Combustion Chemistry of a New Biofuel: Butanol

Size: px
Start display at page:

Download "Combustion Chemistry of a New Biofuel: Butanol"

Transcription

1 Combustion Chemistry of a New Biofuel: Butanol William H. Green, D.F. Davidson, F. Egolfopoulos, N. Hansen, M. Harper, R.K. Hanson, S. Klippenstein, C.K. Law, C.J. Sung, D.R. Truhlar, & H. Wang

2 Assessing Alternative Fuels: The Challenge of Predicting Performance Hundreds of possible alternative fuels: What do we want? We can specify the fuel composition Sometimes precise control: bioengineering, catalysis from H2 Which fuels give special performance advantages? Do any enable advances in engine technology? Performance gain could help biofuel enter market. Predict performance of a new fuel in a new engine? or do we need to experimentally test every possible engine/fuel combination? Computer simulations of combustion becoming practical. Rate constants, thermo from quantum calculations Validate predictions with experiments

3 CEFRC s First Test Case: Butanol Why Butanol? Bio butanol is about to be commercialized Strong demand for an accurate computer model Butanol has some advantages over ethanol More soluble in gasoline Can be used at higher blending ratios Can be shipped in gasoline pipelines Lower vapor pressure: less smog When CEFRC started, very few data or models available on butanol combustion Small molecule, but big enough Simpler chemistry than e.g. diesel range fuels Feasible to do high accuracy quantum chemistry Experimentally convenient: easy to vaporize Interesting: Several isomers with quite different chemistry

4 Dozens of Center members all studying butanol in parallel Tied together by connections with the MIT team assembling the kinetic model As examples, here we show data and calculations from these groups: C.K. Law (Princeton) flame speeds, flame ball F. Egolfopoulos (USC) flame speeds, extinction Nils Hansen (Sandia, ALS) species in flames S. Klippenstein (Argonne) quantum chemistry Ron Hanson (Stanford) ignition delays, species C.J. Sung (Connecticut) ignition delays Other data and calculations not shown because of the time

5 Flame Speeds for Different Fuels: Not Intuitive. Need a Model! Methanol sec-butanol n-butanol Ethanol Flame Speed n-butanol Equivalence Ratio Propane n-propanol iso-butanol tert-butanol Butanone iso-propanol Acetone Measured in Egolfopoulos lab (USC). Air, 1 atm.

6 Different Reaction Paths Important at different combustion conditions Big consequences: ignition, soot-formation, toxic emissions

7 Thermal Decomposition of C 4 H 9 O radical critical in n butanol combustion n butanol Isomerization β radical H abstraction by H, OH, O, α radical γ radical Decomposition: 1 butoxy β scission, cyclization, C C, C O bond fission δ radical

8 Quantum Chemistry allows us to compute rates k(t,p) of all C 4 H 9 O Decomposition Reactions epoxybutane + H 19.8 cyclopropymethanol + H methyl-oxetane + H 18.6 methylcyclopropanol + H C 4 H 8 +OH vdw cyclobutanol + H butenol + H butenol + H butenol + H tetrahydrofuran + H butanal + H -4.3 ethylene + ethanol radical CH propen-1-ol propene + CH 2 OH ethyl + ethenol pentyl + CH 2 O CH 3 CH 2 CHCH 2 OH CASPT2 (3e,3o)/ADZ CH 2 CH 2 CH 2 CH 2 OH CH 3 CH 2 CH 2 CH 2 O CH 3 CH 2 CH 2 CHOH CH 3CHCH 2 CH 2 OH B3LYP/ G(d,p) Calcs by S. Klippenstein (Argonne)

9 Combustion has been studied for a long time, but still quite challenging Current CEFRC Chemistry Model: 334 species reacting via 7113 reactions 4288 of the reactions have complicated non-arrhenius k(t,p) Photograph of a Butanol/Air flame in internal combustion engine conditions (measured in C.K. Law s lab, Princeton) Numerical issues in solving the model, but possible to do it. Tricky to know true boundary conditions in many combustion experiments.

10 Most important fuel performance property: ignition Gasoline Octane Number Diesel Cetane Number Small changes in fuel make big changes in ignition: sensitive to molecular structure! New engines under development are even more sensitive to ignition Potential for big gains but only if the fuel ignition delay time matches engine requirements

11 Stanford Shock Tube Measurements: Butanol Ignition Delay Time N Butanol Butanol Isomers K 1250 K P = 1.5 atm, = 1 P = 3.0 atm, = 1 P = 19 atm, = P = 19 atm, = 1 P = 43 atm, = P = 43 atm, = 1 Lines = Grana et. al. (2010) 1111 K 1.5 atm 3.0 atm 19 atm 43 atm 1000 K K 1471 K 1316 K 1190 K 1-butanol 2-but 2-butanol i-butanol t-butanol Lines - Grana et. al. (2010) 1-but t ign [us] 100 4% O 2 /Ar t ign [us] 100 t-but i-but 4% O 2 /Ar 1.5 atm /T 5 [1/K] /T 5 [1/K] Ignition delay time database provides wide coverage of pressure and temperature Tert butanol has significantly longer ignition delay times than other isomers

12 Model accurately predicts Stanford high-t ignition delays Ignition delay / s CH 3 H 3 C OH H 3 C = 1.0 = 0.5 Ignition delay / s OH = 1.0 = 0.5 = K / T = K / T 10 3 HO CH OH H 3 C CH 3 Ignition delay / s 10 2 CH 3 = 1.0 = 0.5 Ignition delay / s 10 2 CH 3 = 1.0 = 0.5 = 0.25 = K / T K / T

13 Engines Sensitive to Ignition at High Pressure and Low Temperature Rapid Compression Machine Investigation of low-temperature, highpressure autoignition is relevant to many emerging engine technologies GCMS sampling results prior to experiments confirm mixture composition preparation procedure when handling liquid fuels Gas samples from the reaction chamber for GC-MS/FID analysis allow identification and quantification of important species during autoignition C.J. Sung group, U. Conn.

14 Autoignition Studies of Butanol Isomers at High Pressure and Low Temperature Pressure, bar n-butanol/o 2 /N 2, =1.0, P C =15 bar Butanol/O 2 /N 2, =1.0, P C =15 bar T C 839 K 816 K 784 K 758 K 737 K 725 K Ignition Delay, ms Non-Reactive Case tert-butanol iso-butanol sec-butanol n-butanol O 2 : N 2 = 1 : Time, ms /T C, 1/K O 2 : N 2 = 1 : 3.76 n-butanol ignition is much faster than the other butanol isomers for T< 900 K Measured in C.J. Sung lab (U.Conn.)

15 Big Discrepancy: Model did not predict the fast n butanol ignition observed at T < 900 K! Model was built automatically using computer expert system Due to mistake in rate database used by expert system, model wildly mis-estimated barrier for HO2 + C-H reactions.

16 Big Discrepancy: Model did not predict the fast n butanol ignition at T < 900 K! Model was built automatically at MIT using computer expert system Due to mistake in rate database used by expert system, model wildly mis-estimated barrier for HO 2 + C-H reactions. After correcting that big mistake, current CEFRC model is much closer but still not quite right at lowest temperatures. Work continues

17 Multi Species Time Histories Provide Stronger, More Informative Tests of Model: n Butanol Pyrolysis OH H 2 O CH 2 O OH [ppm] Measured LLNL (Curran) U of Toronto (Sarathy) MIT (Harper) Italy (Grana) RPI/France (Moss) 1% n-butanol in Ar T = 1342 K P = 1.51 atm time [ s] H 2 O [%] Measured LLNL (Curran) U of Toronto (Sarathy) MIT (Harper) Italy (Grana) RPI/France (Moss) time [ s] 1% n-butanol in Ar T = 1342 K P = 1.51 atm CH 2 O [%] 0.4 Measured 1% n-butanol in Ar LLNL (Curran) T = 1352 K U of Toronto (Sarathy) P = 1.48 atm MIT (Harper) 0.3 Italy (Grana) RPI/France (Moss) time [ s] Current status: Stanford species time history measurements for OH, H 2 O and CH 2 O Next step: laser absorption measurements of CO and C 2 H 4 All models underpredict formaldehyde and H 2 O formed in high T n butanol pyrolysis

18 Advanced Light Source allows direct detection of dozens of species including key radicals Photoionization Molecular Beam Mass Spectrometry Flames are analyzed with molecular beam time of flight mass spectrometry Photoionization with tunable synchrotron generated VUV photons allows identification of species by mass by ionization energy Experimental mole fraction profiles are compared with flame model predictions and reaction path and sensitivity analysis are performed

19 Advanced Light Source (ALS) Flame Data: Detailed Test of the Model s Predictive Capabilities Mole fraction profiles of the major species are predicted accurately A more powerful test is provided by comparing modeled and experimental profiles of intermediate species Profiles have not been shifted Oßwald et al. flame data need to be shifted for better agreement Only a few of the many data traces shown here most show good agreement

20 One big discrepancy identified between model and ALS data: C 4 H 4 and C 3 H 3 overpredicted Sensitive to C 4 H 5 Thermochemistry Simulations of the flames studied by ALS are sensitive to the enthalpy of formation of i C 4 H 5 (CH 2 =CH C=CH 2 CH 2 CH=C=CH 2 ). None of the other available experimental data are sensitive to this number. This radical s enthalpy value was incorrect in the MIT database. Correcting to the accepted literature value largely resolved the discrepancy. Now investigating origins of smaller discrepancies

21 Conclusions Teams can move fast! In less than 2 years, went from zero to quite good model for butanol combustion, comprehensively validated by many different types of experiments. Contrast: sequential single investigator model building and comprehensive validation usually takes decades. Certainly we can do it even faster next time through Very promising for other alternative fuels: do you have a fuel we should model? Focus on the discrepancies (models vs. expts, and expts vs. expts.): that is where there is an opportunity to learn something! Don t be shy: expose the discrepancies to your EFRC teammates!

Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data

Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data William H. Green, Michael Harper, Mary Schnoor, & Shamel Merchant CEFRC Annual Meeting

More information

Flame Chemistry and Diagnostics

Flame Chemistry and Diagnostics Flame Chemistry and Diagnostics High-Temperature Oxidation of (1) n-butanol and (2) C 4 - Hydrocarbons in Low-Pressure Premixed Flames Nils Hansen, Michael R. Harper, William H. Green Bin Yang, Hai Wang,

More information

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES Michael R. Harper, William H. Green* Massachusetts Institute of Technology, Department of Chemical

More information

Hierarchical approach

Hierarchical approach Chemical mechanisms Examine (i) ways in which mechanisms are constructed, (ii)their dependence on rate and thermodynamic data and (iii) their evaluation using experimental targets Copyright 2011 by Michael

More information

Chemical Structures of Premixed iso-butanol Flames

Chemical Structures of Premixed iso-butanol Flames Paper # 070RK-0060 Topic: Laminar Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Oxidation of C 3 and n-c 4 aldehydes at low temperatures

Oxidation of C 3 and n-c 4 aldehydes at low temperatures Oxidation of C 3 and n-c 4 aldehydes at low temperatures M. Pelucchi*, A. Frassoldati*, E. Ranzi*, T. Faravelli* matteo.pelucchi@polimi.it * CRECK-Department of Chemistry, Materials and Chemical Engineering

More information

Fundamental Kinetics Database Utilizing Shock Tube Measurements

Fundamental Kinetics Database Utilizing Shock Tube Measurements Fundamental Kinetics Database Utilizing Shock Tube Measurements Volume 6: Reaction Rate Measurements (January 2009 to January 2014) D. F. Davidson and R. K. Hanson Mechanical Engineering Department Stanford

More information

Topic 6 Chemical mechanisms

Topic 6 Chemical mechanisms Topic 6 Chemical mechanisms Examine ways in which mechanisms are constructed, their dependence on rate and thermodynamic data, their evaluation using experimental targets and the optimization of component

More information

Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 12 n-alkanes

Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 12 n-alkanes Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 1 n-alkanes B. Sirjean, E. Dames, D. A. Sheen, H. Wang * Department of Aerospace and Mechanical Engineering, University of

More information

A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures

A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, E. Ranzi Dipartimento di Chimica, Materiali e Ingegneria

More information

Kinetic modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes

Kinetic modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes 871 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 37, 2014 Guest Editors: Eliseo Ranzi, Katharina Kohse- Höinghaus Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-28-0; ISSN 2283-9216

More information

Micro flow reactor with prescribed temperature profile

Micro flow reactor with prescribed temperature profile The First International Workshop on Flame Chemistry, July 28-29, 2012, Warsaw, Poland Micro flow reactor with prescribed temperature profile Toward fuel Indexing and kinetics study based on multiple weak

More information

SHOCK TUBE STUDIES OF BIOFUEL KINETICS

SHOCK TUBE STUDIES OF BIOFUEL KINETICS SHOCK TUBE STUDIES OF BIOFUEL KINETICS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Kinetic Mechanism Development for Hydrocarbons and Oxygenated Fuels

Kinetic Mechanism Development for Hydrocarbons and Oxygenated Fuels Kinetic Mechanism Development for ydrocarbons and Oxygenated Fuels Dr. enry Curran and Dr. Philippe Dagaut Combustion Chemistry Centre, NUI Galway, Ireland CNRS Orleans, France Lecture 1 st Workshop on

More information

Strategies for Using Detailed Kinetics in Engine Simulations

Strategies for Using Detailed Kinetics in Engine Simulations Strategies for Using Detailed Kinetics in Engine Simulations Ellen Meeks ERC Symposium: Fuels for Future IC Engines June 6-7, 2007 Madison, Wisconsin Outline Role of simulation in design Importance of

More information

Shock tube measurements of the tert-butanol + OH reaction rate and the tert-c 4 H 8 OH radical β-scission branching ratio using isotopic labeling

Shock tube measurements of the tert-butanol + OH reaction rate and the tert-c 4 H 8 OH radical β-scission branching ratio using isotopic labeling 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Shock tube measurements of the tert-butanol

More information

On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies

On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies pubs.acs.org/jpca On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies Darshan M.A. Karwat,*, Scott W. Wagnon, Paul D. Teini, and Margaret S. Wooldridge, Department of Aerospace Engineering

More information

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure 25 th ICDERS August 2 7, 2015 Leeds, UK Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure Jürgen Herzler, Mustapha Fikri, Oliver

More information

Studies of pyrolysis and oxidation of methyl formate using molecular beam mass spectrometry

Studies of pyrolysis and oxidation of methyl formate using molecular beam mass spectrometry Paper 070RK-0168 0168 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22,

More information

EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION

EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION Proceedings of the Combustion Institute, Volume 8, 000/pp. 09 037 EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION R. SEISER, 1 H. PITSCH, 1 K. SESHADRI, 1 W. J. PITZ and H. J. CURRAN

More information

Shock Tube Study on the Thermal Decomposition of n Butanol

Shock Tube Study on the Thermal Decomposition of n Butanol pubs.acs.org/jpca Shock Tube Study on the Thermal Decomposition of n Butanol Claudette M. Rosado-Reyes* and Wing Tsang National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United

More information

SHOCK TUBE MEASUREMENTS OF OXYGENATED FUEL COMBUSTION USING LASER ABSORPTION SPECTROSCOPY

SHOCK TUBE MEASUREMENTS OF OXYGENATED FUEL COMBUSTION USING LASER ABSORPTION SPECTROSCOPY SHOCK TUBE MEASUREMENTS OF OXYGENATED FUEL COMBUSTION USING LASER ABSORPTION SPECTROSCOPY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD

More information

Postdoctoral Scholar Hanson Research Group, Mechanical Engineering, Stanford University, CA

Postdoctoral Scholar Hanson Research Group, Mechanical Engineering, Stanford University, CA SHENGKAI WANG EDUCATION Phone: +1 (650) 391-6853 Email: sk.wang@stanford.edu Address: 418 Panama Mall, Rm. 106 Stanford, CA, 94305 Ph.D. in Mechanical Engineering, Stanford University, Stanford, CA 01/2017

More information

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Experimental and kinetic modeling study of the shock tube ignition

More information

Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes

Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes 1 Research Report Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes Shinji Kojima Abstract Rate parameters for nine types of reactions, which are supposed to be important in the low

More information

The original publication is available at

The original publication is available at Casimir Togbé, Luc-Sy Tran, Dong Liu, Daniel Felsmann, Patrick Oßwald, Pierre-Alexandre Glaude, Baptiste Sirjean, René Fournet, Frédérique Battin- Leclerc and Katharina Kohse-Höinghaus, Combustion chemistry

More information

Current progress in DARS model development for CFD

Current progress in DARS model development for CFD Current progress in DARS model development for CFD Harry Lehtiniemi STAR Global Conference 2012 Netherlands 20 March 2012 Application areas Automotive DICI SI PPC Fuel industry Conventional fuels Natural

More information

Laminar Flame Speed, Markstein Length and Flame Chemistry of the Butanol Isomers from 1 atm to 5 atm

Laminar Flame Speed, Markstein Length and Flame Chemistry of the Butanol Isomers from 1 atm to 5 atm Paper # 070LT-0027 Topic: Laminar Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May19-22, 2013 Laminar

More information

Combustion and Flame. The oxidation of a gasoline surrogate in the negative temperature coefficient region

Combustion and Flame. The oxidation of a gasoline surrogate in the negative temperature coefficient region Combustion and Flame 156 (2009) 549 564 Contents lists available at ScienceDirect Combustion and Flame www.elsevier.com/locate/combustflame The oxidation of a gasoline surrogate in the negative temperature

More information

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein Goal Contribute to Improving the Accuracy of Mechanisms Theoretical Kinetics Predictions for Key Reactions Guided by Modeling Efforts Butanol

More information

Shock Tube and Mid-IR Laser Absorption Study of Combustion Kinetics

Shock Tube and Mid-IR Laser Absorption Study of Combustion Kinetics Syracuse University SURFACE Dissertations - ALL SURFACE August 2018 Shock Tube and Mid-IR Laser Absorption Study of Combustion Kinetics Shirin Jouzdani Syracuse University Follow this and additional works

More information

Combustion Chemistry

Combustion Chemistry Combustion Chemistry Hai Wang Stanford University 2015 Princeton-CEFRC Summer School On Combustion Course Length: 3 hrs June 22 26, 2015 Copyright 2015 by Hai Wang This material is not to be sold, reproduced

More information

Chemical Sciences and Engineering Department, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439

Chemical Sciences and Engineering Department, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 8 th U. S. National Combustion Meeting rganized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A Shock Tube Laser Schlieren Study of Methyl

More information

Chemical Kinetics of HC Combustion

Chemical Kinetics of HC Combustion Spark Ignition Engine Combustion MAK65E Chemical Kinetics of HC Combustion Prof.Dr. Cem Soruşbay Istanbul Technical University Chemical Kinetics of HC Combustion Introduction Elementary reactions Multi-step

More information

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Energy and Resources Research Institute School of something FACULTY OF OTHER Faculty of Engineering THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Alison S. Tomlin Michael Davis, Rex Skodje, Frédérique

More information

High Pressure Single Pulse Shock Tube (HPST) Experiments

High Pressure Single Pulse Shock Tube (HPST) Experiments High Pressure Single Pulse Shock Tube (HPST) Experiments Kenneth Brezinsky Mechanical Engineering University of Illinois, Chicago 27 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Surrogate Kinetic

More information

Autoignition of n-butanol at Elevated Pressure and Low to Intermediate Temperature

Autoignition of n-butanol at Elevated Pressure and Low to Intermediate Temperature Autoignition of n-butanol at Elevated Pressure and Low to Intermediate Temperature Bryan W. Weber, Kamal Kumar, Yu Zhang, Chih-Jen Sung Department of Mechanical Engineering University of Connecticut Storrs,

More information

Use of detailed kinetic mechanism for the prediction of autoignitions

Use of detailed kinetic mechanism for the prediction of autoignitions Use of detailed kinetic mechanism for the prediction of autoignitions F. Buda, P.A. Glaude, F. Battin-Leclerc DCPR-CNRS, Nancy, France R. Porter, K.J. Hughes and J.F. Griffiths School of Chemistry, University

More information

CHM1 Review for Exam 15

CHM1 Review for Exam 15 Topics 1. Organic Compounds a. Hydrocarbons i. Saturated alkanes (all single bonds) ii. Unsaturated alkenes and alkynes b. Functional Groups i. Alcohols ii. Organic Acids iii. Esters iv. Ethers v. Aldehydes

More information

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Florence Vermeire, Hans-Heinrich Carstensen, Olivier Herbinet, Frédérique Battin-Leclerc, Guy B. Marin and Kevin M. Van

More information

The original publication is available at

The original publication is available at Friederike Herrmann, Bernhard Jochim, Patrick Oßwald, Liming Cai, Heinz Pitsch and Katharina Kohse-Höinghaus, Experimental and numerical lowtemperature oxidation study of ethanol and dimethyl ether, Combustion

More information

EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME

EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME THERMAL SCIENCE: Year 08, Vol., No., pp. 9-50 9 EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME Introduction by Mingrui WEI a,b, Song LI a,b, Jinping

More information

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE Mohd Hafidzal Bin Mohd Hanafi 1, Hisashi Nakamura 1, Takuya Tezuka 1 and Kaoru

More information

Application of Model Fuels to Engine Simulation

Application of Model Fuels to Engine Simulation Paper #E28 First published in: Topic: Engine 5 th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March

More information

Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling. Stephen J. Klippenstein

Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling. Stephen J. Klippenstein Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling Stephen J. Klippenstein Theoretical Elementary Reaction Kinetics Potential Energy Surface Exploration Ab Initio Electronic

More information

Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion

Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs June 2014 Copyright 2014 by William H. Green This material

More information

A wide range kinetic modeling study of alkene oxidation

A wide range kinetic modeling study of alkene oxidation A wide range kinetic modeling study of alkene oxidation M. Mehl 1, T. Faravelli 1, E. Ranzi 1, A. Ciajolo 2, A. D'Anna 3, A. Tregrossi 2 1. CMIC-Politecnico di Milano ITALY 2. Istituto Ricerche sulla Combustione

More information

Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane

Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane 23 rd ICDERS July 24 29, 2011 Irvine, USA Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane Martin Hilbig 1, Lars Seidel 1, Xiaoxiao Wang 1, Fabian Mauss 1 and Thomas Zeuch

More information

ANNUAL PROGRESS REPORT COMBUSTION ENERGY FRONTIER RESEARCH CENTER

ANNUAL PROGRESS REPORT COMBUSTION ENERGY FRONTIER RESEARCH CENTER ANNUAL PROGRESS REPORT COMBUSTION ENERGY FRONTIER RESEARCH CENTER CHUNG K. LAW, DIRECTOR FY 11 (AUGUST 1, 2010 JULY 31, 2011) AWARD NUMBER: DE-SC0001198 SUBMITTED APRIL 30, 2011 1 Table of Contents 1.0

More information

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds. Organic Chemistry Organic compounds: The branch of chemistry which deals with the study of carbon compounds is called organic chemistry. Catenation: The carbon atom has a property to undergo self linking

More information

Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion

Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion Program Tuesday, Dec 7, 2010 Time Program Presenter 13.15-13.30 Introduktion / Scope of the meeting Marcus Aldén, LU / Jesper

More information

INFLUENCE OF THE POSITION OF THE DOUBLE BOND ON THE AUTOIGNITION OF LINEAR ALKENES AT LOW TEMPERATURE

INFLUENCE OF THE POSITION OF THE DOUBLE BOND ON THE AUTOIGNITION OF LINEAR ALKENES AT LOW TEMPERATURE INFLUENCE OF THE POSITION OF THE DOUBLE BOND ON THE AUTOIGNITION OF LINEAR ALKENES AT LOW TEMPERATURE R. BOUNACEUR, V. WARTH, B. SIRJEAN, P.A. GLAUDE, R. FOURNET, F. BATTIN-LECLERC * Département de Chimie-Physique

More information

Unit 2 Nature s Chemistry Question Booklet

Unit 2 Nature s Chemistry Question Booklet Farr igh School NATIONAL 5 EMISTRY Unit 2 Nature s hemistry Question Booklet 1 omologous Series 1. What is meant by a homologous series? 2. What is the general formula for the alkanes? 3. opy and complete

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

The original publication is available at

The original publication is available at M. Köhler, T. Kathrotia, P. Oßwald, M. L. Fischer-Tammer, K. Moshammer, U. Riedel, 1-, 2- and 3-pentanol combustion in laminar hydrogen flames - a comparative experimental and modeling study, Combustion

More information

Hydrogen Abstraction/Acetylene Addition Revealed

Hydrogen Abstraction/Acetylene Addition Revealed Hydrogen Abstraction/Acetylene Addition Revealed Dorian S. N. Parker, Ralf I. Kaiser,* Tyler P. Troy, and Musahid Ahmed* University of Hawaii at Manoa, USA Lawrence Berkeley National Laboratory, USA Angew.

More information

2. Methanol can be synthesized by combining carbon monoxide and hydrogen. H rxn = 90.7 kj

2. Methanol can be synthesized by combining carbon monoxide and hydrogen. H rxn = 90.7 kj Chemistry 30 Final Review Question Carousel 1. Give the IUPAC name for the following compound: 1. ANSWER: B A. 4-ethenyl-5-ethyl-4-methyl-5-phenyldecane B. 4-ethyl-3-methyl-5-phenyl-3-propylnon-l-ene C.

More information

A comprehensive experimental and modeling study of iso-pentanol combustion

A comprehensive experimental and modeling study of iso-pentanol combustion 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comprehensive experimental and modeling

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL F. S. Marra*, L. Acampora**, E. Martelli*** marra@irc.cnr.it *Istituto di Ricerche sulla Combustione CNR, Napoli, ITALY *Università

More information

UQ in Reacting Flows

UQ in Reacting Flows UQ in Reacting Flows Planetary Entry Simulations High-Temperature Reactive Flow During descent in the atmosphere vehicles experience extreme heating loads The design of the thermal protection system (TPS)

More information

MEASUREMENTS OF IGNITION TIMES, OH TIME-HISTORIES, AND REACTION RATES IN JET FUEL AND SURROGATE OXIDATION SYSTEMS

MEASUREMENTS OF IGNITION TIMES, OH TIME-HISTORIES, AND REACTION RATES IN JET FUEL AND SURROGATE OXIDATION SYSTEMS MEASUREMENTS OF IGNITION TIMES, OH TIME-HISTORIES, AND REACTION RATES IN JET FUEL AND SURROGATE OXIDATION SYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING OF STANFORD UNIVERSITY

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

Assessment schedule 2017 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932)

Assessment schedule 2017 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) NCEA Level 1 Chemistry (90932) 2017 page 1 of 5 Assessment schedule 2017 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) Evidence Statement ONE (a) TWO correct structures. Correct

More information

Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves. Supplemental material

Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves. Supplemental material Dynamics of Excited Hydroxyl Radicals in Hydrogen Based Mixtures Behind Reflected Shock Waves Proceedings of the Combustion Institute 34, 22 Supplemental material R. MÉVEL, S. PICHON, L. CATOIRE, N. CHAUMEIX,

More information

J. Bugler,1, K. P. Somers 1, E. J. Silke 1, H. J. Curran 1

J. Bugler,1, K. P. Somers 1, E. J. Silke 1, H. J. Curran 1 An Investigation of the Thermochemical Parameter and Rate Coefficient Assignments for the Low-Temperature Oxidation Pathways of Alkanes: A Case Study using the Pentane Isomers J. Bugler,1, K. P. Somers

More information

The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach

The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach L. Seidel 1, F. Bruhn 1, S. S. Ahmed 1, G. Moréac 2, T. Zeuch 3*, and

More information

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander University of Groningen Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Lecture 10 Thermophysical Properties of Natural Gas- I Welcome, today

More information

Skeletal Kinetic Mechanism of Methane Oxidation for High Pressures and Temperatures

Skeletal Kinetic Mechanism of Methane Oxidation for High Pressures and Temperatures 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Skeletal Kinetic Mechanism of Methane Oxidation for High Pressures and Temperatures Victor P. Zhukov and Alan F. Kong Institute of Space

More information

USE OF DETAILED KINETIC MECHANISMS FOR THE PREDICTION OF AUTOIGNITIONS

USE OF DETAILED KINETIC MECHANISMS FOR THE PREDICTION OF AUTOIGNITIONS USE OF DETAILED KINETIC MECHANISMS FOR THE PREDICTION OF AUTOIGNITIONS F. Buda 1, P.A. Glaude 1, F. Battin-Leclerc 1*, R. Porter 2, K.J. Hughes 2 and J.F. Griffiths 2 1 DCPR-CNRS, 1, rue Grandville, BP

More information

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 15 CHEMICAL REACTIONS Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University 2 Objectives Give an overview of fuels and combustion. Apply the conservation of mass to reacting

More information

Fundamental Kinetics Database Utilizing Shock Tube Measurements

Fundamental Kinetics Database Utilizing Shock Tube Measurements Fundamental Kinetics Database Utilizing Shock Tube Measurements Volume 3: Reaction Rate Measurements D. F. Davidson and R. K. Hanson Mechanical Engineering Department Stanford University, Stanford CA 94305

More information

Chemical Kinetics of Combustion Processes

Chemical Kinetics of Combustion Processes 2010 CEFRC Conference Chemical Kinetics of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California Benzene + O( 3 P) Products

More information

Chemical Kinetics of Combustion

Chemical Kinetics of Combustion Chemical Kinetics of Combustion Philippe Dagaut CNRS-INSIS ICARE 1c, Avenue de la Recherche Scientifique - Orléans- France Introduction Experimental facilities for modeling validation Kinetic Modeling

More information

COMBUSTION CHEMISTRY OF PROPANE: A CASE STUDY OF DETAILED REACTION MECHANISM OPTIMIZATION

COMBUSTION CHEMISTRY OF PROPANE: A CASE STUDY OF DETAILED REACTION MECHANISM OPTIMIZATION Proceedings of the Combustion Institute, Volume 28, 2000/pp. 1663 1669 COMBUSTION CHEMISTRY OF PROPANE: A CASE STUDY OF DETAILED REACTION MECHANISM OPTIMIZATION ZHIWEI QIN, 1 VITALI V. LISSIANSKI, 1 HUIXING

More information

CHAPTER HYDROCARBONS. Chapterwise Previous year Qs. (a) Na (b) HCl in H2O (c) KOH in C2H5OH (d) Zn in alcohol. Ans: (c)

CHAPTER HYDROCARBONS. Chapterwise Previous year Qs. (a) Na (b) HCl in H2O (c) KOH in C2H5OH (d) Zn in alcohol. Ans: (c) 122 CHAPTER HYDROCARBONS 1. Acetylenic hydrogens are acidic because [1989] Sigma electron density of C Hbond in acetylene is nearer to carbon, which has 50% s- character Acetylene has only open hydrogen

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Sample Exercise 11.1 (p. 450) In which of the following substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH 4 ), hydrazine (H 2 NNH 2 ), methyl

More information

A rapid compression facility study of OH time histories during iso-octane ignition

A rapid compression facility study of OH time histories during iso-octane ignition Combustion and Flame 145 (2006) 552 570 www.elsevier.com/locate/combustflame A rapid compression facility study of OH time histories during iso-octane ignition X. He, B.T. Zigler, S.M. Walton, M.S. Wooldridge,A.Atreya

More information

Cracking. 191 minutes. 186 marks. Page 1 of 27

Cracking. 191 minutes. 186 marks. Page 1 of 27 3.1.6.2 Cracking 191 minutes 186 marks Page 1 of 27 Q1. (a) Gas oil (diesel), kerosine (paraffin), mineral oil (lubricating oil) and petrol (gasoline) are four of the five fractions obtained by the fractional

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy C a H b O c enters the control volume at T 0, p 0. O 2 and CO 2,

More information

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal 1. Given the structural formulas for two organic compounds: The differences in their physical and chemical properties are primarily due to their different A) number of hydrogen atoms B) number of carbon

More information

National 5 Chemistry. Unit 2 Nature s Chemistry Summary Notes

National 5 Chemistry. Unit 2 Nature s Chemistry Summary Notes National 5 Chemistry Unit 2 Nature s Chemistry Summary Notes Success Criteria I am confident that I understand this and I can apply this to problems? I have some understanding but I need to revise this

More information

I Write the reference number of the correct answer in the Answer Sheet below.

I Write the reference number of the correct answer in the Answer Sheet below. (2016) Nationality No. CHEMISTRY Name (Please print full name, underlining family name) Marks I Write the reference number of the correct answer in the Answer Sheet below. (1) Which of the atoms 1) to

More information

Kinetics of the Reactions of H and CH 3 Radicals with nbutane: An Experimental Design Study using Reaction Network Analysis

Kinetics of the Reactions of H and CH 3 Radicals with nbutane: An Experimental Design Study using Reaction Network Analysis Paper # 070RK-0277 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Level 1 Chemistry, 2016

Level 1 Chemistry, 2016 90932 909320 1SUPERVISOR S Level 1 Chemistry, 2016 90932 Demonstrate understanding of aspects of carbon chemistry 2.00 p.m. Monday 21 November 2016 Credits: Four Achievement Achievement with Merit Achievement

More information

The original publication is available at

The original publication is available at Dong Liu, Casimir Togbé, Luc-Sy Tran, Daniel Felsmann, Patrick Oßwald, Patrick Nau, Julia Koppmann, Alexander Lackner, Pierre-Alexandre Glaude, Baptiste Sirjean, René Fournet, Frédérique Battin-Leclerc

More information

THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION

THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION G. Bagheri*, E. Ranzi*, M. Lubrano Lavadera**, M. Pelucchi*, P. Sabia**, A. Parente***, M. de Joannon**, T. Faravelli* tiziano.faravelli@polimi.it

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-5092 Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene

More information

Chapter 2: Hydrocarbon Frameworks - Alkanes

Chapter 2: Hydrocarbon Frameworks - Alkanes Chapter 2: Hydrocarbon Frameworks - Alkanes 1. Alkanes are characterized by the general molecular formula: A) C n H 2n-2 B) C n H 2n C) C n H 2n+2 D) C n H 2n+4 2. Cycloalkanes are characterized by the

More information

Alkanes are aliphatic saturated hydrocarbons (no C=C double bonds, C and H atoms only). They are identified by having a ane name ending.

Alkanes are aliphatic saturated hydrocarbons (no C=C double bonds, C and H atoms only). They are identified by having a ane name ending. Alkanes Alkanes are aliphatic saturated hydrocarbons (no = double bonds, and atoms only). They are identified by having a ane name ending. The alkanes have similar chemistry to one another because they

More information

Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note I: Ketene, Acetic Acid, and Acetaldehyde

Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note I: Ketene, Acetic Acid, and Acetaldehyde Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note I: Ketene, Acetic Acid, and Acetaldehyde G. Bozzano*, M. Dente*, E. Ranzi* Giulia.Bozzano@polimi.it *Politecnico di Milano Dip. CMIC p.zza L.

More information

Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm

Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm 23 rd ICDERS July 24-29, 2011 Irvine, USA Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm Wei Ren, Sijie Li, David F Davidson, and Ronald K Hanson

More information

Chemical Kinetic Reaction Mechanisms

Chemical Kinetic Reaction Mechanisms Chemical Kinetic Reaction Mechanisms Charles Westbrook Lawrence Livermore National Laboratory May 31, 2008 J. Warnatz Memorial Colloquium How do we measure a career? In scientific careers, we look for

More information

Chemical kinetic modeling of low pressure methylcyclohexane flames William J. Pitz, 1 Scott A. Skeen, 2 Marco Mehl, 1 Nils Hansen, 2 Emma J.

Chemical kinetic modeling of low pressure methylcyclohexane flames William J. Pitz, 1 Scott A. Skeen, 2 Marco Mehl, 1 Nils Hansen, 2 Emma J. Paper # 070RK-0065 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

arxiv: v1 [physics.ins-det] 9 Jun 2017

arxiv: v1 [physics.ins-det] 9 Jun 2017 On the Uncertainty of Temperature Estimation in a Rapid Compression Machine arxiv:1706.04243v1 [physics.ins-det] 9 Jun 2017 Bryan W. Weber, Chih-Jen Sung, Michael Renfro Department of Mechanical Engineering,

More information

An Updated Reaction Model for the High-Temperature Pyrolysis and Oxidation of Acetaldehyde

An Updated Reaction Model for the High-Temperature Pyrolysis and Oxidation of Acetaldehyde Preprint, for published version see: R. Mevel, K. Chatelain, G. Blanquart, J. E. Shepherd "An updated reaction model for the high-temperature pyrolysis and oxidation of acetaldehyde" Fuel 217, 226-239,

More information