: 1. Suppose an adequately stirred neutralizing tank is receiving, through the drains from a research laboratory, a steady trickle (0.1 L min -1 ) of dilute hydrochloric acid (0.5M) and

More information

Primary photochemical transitions. Absorption cross-section data. Wavelength range/nm Reference Comments

Primary photochemical transitions. Absorption cross-section data. Wavelength range/nm Reference Comments IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation Data Sheet P7 Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or

More information

KINETIC STUDIES OF THE FERROIN COMPLEX

KINETIC STUDIES OF THE FERROIN COMPLEX Experiment KINETIC STUDIES OF THE FERROIN COMPLEX The CCLI Initiative Computers in Chemistry Laboratory Instruction LEARNING OBJECTIVES The objectives of this experiment are to... determine the rate of

More information

( )( s 1

( )( s 1 Chemistry 362 Dr Jean M Standard Homework Problem Set 6 Solutions l Calculate the reduced mass in kg for the OH radical The reduced mass for OH is m O m H m O + m H To properly calculate the reduced mass

More information

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq)

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq) 1) Write the reaction for Calcium and nitrogen reacting 3) What element on the periodic table is the largest? 3)Name these a) H2S (aq) b) HNO 3 (aq) Stoichiometry: mathematical relationships in formulas

More information

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol). Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 5 Solutions 1. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31G(d) basis

More information

molality: m = = 1.70 m

molality: m = = 1.70 m C h e m i s t r y 1 2 U n i t 3 R e v i e w P a g e 1 Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet 1. What is miscible? Immiscible? Miscible: two or more substances blend together for form a solution

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 1 Δ [H2O] Δ[O 2] = 2 Δt Δt 2. Determine the

More information

Answers to Problem Sheet (a) spontaneous (b) nonspontaneous (c) nonspontaneous (d) spontaneous (e) nonspontaneous

Answers to Problem Sheet (a) spontaneous (b) nonspontaneous (c) nonspontaneous (d) spontaneous (e) nonspontaneous Answers to Problem Sheet 5 1. (a) spontaneous (b) nonspontaneous (c) nonspontaneous (d) spontaneous (e) nonspontaneous 2. (a) Heat will flow from the warmer block of iron to the colder block of iron until

More information

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]= Chem 101B Study Questions Name: Chapters 14,15,16 Review Tuesday 3/21/2017 Due on Exam Thursday 3/23/2017 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions By the end of today, you will have an answer to: How do we determine if a reaction is a redox reaction? Do Now: 1. Which compound has both ionic

More information

Name Section Number TA. 1. You may use crib sheets which you prepared in your own handwriting. This may be up to

Name Section Number TA. 1. You may use crib sheets which you prepared in your own handwriting. This may be up to 1. You may use crib sheets which you prepared in your own handwriting. This may be up to five 8-1/2 by 11 inch sheets of paper with handwriting only on one side. This corresponds to one page each for Chapters

More information

Quiz name: Equilibria + Acids/Bases

Quiz name: Equilibria + Acids/Bases Name: Quiz name: Equilibria + Acids/Bases Date: 1. 2. At 450 C, 2.0 moles each of H 2(g), I 2(g), and HI are combined in a 1.0 L rigid container. The value of K c at 450 C is 50. Which of the following

More information

2. What is the equilibrium constant for the overall reaction?

2. What is the equilibrium constant for the overall reaction? Ch 15 and 16 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous

More information

kpa = 760 mm Hg? mm Hg P = kpa

kpa = 760 mm Hg? mm Hg P = kpa Chapter : Gasses. The atmospheric pressure of 768. mm Hg. Expressed in kilopascals (kpa) what would the value be the pressure? ( atm = 035 Pa = 760 torr = 760 mm Hg) a. 778.4 kpa b. 0.4 kpa c. 00.3 kpa

More information

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia Unit 9: The Mole- Funsheets Part A: Molar Mass Write the formula AND determine the molar mass for each of the following. Be sure to include units and round you answer to 2 decimal places. 1) calcium carbonate

More information

Ch 15 and 16 Practice Problems

Ch 15 and 16 Practice Problems Ch 15 and 16 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Stoichiometry Practice Problems

Stoichiometry Practice Problems Name Period CRHS Academic Chemistry Stoichiometry Practice Problems Due Date Assignment On-Time (100) Late (70) 9.1 9.2 9.3 9.4 9.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on CRHS

More information

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E HOMEWORK 1A 1. Write the correct equilibriumconstant expressions for the following reactions. (a) 4NH 3 (g) + 7O 2 (g) 4NO 2 (g) + 6H 2 O (g) (b) 2NO 2 (g) + 7H 2 (g) 2NH 3 (g) + 4H 2 O (g) (c) NH 4 Cl

More information

Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents

Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents Solutions Unit 6 Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents Solute: dissolved particles in a solution (i.e. NaCl) Solvent:

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law Section 3, 9B s Gases react in whole-number ratios. Equal volumes of gases under the same conditions contain equal numbers of molecules. All gases have a volume of 22.4 L under standard conditions. In

More information

THE COLLISION THEORY OF REACTION RATES

THE COLLISION THEORY OF REACTION RATES THE COLLISION THEORY OF REACTION RATES This page describes the collision theory of reaction rates. It concentrates on the key things which decide whether a particular collision will result in a reaction

More information

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1)

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1) BOND ENERGIES Atoms bond together to form compounds because in doing so they attain lower energies than they possess as individual atoms. A quantity of energy, equal to the difference between the energies

More information

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Key Questions 1. Does the entropy of the system increase or decrease for the following changes?

More information

2. When determining the ΔH rxn from ΔH f o, which of the following is not necessary in the calculation.

2. When determining the ΔH rxn from ΔH f o, which of the following is not necessary in the calculation. Ch 6 and 7 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

MULTIPLE CHOICE PORTION:

MULTIPLE CHOICE PORTION: AP Chemistry Fall Semester Practice Exam 4 MULTIPLE CHOICE PORTION: Write the letter for the correct answer to the following questions on the provided answer sheet. Each multiple choice question is worth

More information

Appendix B: Aqueous chemistry and gas-phase halogen chemistry

Appendix B: Aqueous chemistry and gas-phase halogen chemistry 1 Appendix B: Aqueous chemistry and gasphase halogen chemistry SANFORD SILLMAN, FRANK MARSIK, KHALID I. ALWALI, GERALD J. KEELER AND MATTHEW S. LANDIS* Department of Atmospheric, Oceanic and Space Sciences

More information

New York, N.Y

New York, N.Y Columbia University in the City of New York New York, N.Y. 10027 Chemistry C2407x 2001 First Exam George Flynn September 25, 2001 Total Points: 150 75 Minutes All questions are NOT weighted equally. I

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation

ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation ATM 507 Lecture 5 Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation Beer-Lambert Law (for the absorption of light) Used to describe the

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics 1. Which one of the following units would not be an acceptable way to express reaction rate? A) M/s B) M min 1 C) L mol 1 s 1 D) mol L 1 s 1 E) mmhg/min 3. For the reaction BrO 3 + 5Br + 6H + 3Br 2 + 3H

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d).

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). Homework #4 Chapter 5 Chemical Kinetics 8. Arrhenius Equation Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). 4. a) d) b) c) e) 5. Rate has units

More information

Chapter 6 Rates of Chemical Reactions Solutions for Practice Problems Student Textbook page 7 1. Problem Cyclopropane, C 3 H 6, is used in the synthesis of organic compounds and as a fastacting anesthetic.

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

f N 2 O* + M N 2 O + M

f N 2 O* + M N 2 O + M CHM 5423 Atmospheric Chemistry Problem Set 2 Due date: Thursday, February 7 th. Do the following problems. Show your work. 1) Before the development of lasers, atomic mercury lamps were a common source

More information

CHEM1901/ J-8 June 2013

CHEM1901/ J-8 June 2013 CHEM1901/3 2013-J-8 June 2013 The atmosphere of Venus contains 96.5 % CO 2 at 95 atm of pressure, leading to an average global surface temperature of 462 C. The energy density of solar radiation striking

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chemistry 105: General Chemistry I Dr. Gutow and Dr. Matsuno Spring 2004 Page 1

Chemistry 105: General Chemistry I Dr. Gutow and Dr. Matsuno Spring 2004 Page 1 Page 1 1) Name You are to keep this copy of the test. Your name is in case you leave it behind. 2) Use only a #2 pencil on the answer sheet. 3) Before starting the exam fill in your student ID# (not your

More information

BCIT Fall Chem Exam #1

BCIT Fall Chem Exam #1 BCIT Fall 2012 Chem 3615 Exam #1 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Chem 6 sample exam 1 (100 points total)

Chem 6 sample exam 1 (100 points total) Chem 6 sample exam 1 (100 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains several equations which may be useful; you can detach it for easy reference.

More information

KINETICS PROBLEMS. (Alberty R A, Physical Chemistry, 7 th ed., Wiley, NY, 1987) (Answers on the last page)

KINETICS PROBLEMS. (Alberty R A, Physical Chemistry, 7 th ed., Wiley, NY, 1987) (Answers on the last page) KINETICS PROBLEMS (Alberty R A, Physical Chemistry, 7 th ed., Wiley, NY, 1987) (Answers on the last page) 20.1 The half-life of a first-order chemical reaction A --> B is 10 min. What percent of A remains

More information

2. Which of the following liquids would have the highest viscosity at 25 C? A) CH 3 OCH 3 B) CH 2 Cl 2 C) C 2 H 5 OH D) CH 3 Br E) HOCH 2 CH 2 OH

2. Which of the following liquids would have the highest viscosity at 25 C? A) CH 3 OCH 3 B) CH 2 Cl 2 C) C 2 H 5 OH D) CH 3 Br E) HOCH 2 CH 2 OH CHEF124 Mid Term Revision (Trimester 3, 2012/13) 1. Identify the dominant (strongest) type of intermolecular force present in (a) RbCl(s) ionic (b) NH 3 (l) - hydrogen bonding (c) Cl 2 (l) dispersion (d)

More information

Hess Law: Experimental Thermodynamics. Name Course Date Performed Professor Sign Off

Hess Law: Experimental Thermodynamics. Name Course Date Performed Professor Sign Off Hess Law: Experimental Thermodynamics Name Course Date Performed Professor Sign Off 1 Experimental Thermodynamics Part I Remember that for PdV work at constant pressure and volume that Remember also that

More information

Single Displacement Reactions

Single Displacement Reactions Let s writing NIE s for these reaction types, and answering questions about each. 3) Oxidation Reduction Reactions Single Displacement (aka Single Replacement) These may include the following reaction

More information

Review for Exam 2 Chem 1721/1821

Review for Exam 2 Chem 1721/1821 Review for Exam 2 Chem 1721/1821 The following are the major concepts with which you should be well acquainted from Chapters 13, 14, 15, 16.1-16.3: Chapter 13: Chemical Kinetics Reaction Rates The rate

More information

CHEM 121b Exam 4 Spring 1999

CHEM 121b Exam 4 Spring 1999 Name SSN CHEM 121b Exam 4 Spring 1999 This exam consists of 10 multiple choice questions (each worth 2 points), and 6 written problems (points noted below). There are a total of 100 possible points. Carefully

More information

Chapter 14 Properties of Acids and Bases

Chapter 14 Properties of Acids and Bases Section 14.1 Defining Acids and Bases Properties of acids and bases Chapter 14 Properties of Acids and Bases taste sour Acids taste bitter Bases conduct electricity no characteristic feel react with metals

More information

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction Name Chem 163 Section: Team Number: ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction (Reference: 16.5 16.6 & 16.8 Silberberg 5 th edition) Why do reaction rates increase as

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Why? A different form of the rate law for a reaction allows us to calculate amounts as a function of time. One variation on this gives us the concept

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

T(K) k(cm 3 /molecule s) 7.37 x x x x x 10-12

T(K) k(cm 3 /molecule s) 7.37 x x x x x 10-12 CHM 5423 Atmospheric Chemistry Problem Set 3 Due date: Tuesday, February 19 th. The first hour exam is on Thursday, February 21 st. It will cover material from the first four handouts for the class. Do

More information

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k.

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k. EXAM I REVIEW KEY Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 1. Given the following reaction: CF 4 + H 2 CHF 3 + HF a. Express the rate law in terms of m, n, and k. Rate

More information

Exam 2, Ch 4-6 October 12, Points

Exam 2, Ch 4-6 October 12, Points Chem 130 Name Exam 2, Ch 4-6 October 12, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units

More information

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M Solubility, Ksp Worksheet 1 1. How many milliliters of 0.20 M AlCl 3 solution would be necessary to precipitate all of the Ag + from 45ml of a 0.20 M AgNO 3 solution? AlCl 3(aq) + 3AgNO 3(aq) Al(NO 3)

More information

School of Chemistry and Physics Westville Campus, Durban MODEL ANSWER

School of Chemistry and Physics Westville Campus, Durban MODEL ANSWER School of Chemistry and Physics Westville Campus, Durban BARCODE Test 2: Wednesday 9 April 2014 CHEM110: GENERAL PRINCIPLES OF CHEMISTRY Duration: 45 minutes Total Marks: 25 Time: 17:45 18:30 Examiner:

More information

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following.

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. Problems -- Chapter 1 1. Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. (a) NaNO and HNO answers: see end of problem set (b)

More information

Some Basic Concepts of Chemistry

Some Basic Concepts of Chemistry 0 Some Basic Concepts of Chemistry Chapter 0: Some Basic Concept of Chemistry Mass of solute 000. Molarity (M) Molar mass volume(ml).4 000 40 500 0. mol L 3. (A) g atom of nitrogen 8 g (B) 6.03 0 3 atoms

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

Thermodynamics and Kinetics Review

Thermodynamics and Kinetics Review Chapter 2 Thermodynamics and Kinetics Review 1 Chapter 2 Thermodynamics and Kinetics Review This chapter will refresh your memory for concepts taught in physical chemistry and general chemistry courses.

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. ANNOUNCEMENTS

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5)

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) 5.1 Introduction In general, the lifetime of a molecule in the troposphere is governed by a variet of processes.

More information

Near-IR photodissociation of peroxy acetyl nitrate

Near-IR photodissociation of peroxy acetyl nitrate Atmos. Chem. Phys. Discuss., 4, 1269 1289, 04 www.atmos-chem-phys.org/acpd/4/1269/ SRef-ID: 1680-737/acpd/04-4-1269 European Geosciences Union 04 Atmospheric Chemistry and Physics Discussions Near-IR photodissociation

More information