Fuel, Air, and Combustion Thermodynamics

Size: px
Start display at page:

Download "Fuel, Air, and Combustion Thermodynamics"

Transcription

1 Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the following species and mole fractions? a) A table of the given and computed parameters is: i y i M i h o f h i h o f s o i ( y i s o i R u ln(y i ) ) [ kg /kmol] [ MJ /kmol] [ MJ /kmol] [ kg /kmol K] [ kj /kmol K] CO H 2 O N CO The mixture molecular mass is: M = y i M i = (0.10)(44.01) + (0.15)(18.01) + (0.70)(28.01) + (0.05)(28.01) M = kg /kmol The specific mixture enthalpy is: h f = y i h i = (0.10)( ) + (0.15)( ) The mixture enthalpy is: + (0.70)( ) + (0.05)( ) h f = 57.8 MJ /kmol = kj/kmol h = h = m h = 2056 kj /kg The specific mixture entropy is: ( ) P s = R u ln + y i (s o i R u ln(y i )) P 0 ( ) 1000 s = ( 8.314) ln s = kj /kmol K 1

2 2 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS The mixture entropy is: s = s m = s = kj /kg K

3 3 3.2) What is the enthalpy h (kj/kg) and entropy s (kj/kg-k) of a mixture of 30% H 2 and 70% CO 2 by volume at a temperature of 3000 K? a) A table of the given and computed parameters is: i y i M i h o f h i h o f s o i ( y i s o i R u ln(y i ) ) [ kg /kmol] [ MJ /kmol] [ MJ /kmol] [ kg /kmol K] [ kj /kmol K] CO H The mixture molecular mass is: M = y i M i = (0.70)(44.01) + (0.30)(2.016) M = kg /kmol The specific mixture enthalpy is: h f = y i h i = (0.70)( ) + (0.30)( ) = 14.8 MJ /kmol = kj/kmol The mixture enthalpy is: h = h = m h = 4516 kj /kg The specific mixture entropy is: ( ) P s = R u ln + y i (s o i R u ln(y i )) P 0 ( ) 2000 s = ( 8.314) ln s = kj /kmol K The mixture entropy is: s = s m = s = kj /kg K

4 4 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.3) Using the Gordon and McBride equations, Equations (3.38) and (3.39), calculate the enthalpy h and entropy s o of CO 2 and compare with the gas table values used in Example 3.1. A Matlab program for calculating the enthalpy h and entropy s o of CO 2 is t=1000; % temp in K R= % univ. gas const. a1= ; a2= e-3; a3= e-6; a4= e-9; a5= e-16; a6= e4; a7= ; nondimh=a1+a2/2*t+a3/3*t^2+a4/4*t^3+a5/5*t^4+a6/t h=nondimh*t*r nondims=a1*log(t)+a2*t+a3/2*t^2+a4/3*t^3+a5/4*t^4+a7 s=nondims*r The calculated h = kj/kmol and the entropy s o = kj/kmol-k. The gas table values are h = kj/kmol and the entropy s o = kj/kmol-k. The enthalpy values agree to 4 figures, and the entropy values agree to 3 figures.

5 3.4) Using the program Fuel.m, at what temperature is the specific heat c p of methane CH 4 = 3.0 kj/kg-k? 5

6 6 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.5) Why does Equation 3.27 contain y i? a) From the Gibbs equations, we have ( ) s i (T, P ) = s o Pi i (T ) R i ln P 0 Where s o i (T ) is the standard entropy. y i = P i P = P i P0 P 0 P ( ) ( ) Pi P0 ln(y i ) = ln + ln P 0 P ( ) ( ) Pi P ln = ln(y i ) + ln P 0 Substituting back in: ( )) P s i (T, P ) = s o i (T ) R i (ln(y i ) + ln The mole fraction y i originates from the pressure ratio term. P 0 P 0

7 7 3.6) A system whose composition is given below is in equilibrium at P = 101 kpa and T = 298 K. What are the enthalpy (kj/kg), specific volume (m 3 /kg), and quality χ of the mixture? a) A table of the given and computed parameters is: i y i M i h f h i x i [ v i ] [ kg /kmol] [ kj /kmol] [ kj /kg] m 3 /kg H 2 O ,826-13, CO , N The mixture molecular mass is: M = y i M i = (0.141)(18.01) + (0.125)(44.01) + (0.734)(28.01) = kg /kmol Sample calculations for CO 2 (i=2): h 2 = h f = 393,522 = 8942 M i kj /kg ( ) Mi x 2 = y 2 = M = v 2 = Ru T M i P = = m3 /kg If all of the water is vapor, the water partial pressure would be P H2O = y i P = 0.141(101) = 14.2 kpa Whoever, at T = 298K, the saturation pressure of the water is 3.17 kpa (Table 3.1), so some fraction of the water will be liquid. The quality of the gas mixture is given in the Appendix: ( 1 X = y H2O X = ) ( ) 1 P 1 1 = P sat ( ) ( ) 1 The enthalpy of vaporization h fg is 44.02/18.01 = 2444 kj/kg (Table 3.1) The term v fg is v g -v f = ( ) = m 3 /kg (Table 3.1) Therefore using equations (3.55) and (3.57) The enthalpy is given by: h = x 1 h 1 + x 2 h 2 + x 3 h 3 (1 X)x 1 h fg h = (0.0888)( 13,424) + (0.1924)( 8942) + 0 ( )(0.0888)(2444) h = 3087 kj /kg The specific volume is given by: v = x 1 v 1 + x 2 v 2 + x 3 v 3 (1 X)x 1 v fg v = (0.0888)(1.362) + (0.1924)(0.557) + (0.7189)(0.875) ( )(0.0888)(1.361) v = m3 /kg

8 8 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.7) A four cylinder four stroke 2.8 L port injected spark ignition engine is running at 2000 rpm on a lean (φ =0.9) mixture of octane and standard air (101 kpa, 298 K) If the octane flow rate is 2.5 g/s, what is the mass of fuel entering each cylinder per cycle and the volumetric efficiency? a) The mass of fuel entering each cylinder per cycle for a four stroke engine ( ) ( ) ( ) ( ) m f = ṁ f = 2.5 N n c m f = g b) Since the engine is port injected e v = m a + m f ρ i v d = m f (AF + 1) ρ i v d = m f ( AFs φ + 1) ρ i v d From Table 3.5, the stoichiometric air-fuel ratio for octane is AF s = Assume R = ρ i = P RT = 101 (0.287)(298) = 1.18 kg /m 3 = 1180 g /m 3 Solving for the volumetric efficiency: η v = ( ) ( ( ) 1) (1180) η v =

9 9 3.8) An engine cylinder has a 90 mm bore and a 85 mm stroke, and contains air and residual gases at 350 K and 1 bar. If the engine is to operate on diesel fuel and run lean with an overall equivalence ratio of φ = 0.7, what is the mass of diesel fuel that needs to be injected during the compression stroke? (Assume R of the air-residual gas mixture is 0.29 kj/kg K). a) m = m a + m r We know that f = m r m Substituting we have Since m a = (1 f)m φ = F A F A s Substituting m f = φ(f A s )(m a ) = φ(f A s )(1 f)m Using the ideal gas law m f = P v d RT = P m f = 0.53 g ( π 4 RT ) b 2 s = 100 ( π 4 ) (0.09) 2 (0.085) (0.29)(350)(1000) From Table 3.5, AF s =14.30 or F A s = The mass of injected diesel fuel is: m f = (0.7)(0.0699)( )(0.53) m f = g

10 10 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.9) Using the low temperature (T < 1000K) combustion equations, what are the composition, enthalpy, and entropy of the combustion products of methanol, CH 3 OH, at φ = 1.1, T = 1200 K, and P = 101 kpa? Compare with the results from the program ecp.m.

11 3.10) What are the mole fractions of CO 2, H 2 O, CO, N 2 and H 2 produced when methane (CH 4 ) is burned in rich conditions at φ = 1.1, T = 1000 K, and P = 101 kpa? 11

12 12 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.11) If a lean (φ = 0.8) mixture of methane CH 4 is burned at a temperature of 1500 K and pressure of 500 kpa, what are the mole fractions of the products, and the product enthalpy, entropy, and specific heat? Use the program ecp.m.

13 ) At what temperature does the saturation pressure P sat of an octane droplet equal 0.5 bar? At that temperature, what is the enthalpy of vaporization h fg? a) Antoine s equation is: [ log 10 (P sat ) = a b ] T + c Solving for T and using coefficients from Table 3.3 T = b a log 10 (P sat ) c Using coefficients from Table T = ( ) = 375 K (octane) log 10 (0.5) T = ( ) = 498 K (tetradecane) log 10 (0.5) This shows the greater volatility of octane relative to tetradecane b) The molar enthalpy of vaporization h fg is: h fg = Ae dt /Tc (1 TTc ) β Using coefficients from Table 3.4: ( h fg = exp ( h fg = exp 694 ) ( ) ( ) = 36.2 MJ /kmol (octane) ) = 53.1 MJ /kmol (tetradecane) The octane value compares well with the value of 36.4 MJ /kmol in Table 3.2. requires about 47% more energy to vaporize. The tetradecane

14 14 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.13) Compare the enthalpy of vaporization h fg (MJ/kmol) of nitromethane, methanol, octane, and tetradecane at 400 K. a) The molar enthalpy of vaporization h fg is ( h fg = A exp α T ) ) β (1 TTc T c Using coefficients from Table 3.4 and molecular mass from Table 3.5 For Nitromethane: h fg = (53.33) exp h fg = 0.53 MJ /kg For Methanol: For Octane: h fg = (45.30) exp h fg = 0.95 MJ /kg h fg = (58.46) exp h fg = 0.30 MJ /kg For Tetradecane: h fg = (95.66) exp h fg = 0.31 MJ /kg ( ) ( ) = MJ /kmol = ( ) ( ) = MJ /kmol = ( ) ( ) = MJ /kmol = ( ) ( ) = MJ /kmol = The charge cooling effect of the vaporization of methanol and nitromethane is 2-3 times that of octane and tetradecane on a per kg basis. The charge cooling produces greater volumetric efficiencies by increasing the density of the cylinder gases.

15 3.14) a.) If a rich (φ = 1.1) mixture of diesel fuel is burned at a temperature of 2000 K and pressure of 750 kpa, what are the mole fractions of the products, and the product enthalpy, entropy, specific volume, and specific heat? b.) Repeat the calculation for φ = Discuss the effects of equivalence ratio. 15

16 16 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.15) Using the program ecp.m, plot the product equilibrium mole fractions as a function of equivalence ratio (0.5 < φ < 2) resulting from the combustion of methane at 5000 kpa and 2500 K.

17 ) Derive Equation (??) for the species mole fractions of a mixture of air and residual gas. a) The mixture m is composed of the residual mass m r and the premixed fuel-air m fa m = m f + m fa The residual mole fraction y r is y r = n r n fa + n r = 1 n fa n r + 1 Since the residual fraction f = mr /m or 1 f = m = m r + m fa = 1 + m fa m r m r m r m fa m r = 1 f 1 The mole ratio is n fa n r = m fa M fa Mr m r = m fa m r M M = ( ) 1 M f 1 M So y r = [1 + M M ( )] 1 1 f 1 The species mole fractions y i are y i = n i N = n i nfa n fa N + n i nr n r N = ( ni n fa ) y fa + Since the sum of the residual fractions must equal 1 y fa = 1 y r y i = n i n fa y i = n i n r ( ni n r ) y r So the species mole fractions accounting for both the residual gas and the inlet fuel- air y i = (1 y r ) y i + (y r ) y i

18 18 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.17) At what equivalence ratio for octane-air mixtures does the carbon to oxygen ratio of the system equal one? Why is this of interest? a) The combustion equation is C 8 H 18 + a s φ (O N 2 ) Products From Table 3.5, a s = for octane. For every mole of octane, there are 8 carbon atoms and 2as /φ oxygen atoms. The carbon/oxygen ratio is: [C] [D] = 8 ( 2 ) a s φ So this ratio is equal to one, i.e. CO formation, φ = 2a s 8 = (2)(12.50) = Therefore for φ > 3.125, there will be solid carbon in the products, since the carbon atoms are in excess of those used to form CO.

19 3.18) At what temperature is the concentration of H 2 a minimum for the combustion of gasoline and air at φ = 1.2 and 4500 kpa? What is that minimum value of H 2? 19

20 20 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.19) At what equivalence ratio is the concentration of OH a maximum for the combustion of diesel and air at T = 2500 K and 4500 kpa? What is that maximum value of OH?

21 3.20) At what temperature does the mole fraction of NO reach for the equilibrium products resulting from the combustion of gasoline and air at φ = 1.0 and 5000 kpa? 21

22 22 CHAPTER 3. FUEL, AIR, AND COMBUSTION THERMODYNAMICS 3.21) At what temperature does the mole fraction of CO reach for the equilibrium products resulting from the combustion of methane and air at φ = 1.1 and 3000 kpa?

23 3.22) What is the equilibrium and the frozen specific heat c p of the combustion products of gasoline at a pressure of 2000 kpa and temperature of 2000 K burned at a.) an equivalence ratio of 1.1, and b.) an equivalence ratio of 0.9? 23

Fuel and Air Flow in the Cylinder

Fuel and Air Flow in the Cylinder Chapter 6 Fuel and Air Flow in the Cylinder 6.1) A four cylinder four stroke 3.0 L port-injected spark ignition engine is running at 00 rpm on a stoichiometric mix of octane and standard air at 100 kpa

More information

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 15 CHEMICAL REACTIONS Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University 2 Objectives Give an overview of fuels and combustion. Apply the conservation of mass to reacting

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

ME 354 Tutorial, Week#13 Reacting Mixtures

ME 354 Tutorial, Week#13 Reacting Mixtures ME 354 Tutorial, Week#13 Reacting Mixtures Question 1: Determine the mole fractions of the products of combustion when octane, C 8 H 18, is burned with 200% theoretical air. Also, determine the air-fuel

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy C a H b O c enters the control volume at T 0, p 0. O 2 and CO 2,

More information

Chapter 15. In the preceding chapters we limited our consideration to CHEMICAL REACTIONS. Objectives

Chapter 15. In the preceding chapters we limited our consideration to CHEMICAL REACTIONS. Objectives Chapter 15 CHEMICAL REACTIONS In the preceding chapters we limited our consideration to nonreacting systems systems whose chemical composition remains unchanged during a process. This was the case even

More information

Using first law of thermodynamics for a constant pressure system: Using first law of thermodynamics for a constant volume system:

Using first law of thermodynamics for a constant pressure system: Using first law of thermodynamics for a constant volume system: TUTORIAL-10 Solution (19/04/2017) Thermodynamics for Aerospace Engineers (AS1300) Properties of ideal gas, their mixtures and adiabatic flame temperature For air take c v = 0.718 kj/kg K and c p = 1.005

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

FUNDAMENTALS of Thermodynamics

FUNDAMENTALS of Thermodynamics SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 15 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems 1-20 Equilibrium

More information

INTERNAL COMBUSTION ENGINE (SKMV 3413)

INTERNAL COMBUSTION ENGINE (SKMV 3413) INTERNAL COMBUSTION ENGINE (SKMV 3413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my THERMOCHEMISTRY IC engine

More information

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson Combustion: Flame Theory and Heat Produced Arthur Anconetani Oscar Castillo Everett Henderson What is a Flame?! Reaction Zone! Thermo/Chemical characteristics Types of Flame! Premixed! Diffusion! Both

More information

ME 201 Thermodynamics

ME 201 Thermodynamics Spring 01 ME 01 Thermodynamics Property Evaluation Practice Problems II Solutions 1. Air at 100 K and 1 MPa goes to MPa isenthapically. Determine the entropy change. Substance Type: Ideal Gas (air) Process:

More information

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems Department of Mechanical Engineering ME 322 Mechanical Engineering hermodynamics Heat of eaction Lecture 37 1 st Law Analysis of Combustion Systems Combustion System Analysis Consider the complete combustion

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

DISCIPLINA MIEEA 2018

DISCIPLINA MIEEA 2018 DISCIPLINA MIEEA 2018 Technologies of combustion Combustion definition Combustion is essentially burning, fuels react with oxygen to release energy 4 Combustion use in the world No Combustion Combustion

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

Thermodynamics I Chapter 2 Properties of Pure Substances

Thermodynamics I Chapter 2 Properties of Pure Substances Thermodynamics I Chapter 2 Properties of Pure Substances Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Properties of Pure Substances (Motivation) To quantify the changes

More information

Thermochemistry X.S. Bai Thermochemistry

Thermochemistry X.S. Bai Thermochemistry Lecture 2 Thermochemistry Design a power plant X.S. Bai Thermochemistry When we study a combustion device, what do we want to know? heat generated power production combustion efficiency combustion control

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

FUNDAMENTALS OF THERMODYNAMICS

FUNDAMENTALS OF THERMODYNAMICS FUNDAMENTALS OF THERMODYNAMICS SEVENTH EDITION CLAUS BORGNAKKE RICHARD E. SONNTAG University of Michigan John Wiley & Sons, Inc. Chemical Reactions 15 Many thermodynamic problems involve chemical reactions.

More information

COMBUSTION OF FUEL 12:57:42

COMBUSTION OF FUEL 12:57:42 COMBUSTION OF FUEL The burning of fuel in presence of air is known as combustion. It is a chemical reaction taking place between fuel and oxygen at temperature above ignition temperature. Heat is released

More information

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox Stoichiometry, Energy Balances, Heat ransfer, Chemical Equilibrium, and Adiabatic Flame emperatures Geof Silcox geoff@che.utah.edu (80)58-880 University of Utah Chemical Engineering Salt Lake City, Utah

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below.

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below. Q1.Which change would alter the value of the equilibrium constant (K p) for this reaction? 2SO 2(g) + O 2(g) 2SO 3(g) A Increasing the total pressure of the system. Increasing the concentration of sulfur

More information

I.C. Engine Cycles. Thermodynamic Analysis

I.C. Engine Cycles. Thermodynamic Analysis I.C. Engine Cycles Thermodynamic Analysis AIR STANDARD CYCLES Air as a perfect gas All processes ideal and reversible Mass same throughout Constant Specific Heat. OTTO CYCLE OTTO CYCLE Efficiency is

More information

0 o C. H vap. H evap

0 o C. H vap. H evap Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000,4 600 70 W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x0 0 40 0 40 kj kg - H evap 40,68 J mol - (From Appendix

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

N L N G : C O M B U S T I O N

N L N G : C O M B U S T I O N N L N G : C O M B U S T I O N G R A N T I N G R A M 6 T H D E C E M B E R 2 0 1 7 This short lecture provides an introduction into the basic principles of combustion and some of the background to the use

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams. PROBLEM 63 Using the appropriate table, determine the indicated property In each case, locate the state on sketches of the -v and -s diagrams (a) water at p = 040 bar, h = 147714 kj/kg K Find s, in kj/kg

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

Thermodynamics Qualifying Exam Study Material

Thermodynamics Qualifying Exam Study Material Thermodynamics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of undergraduate engineering thermodynamics topics. These topics are listed below for clarification.

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 4 1 Sensible heat effects are characterized by temperature changes Experimental measurements provide heat effects of chemical reactions, phase

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Modeling for Control of HCCI Engines

Modeling for Control of HCCI Engines Modeling for Control of HCCI Engines Gregory M. Shaver J.Christian Gerdes Matthew Roelle P.A. Caton C.F. Edwards Stanford University Dept. of Mechanical Engineering D D L ynamic esign aboratory Outline

More information

The Advanced Chemical Engineering Thermodynamics. The thermodynamics properties of fluids (II) Ji-Sheng Chang Q&A_-10-11/17/2005(10)

The Advanced Chemical Engineering Thermodynamics. The thermodynamics properties of fluids (II) Ji-Sheng Chang Q&A_-10-11/17/2005(10) The Advanced Chemical Engineering Thermodynamics The thermodynamics properties of fluids (II) Q&A_-10-11/17/2005(10) Ji-Sheng Chang Property relations The residual Gibbs free energy The definition of residual

More information

What s free about Gibbs free energy?

What s free about Gibbs free energy? What s free about Gibbs free energy? The change in free energy for a process equals the maximum work that can be done by the system on the surroundings in a spontaneous process occurring at constant temperature

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 1 LIQUIDS VAPOURS - GASES SAE

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium.

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. Q1. When a mixture of 0.45 mol of PCl and 0.68 mol of Cl was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. PCl + Cl PCl 5 H = 9 kj mol 1 At equilibrium,

More information

ME Thermodynamics I

ME Thermodynamics I HW-6 (5 points) Given: Carbon dioxide goes through an adiabatic process in a piston-cylinder assembly. provided. Find: Calculate the entropy change for each case: State data is a) Constant specific heats

More information

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe. 4.3 Steam enters a.6-cm-diameter pipe at 80 bar and 600 o C with a velocity of 50 m/s. Determine the mass flow rate, in kg/s. KNOWN: Pressure, temperature, and velocity of steam entering a.6-cm-diameter

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l)

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l) Q1.(a) Define the term standard enthalpy of formation, H f ο (3) (b) Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8 Substance C(s) H 2 (g) C

More information

Stoichiometry Rockets

Stoichiometry Rockets Stoichiometry Rockets The objective of this lab is to to: calculate the needed volume of fuel to react with a given volume of gas and result in a productive explosion determine the heat of the reaction

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Conservation of mass: 44 kg on LHS and RHS one kmol of CO₂ produced by burning 1 kmol of C with one kmol of O₂

Conservation of mass: 44 kg on LHS and RHS one kmol of CO₂ produced by burning 1 kmol of C with one kmol of O₂ L20 Stoichiometry of Reactions Gore Combustion provides the heat source for many power cycles (cars, airplanes, power plants), for home heating, cooking applications, and for manufacturing from melting

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 THIS BOX MUST BE COMPLETED Student Code No.... Student's Signature... Date Submitted... Contact e-mail... MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 NAME...

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle ME 200 Thermodynamics I Spring 206 Lecture 40: Air standard cycle, internal combustion engines, Otto cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan

More information

First Law of Thermodynamics

First Law of Thermodynamics CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07-July-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

Heat Engine Cycles. Chapter 2

Heat Engine Cycles. Chapter 2 Chapter 2 Heat Engine Cycles 2.1) An engine cylinder contains 7 10 5 kg of fuel with a heat of combustion, q c, of 45,000 kj/kg. The volume V 1 at top dead center is 0.15 10 3 m 3, and the volume V 2 at

More information

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes.

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes. 50 MAE 320 THERODYNAMICS FINAL EXAM - Practice Name: You are allowed three sheets of notes. 1. Fill in the blanks for each of the two (Carnot) cycles below. (a) 5 a) Heat engine or Heat pump/refrigerator

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

Chem 105/107 Exam #3 Fall 2012

Chem 105/107 Exam #3 Fall 2012 November 12 th, 2012 Name: CLID: Score: Chem 105/107 Exam #3 Fall 2012 There are 17 multiple choices that are worth 3 points each. There are 4 problems and 1 bonus problem. Try to answer the questions,

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

Name: I have observed the honor code and have neither given nor received aid on this exam.

Name: I have observed the honor code and have neither given nor received aid on this exam. ME 235 FINAL EXAM, ecember 16, 2011 K. Kurabayashi and. Siegel, ME ept. Exam Rules: Open Book and one page of notes allowed. There are 4 problems. Solve each problem on a separate page. Name: I have observed

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

Ph.D. Qualifying Examination In Thermodynamics

Ph.D. Qualifying Examination In Thermodynamics Ph.D. Qualifying Examination In Thermodynamics May 2014 University of Texas at Austin Department of Chemical Engineering The exam is a closed book examination. There are five equally weighed problems on

More information

Thermodynamic and Stochiometric Principles in Materials Balance

Thermodynamic and Stochiometric Principles in Materials Balance Thermodynamic and Stochiometric Principles in Materials Balance Typical metallurgical engineering problems based on materials and energy balance NiO is reduced in an open atmosphere furnace by excess carbon

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature.

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature. AME 5053 Intermediate Thermodynamics Examination Prof J M Powers 30 September 0 0 Calorically perfect ideal air at 300 K, 00 kpa, 000 m/s, is brought to rest isentropically Determine its final temperature

More information

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. Chemical Energetics First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. All chemical reactions are accompanied by some form of energy

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

ME Thermodynamics I = = = 98.3% 1

ME Thermodynamics I = = = 98.3% 1 HW-08 (25 points) i) : a) 1 Since ν f < ν < ν g we conclude the state is a Saturated Liquid-Vapor Mixture (SLVM) 1, from the saturation tables we obtain p 3.6154 bar. 1 Calculating the quality, x: x ν

More information

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air, Theory Background In a cooling tower with open water circulation, heat is removed from water because of the material and heat exchange between the water and the ambient air. The cooling tower is a special

More information

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper)

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper) CHEM 5200 - Exam 2 - October 11, 2018 INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors: R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 L-atm = 101

More information

Problem 1 (Willans Approximation)

Problem 1 (Willans Approximation) 5-0567-00 Engine Systems (HS 205) Exercise 3 Topic: Lectures 3+4 Raffi Hedinger (hraffael@ethz.ch), Norbert Zsiga (nzsiga@ethz.ch); October 9, 205 Problem (Willans Approximation) A useful simplification

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Chapter 3 PROPERTIES OF PURE SUBSTANCES PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure

More information

The need for something else: Entropy

The need for something else: Entropy Lecture 27 Goals: Ch. 18 ualitatively understand 2 nd Law of Thermodynamics Ch. 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators.

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

A Project for Thermodynamics II. Entitled

A Project for Thermodynamics II. Entitled A Project for Thermodynamics II Entitled Determination of the Effect of Equivalence Ratio and Pressure on the Adiabatic Flame Temperature and Reaction "Completeness" during 75% Propane and 25% Methane

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Name : THERMODYNAMICS Code : A30306 Class : II B. Tech I Semester Branch :

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

ENTHALPY BALANCES WITH CHEMICAL REACTION

ENTHALPY BALANCES WITH CHEMICAL REACTION ENTHALPY BALANCES WITH CHEMICAL REACTION Calculation of the amount and temperature of combustion products Methane is burnt in 50 % excess of air. Considering that the process is adiabatic and all methane

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

Pure Substances Phase Change, Property Tables and Diagrams

Pure Substances Phase Change, Property Tables and Diagrams Pure Substances Phase Change, Property Tables and Diagrams In this chapter we consider the property values and relationships of a pure substance (such as water) which can exist in three phases - solid,

More information

III. Evaluating Properties. III. Evaluating Properties

III. Evaluating Properties. III. Evaluating Properties F. Property Tables 1. What s in the tables and why specific volumes, v (m /kg) (as v, v i, v f, v g ) pressure, P (kpa) temperature, T (C) internal energy, u (kj/kg) (as u, u i, u f, u g, u ig, u fg )

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

MathCAD Functions for Thermodynamic Analysis of Ideal Gases

MathCAD Functions for Thermodynamic Analysis of Ideal Gases MathCAD Functions for Thermodynamic Analysis of Ideal Gases Stephen T. McClain 1 Abstract Data from The Chemkin Thermodynamic Data Base were used to generate MathCAD functions for the molar specific enthalpy,

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry AP Chemistry A. Allan Chapter Six Notes - Thermochemistry 6.1 The Nature of Energy A. Definition 1. Energy is the capacity to do work (or to produce heat*) a. Work is a force acting over a distance (moving

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information