Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Size: px
Start display at page:

Download "Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol)."

Transcription

1 Chemistry Dr. Jean M. Standard Homework Problem Set 5 Solutions 1. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31G(d) basis set. Species E e + H corr (a.u.) C 2 H CH a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol). The bond dissociation reaction for ethane (for breaking the C-C bond) is given by C 2 H 6 2CH 3. To calculate the enthalpy of the bond dissociation reaction, the following equation is employed, ΔH rx = products ( ) E e + H corr ( E e + H corr ) + ΔνRT. reactants For this reaction, the enthalpy of reaction becomes ΔH rx = 2( E e + H corr,ch 3 ) ( E e + H corr,c 2 H 6 ) + RT. The final term in the expression equals RT because Δν = moles products moles reactants = 1. So, ΔνRT = 0.59 kcal/mol. Substituting the sums of electronic and thermal enthalpy terms, we get the bond dissociation enthalpy, ( ) ( E e + H corr,c 2 H 6 ) + RT ( ) ( kcal/mol) + ( 0.59 kcal/mol) ΔH rx = 2 E e + H corr,ch 3 = kcal/mol ΔH rx = 70.11kcal/mol. The values of E e + H corr used in the calculation of the bond dissociation enthalpy were converted to kcal/mol using the conversion factor 1 a.u. = kcal/mol. b.) The experimental bond dissociation enthalpy of ethane is 89 kcal/mol. Explain why the calculation from part (a) is so far off. The reaction as written has 9 electron pairs on the reactant side (two 1s core pairs from the C atoms, six pairs from C-H bonds, and one pair from the C-C bond) and only 8 electron pairs (two 1s core pairs from the C atoms and six pairs from C-H bonds) and 2 unpaired electrons on the product side. The calculation in part (a) performed at the Hartree-Fock level of theory neglects electron correlation. Since the number of electron pairs is different on the reactant and product sides of the reaction, the electron correlation effects on the reactant and product side will be different. Since the amount of electron correlation that is neglected is different on either side of the reaction, this throws off the determination of the reaction enthalpy.

2 2. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31+G(d) basis set. Determine the enthalpy of reaction in kcal/mol (1 a.u. = kcal/mol) for the hydrogenation of ethylene. 2 Species E e + H corr (a.u.) C 2 H H C 2 H The reaction for the hydrogenation of ethylene is given by C 2 H 4 + H 2 C 2 H 6. To calculate the enthalpy change of the reaction, the following equation is employed, ΔH rx = products ( ) E e + H corr ( E e + H corr ) + ΔνRT. reactants For this reaction, the enthalpy of reaction becomes ΔH rx = ( E e + H corr,c 2 H 6 ) ( E e + H corr,c 2 H 4 ) ( E e + H corr, H 2 ) RT. The final term in the expression equals RT because Δν = moles products moles reactants = 1. So, ΔνRT = 0.59 kcal/mol. Substituting the sums of electronic and thermal enthalpy terms, we get the hydrogenation enthalpy, ( ) ( E e + H corr,c 2 H 4 ) ( E e + H corr, H 2 ) RT. ( ) ( kcal/mol) ( kcal/mol) 0.59kcal/mol ΔH rx = E e + H corr,c 2 H 6 = kcal/mol ΔH rx = kcal/mol. The values of E e + H corr used in the calculation of the hydrogenation enthalpy were converted to kcal/mol using the conversion factor 1 a.u. = kcal/mol.

3 3. Indicate for which reactions below electron correlation effects are likely to be important in determining the reaction energies. 3 (a.) 2 CH 4 + F 2 2 CH 3 F + H 2 (b.) C 3 H 8 CH 3 + CH 3 CH 2 NO YES (c.) H + + Cl HCl NO (d.) CH O 2 CO H 2 O YES (e.) H + Cl HCl YES (f.) F + CH 4 CH 3 F + H NO Reactions that will be most significantly impacted by electron correlation effects are those in which the number of electron pairs is different on the reactant and product sides. Electron correlation effects may have an impact in determining more accurate reaction energies in reactions in which the number of electron pairs is the same in the reactants and products; however, the impacts are usually lower than for reactions in which the electron pair number changes. In this problem, the number of electron pairs is different on the reactant and product sides for reactions (b), (d), and (e); hence, electron correlation effects will be most important for those reactions. Note that reaction (b) involves the breaking of a C-C bond to produce two radicals, so the number of electron pairs is reduced by one. Reaction (d) has different numbers of electron pairs on the reactant and product sides because the O 2 molecule exists as a triplet state and therefore there are four unpaired electrons on the reactant side (two from each O 2 molecule) but there are no unpaired electrons on the product side. Reaction (e) is a bond formation reaction between hydrogen atom (a radical) and chlorine atom (a radical); the number of electron pairs increases by one when the H-Cl bond is formed.

4 4 4. Given below are results from Hartree-Fock calculations for the formaldehyde molecule. Basis Set Energy (a.u.) r CO (Å) r CH (Å) HCO ( ) STO-3G G G G(d) G(d,p) a.) Are these results in agreement with the Variation Principle? Explain. The results are in agreement with the Variation Principle. The number of basis functions increase in order in the basis sets STO-3G (minimal basis), 3-21G, 6-31G, 6-31G(d), and 6-311G(d,p), respectively. [Actually, 3-21G and 6-31G have the same number of basis functions. However, in the 6-31G basis set, the core and valence orbitals are more accurately represented using more gaussian primitives, so the energy is lower.] The energy decreases monotonically in the series in accord with the Variation Principle. Since the representation of the approximate wavefunction improves as basis functions are added, the approximate energy drops. We do not know the exact energy, but we can be sure that it is lower than any of the approximate values. On the other hand, there is no Variation Principle for geometries or other properties. Therefore, although we would expect increasing the basis set size to generally lead to an improvement in geometry, the convergence may not be monotonic. Thus, a calculation performed using a smaller basis set may by chance give a geometry that is closer to experiment than a calculation using a larger basis set. b.) For each basis set listed in the table above, give the basis set type (for example, minimal basis, double zeta basis, triple zeta basis, split valence basis, etc.). STO-3G - minimal basis set 3-21G - split valence double zeta basis set 6-31G - split valence double zeta basis set 6-31G(d) - split valence double zeta plus polarization basis set (polarization on non-hydrogen atoms only) 6-311G(d,p) - split valence triple zeta plus polarization basis set (polarization on all atoms)

5 5. Consider two gaussian type atomic orbitals, G 1 (r) and G 2 (r), given by 5 G 1 (r) = G 2 (r) = $ & % $ & % 2α 1 π 2α 2 π ' ) ( ' ) ( 3 / 4 3 / 4 e α 1(r r 1 ) 2, e α 2 (r r 2 ) 2, where r 1 and r 2 are the positions of the centers of the two gaussian type orbitals, and α 1 and α 2 are the orbital exponents, which define the size and extent of the orbital. a.) Suppose that the two gaussian type orbitals are centered at the origin (i.e., both centered on the same atom), so that r 1 = r 2 = 0. Note that the radial coordinate r is the distance from the origin, and in terms of cartesian coordinates is defined as r = α 1 =1.0 Å 2 x 2 + y 2 + z 2. Plot the shapes of the two orbitals if and α 2 = 2.0 Å 2. In making such a plot, it is the convention to consider a cut through the three-dimensional function in order that it is more easily plotted. To do this, for example, we might set y=z=0 and then graph the function with x ranging from 2.0 to 2.0 Å. Describe what effect the orbital exponent has on the shape of the orbital. A plot of the gaussian type orbitals is shown below. Notice that the function G 1 (r ), which has an orbital exponent of 1.0 Å 2 is wider than the function G 2 (r ), which has an orbital exponent of 2.0 Å 2. In addition, the smaller exponent leads to a function with a smaller maximum.

6 5. continued 6 b.) Now assume that the two gaussian type orbitals are centered on two different nuclei in a molecule, such that r 1 = 0.0 Å and r 2 = 3.0 Å. Plot the shapes of the two orbitals in this case (your range in r should now be from about 2.0 to 4.0 Å. Do the orbitals overlap significantly? What happens if r 2 = 1.5 Å instead? A plot of the gaussian type orbitals for the case when G 2 (r ) is centered at r 2 = 3.0 Å is given below. Notice that the overall shape of G 2 (r ) does not change; the entire function is shifted to the right so that the maximum occurs at r 2 = 3.0 Å. There is very little overlap between the two functions in this case. A plot of the gaussian type orbitals for the case when G 2 (r ) is centered at r 2 = 1.5 Å is given below. Again, the overall shape of G 2 (r ) does not change; the entire function is just shifted to the right. In this case, the two orbitals are close enough together for substantial overlap to occur.

7 6. Consider performing electronic structure calculations on the ethanol molecule. 7 a.) Describe a minimal basis set for ethanol, including the total number of basis functions. For ethanol, CH 3 CH 2 OH, a minimal basis set consists of the following basis functions: C -- 1s 2s 2p(3) O -- 1s 2s 2p(3) H -- 1s TOTAL NO. BASIS FUNCTIONS = 21 b.) Describe the 6-31G basis set for ethanol, including the total number of basis functions. For ethanol, CH 3 CH 2 OH, the 6-31G basis set consists of: C -- 1s 2s 2s' 2p(3) 2p'(3) O -- 1s 2s 2s' 2p(3) 2p'(3) H -- 1s 1s' TOTAL NO. BASIS FUNCTIONS = 39 c.) Describe the 6-311G(d,p) basis set for ethanol, including the total number of basis functions. For ethanol, CH 3 CH 2 OH, the 6-311G(d,p) basis set consists of: C -- 1s 2s 2s' 2s" 2p(3) 2p'(3) 2p"(3) d(5) O -- 1s 2s 2s' 2s" 2p(3) 2p'(3) 2p"(3) d(5) H -- 1s 1s' 1s" p(3) TOTAL NO. BASIS FUNCTIONS = 90 Note that here we are assuming that 5 d-type functions are used for polarization; that will be the case in any homework or exam questions. d.) Approximately how would the CPU time for single point energy calculations on ethanol scale using the basis sets in parts (a) - (c)? From lecture, the CPU time required for a Hartree-Fock single point energy calculation scales as approximately K 3.5, where K is the number of basis functions. For ethanol, the relative CPU times are shown in the table below. The times are reported relative to the smallest basis set calculation. Basis Set No. Basis Fxs Relative CPU Time minimal G G(d,p)

8 8 7. Consider performing electronic structure calculations on anthracene. a.) Describe a minimal basis set for anthracene, including the total number of basis functions. For anthracene, C 14 H 10, a minimal basis set consists of C -- 1s 2s 2p(3) H -- 1s TOTAL NO. BASIS FUNCTIONS = 80 b.) Describe the 3-21G basis set for anthracene, including the total number of basis functions. For anthracene, C 14 H 10, the 3-21G basis set consists of C -- 1s 2s 2s' 2p(3) 2p'(3) H -- 1s 1s' TOTAL NO. BASIS FUNCTIONS = 146 c.) Describe the 6-31+G(d) basis set for anthracene, including the total number of basis functions. For anthracene, C 14 H 10, the 6-31+G(d) basis set consists of C - 1s 2s 2s' 2p(3) 2p'(3) d(5) sp(4) H - 1s 1s' TOTAL NO. BASIS FUNCTIONS = 272 d.) Approximately how would the CPU time for single point energy calculations on anthracene scale using the basis sets in parts (a) - (c)? For anthracene, the relative CPU times are shown in the table below. The times are reported relative to the smallest basis set calculation. Basis Set No. Basis Fxs Relative CPU Time minimal G G(d)

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Basis Sets and Basis Set Notation

Basis Sets and Basis Set Notation Chemistry 46 Fall 215 Dr. Jean M. Standard November 29, 217 Basis Sets and Basis Set Notation Using the LCAO-MO approximation, molecular orbitals can be represented as linear combinations of atomic orbitals,

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica Computational Material Science Part II Ito Chao ( ) Institute of Chemistry Academia Sinica Ab Initio Implementations of Hartree-Fock Molecular Orbital Theory Fundamental assumption of HF theory: each electron

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014 Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi Lecture 28, December 08, 2014 Solved Homework Water, H 2 O, involves 2 hydrogen atoms and an oxygen

More information

Semi-Empirical MO Methods

Semi-Empirical MO Methods Semi-Empirical MO Methods the high cost of ab initio MO calculations is largely due to the many integrals that need to be calculated (esp. two electron integrals) semi-empirical MO methods start with the

More information

Section 8.1 The Covalent Bond

Section 8.1 The Covalent Bond Section 8.1 The Covalent Bond Apply the octet rule to atoms that form covalent bonds. Describe the formation of single, double, and triple covalent bonds. Contrast sigma and pi bonds. Relate the strength

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

Organic Chemistry(I) Chapter 3

Organic Chemistry(I) Chapter 3 Organic Chemistry(I) Chapter 3 1. Carbon-carbon bonds are not easily broken. Which bond in the following compound would be the least difficult to break homolytically? 2. Which of the following molecules

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison Matter and Materials ATOMIC BONDS Grade 11 2018 Sutherland high school Mrs. Harrison 1. Chemical Bonds Why would atoms want to bond? Atoms are not generally found alone. They are found as components of

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

2013, 2011, 2009, 2008 AP

2013, 2011, 2009, 2008 AP Lecture 15 Thermodynamics I Heat vs. Temperature Enthalpy and Work Endothermic and Exothermic Reactions Average Bond Enthalpy Thermodynamics The relationship between chemical reactions and heat. What causes

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions Structure of rganic Molecules Ref. books: 1. A text book of rganic Chemistry - B.S. Bahl and Arun Bahl 2. rganic Chemistry - R.T. Morrison and R. N. Boyd Atom: The smallest part of an element that can

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

Chapter 3. Orbitals and Bonding

Chapter 3. Orbitals and Bonding Chapter 3. Orbitals and Bonding What to master Assigning Electrons to Atomic Orbitals Constructing Bonding and Antibonding Molecular Orbitals with Simple MO Theory Understanding Sigma and Pi Bonds Identifying

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

CHEM 121a Exam 4 Fall 1998

CHEM 121a Exam 4 Fall 1998 Name SSN CHEM 121a Exam 4 Fall 1998 This exam consists of 8 true-false questions (each worth 2 pts), 20 multiple choice questions (each worth 3 pts), and 3 short problems (each worth 8 pts). There are

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. 1 Computational Chemistry (Quantum Chemistry) Primer This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. TABLE OF CONTENTS Methods...1 Basis

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

More Chemical Bonding

More Chemical Bonding More Chemical Bonding Reading: Ch 10: section 1-8 Ch 9: section 4, 6, 10 Homework: Chapter 10:.31, 33, 35*, 39*, 43, 47, 49* Chapter 9: 43, 45, 55*, 57, 75*, 77, 79 * = important homework question Molecular

More information

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved.

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved. Chemical Bonding 4.8 Valence Bond Theory Hybrid Orbital Theory Multiple Bonds Valence Bond Theory Combines Lewis theory of filling octets by sharing pairs of electrons with the electron configuration of

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Conformational energy analysis

Conformational energy analysis Lab 3 Conformational energy analysis Objective This computational project deals with molecular conformations the spatial arrangement of atoms of molecules. Conformations are determined by energy, so the

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

HourEx4 Practice Chapt 8 & 9 Kotz

HourEx4 Practice Chapt 8 & 9 Kotz HourEx4 Practice Chapt 8 & 9 Kotz Multiple Choice 5 pts apiece Identify the letter of the choice that best completes the statement or answers the question. PUT YOUR ANSWER ON THE BUBBLE SHEET PROVIDED.You

More information

Questions 1-2 Consider the atoms of the following elements. Assume that the atoms are in the ground state. a. S b. Ca c. Ga d. Sb e.

Questions 1-2 Consider the atoms of the following elements. Assume that the atoms are in the ground state. a. S b. Ca c. Ga d. Sb e. AP Chemistry Fall Semester Practice Exam 5 MULTIPLE CHOICE PORTION: Write the letter for the correct answer to the following questions on the provided answer sheet. Each multiple choice question is worth

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Do now: Write equations for the following expressions:

Do now: Write equations for the following expressions: Do now: Write equations for the following expressions: ½ N 2(g) + 1 ½ H 2(g) NH 3(g) Δ f H (NH 3(g) ) = -46 kj.mol -1 ½ H 2(g) + ½ Cl 2(g) HCl (g) Δ f H (HCl (g) ) = -92 kj.mol -1 ½ N 2(g) + 2 H 2(g) +

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

Organic Chemistry. an introduction. Dr.Anandhi Sridharan

Organic Chemistry. an introduction. Dr.Anandhi Sridharan 1 Organic Chemistry an introduction Dr.Anandhi Sridharan 2 Introduction Organic chemistry is the study of carbon compounds. These organic compounds constitute essential compounds of our blood, muscles

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

HYBRIDIZATION types sp3 hybridization four new hybrids three new hybrid orbitals sp2 hybridization. sp hybridization, two hybrids two type

HYBRIDIZATION types sp3 hybridization four new hybrids three new hybrid orbitals sp2 hybridization. sp hybridization, two hybrids two type 1 HYBRIDIZATION In the Valence Bond (VB) theory an atom may rearrange its atomic orbitals prior to the bond formation. Instead of using the atomic orbitals directly, mixture of them (hybrids) are formed.

More information

Chapter 1: Structure and Bonding

Chapter 1: Structure and Bonding 1. What is the ground-state electronic configuration of a carbon atom? A) 1s 2, 2s 2, 2p 5 B) 1s 2, 2s 2, 2p 2 C) 1s 2, 2s 2, 2p 6 D) 1s 2, 2s 2, 2p 4 2. What is the ground-state electronic configuration

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

We can model covalent bonding in molecules in essentially two ways:

We can model covalent bonding in molecules in essentially two ways: CHEM 2060 Lecture 22: VB Theory L22-1 PART FIVE: The Covalent Bond We can model covalent bonding in molecules in essentially two ways: 1. Localized Bonds (retains electron pair concept of Lewis Structures)

More information

AIM: HOW TO FORM COVALENT BONDS

AIM: HOW TO FORM COVALENT BONDS AIM: HOW TO FORM COVALENT BONDS DO NOW: EXPLAIN THE DIFFERENCE BETWEEN IONIC BONDING AND COVALENT BONDS. INCLUDE HOW THE PROPERTIES DIFFER IN SALTS AND MOLECULES, AND WHICH ELEMENTS ARE INVOLVED IN EACH

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) Exam Instructions for writing chemical equations: 1. Write reactants and products in the order specified in the question.

More information

CHEMISTRY 102B Hour Exam II. Dr. D. DeCoste T.A.

CHEMISTRY 102B Hour Exam II. Dr. D. DeCoste T.A. CHEMISTRY 10B Hour Exam II March 19, 015 Dr. D. DeCoste Name Signature T.A. This exam contains questions on 9 numbered pages. Check now to make sure you have a complete exam. You have one hour and thirty

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Kinds of chemical bonds: 1. Ionic 2. Covalent 3. Metallic Useful guideline: Octet rule Atoms tend to gain, lose, or share e - to achieve

More information

Enthalpy Changes. Note: 1 calorie = 4.2 Joules

Enthalpy Changes. Note: 1 calorie = 4.2 Joules Enthalpy Changes All substances contain chemical energy, called enthalpy. Like any energy it is measured in Joules (previously energy was measured in Calories). When reactions happen, energy is given out

More information

Química Orgânica I. Organic Reactions

Química Orgânica I. Organic Reactions Química Orgânica I 2008/09 w3.ualg.pt\~abrigas QOI 0809 A6 1 Organic Reactions Addition two molecules combine Elimination one molecule splits Substitution parts from two molecules exchange Rearrangement

More information

Chapter 9 Ionic and Covalent Bonding

Chapter 9 Ionic and Covalent Bonding Chem 1045 Prof George W.J. Kenney, Jr General Chemistry by Ebbing and Gammon, 8th Edition Last Update: 06-April-2009 Chapter 9 Ionic and Covalent Bonding These Notes are to SUPPLIMENT the Text, They do

More information

1.) The answer to question 1 is A. Bubble in A on your Scantron form.

1.) The answer to question 1 is A. Bubble in A on your Scantron form. Part 1: Multiple Choice. (5 pts each, 145 pts total) Instructions: Bubble in the correct answer on your Scantron form AND circle the answer on your exam. Each question has one correct answer. 1.) The answer

More information

Basis Set for Molecular Orbital Theory

Basis Set for Molecular Orbital Theory Basis Set for Molecular Orbital Theory! Different Types of Basis Functions! Different Types of Atom Center Basis Functions! Classifications of Gaussian Basis Sets! Pseudopotentials! Molecular Properties

More information

First Midterm Exam Monday, October 16, You may use model kits but no other material with chemical information without instructor approval.

First Midterm Exam Monday, October 16, You may use model kits but no other material with chemical information without instructor approval. CH 334 Form B First Midterm Exam Monday, October 16, 2017 Name KEY You may use model kits but no other material with chemical information without instructor approval. Please do not use any electronic devices

More information

Instructions for writing chemical equations:

Instructions for writing chemical equations: For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0043 Price: $5 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help with online classes. Exam Instructions

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Note: 1 calorie = 4.2 Joules

Note: 1 calorie = 4.2 Joules Enthalpy Changes All substances contain chemical energy, called enthalpy. Like any kind of energy it is measured in Joules (previously energy was measured in Calories). When reactions happen, energy is

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Localized electron model A bond is made when a half-filled orbital of one atom overlaps with a half-filled orbital of another.! Bond: orbitals overlap straight on p

More information

CHEM 1411 SAMPLE FINAL EXAM

CHEM 1411 SAMPLE FINAL EXAM PART I - Multiple Choice (2 points each) CHEM 1411 SAMPLE FINAL EXAM 1. The distance between carbon atoms in ethylene is 134 picometers. Which of the following expresses this distance in meters? A. 1.34

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction 1 Chemical Bonds: A Preview 2 Chemical Bonds Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

Introduction to Botany

Introduction to Botany Introduction to Botany Alexey Shipunov Minot State University Lecture 5 Shipunov (MSU) Introduction to Botany Lecture 5 1 / 14 Outline 1 Questions and answers Quiz 2 Shipunov (MSU) Introduction to Botany

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding. Group e - configuration

More information

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 First Three Letters of Last Name NAME Network ID CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 The following materials are permissible during the exam: molecular model kits, course notes (printed, electronic,

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1)

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1) BOND ENERGIES Atoms bond together to form compounds because in doing so they attain lower energies than they possess as individual atoms. A quantity of energy, equal to the difference between the energies

More information

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry Atomic Structure and Bonding Chapter 1 Organic Chemistry, 8 th Edition John McMurry 1 Common Elements Groups First row Second row In most organic molecules carbon is combined with relatively few elements

More information

Chem 341 Jasperse Ch Handouts 1

Chem 341 Jasperse Ch Handouts 1 Chem 341 Jasperse Ch. 5 + 10 Handouts 1 Ch. 5 The Study of Chemical Reactions 5.1 Four general types of chemical reactions 1. Addition reactions 2. Elimination Reactions 3. Substitution Reactions 4. Rearrangement

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

CHM 115 EXAM #3 Practice

CHM 115 EXAM #3 Practice Name CHM 115 EXAM #3 Practice Complete the following showing all of your work. When calculations are required, show the set-up, units, and report answers with the correct number of significant figures.

More information

Figure 1: Transition State, Saddle Point, Reaction Pathway

Figure 1: Transition State, Saddle Point, Reaction Pathway Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Potential Energy Surfaces

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

ORGANIC CHEMISTRY 307

ORGANIC CHEMISTRY 307 ORGANIC CHEMISTRY 307 CHAPTER 3 LECTURE NOTES R. Boikess II. Principles of Organic Reactions 1. Chemical reactions are the result of bond breaking and bond making. a. Most (but not all) bond making and

More information

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals.

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. Lecture 7 Title: Understanding of Molecular Orbital Page-1 In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. We will see how the electrons

More information

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e 5.4 Bond Enthalpies Bond breaking is endothermic and bond making is exothermic. Bond making produces greater stability because the resulting products have a lower energy state. bond making bond breaking

More information

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #5 KEY. While you wait, please complete the following information:

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #5 KEY. While you wait, please complete the following information: DO NOT OPEN UNTIL INSTRUCTED TO DO SO CHEM 110 Dr. McCorkle Exam #5 KEY While you wait, please complete the following information: Name: Student ID: Turn off cellphones and stow them away. No headphones,

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High Topic 4: Chemical Bonds IB Chemistry SL Ms. Kiely Coral Gables Senior High 5th PERIOD Bell Ringer - review of 4.1 Quiz (revised) 1. What is the formula of a compound formed by magnesium and phosphate?

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information