A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows

Size: px
Start display at page:

Download "A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows"

Transcription

1 A Reduced-Order Modeling Approach to Enable Kinetic Simulations of Non-equilibrium Hypersonic Flows Marco Panesi AFOSR YIP Grant No: FA DEF Department of Aerospace Engineering University of Illinois at Urbana-Champaign 1

2 Outline Motivation and Background Master Equation Analysis Coarse Grained Model Conclusions 2

3 Standard Non-equilibrium Models Standard non-equilibrium models for hypersonic flows were mainly developed in the 1980 s and are correlation based: E.g., dissociation model of Park Multi-temperature model: Average temperature for fictitious Arrhenius rate coefficient 3

4 Motivation A large effort is underway at AIRFOCE which attempts to characterize the microscopic interaction of N2-N2, O2-O2 and N2-O2 from first-principles calculations. Ab initio calculations can provide the transition probabilities governing the transfer of energy between the flow and the internal energy modes of atoms and molecules in the gas. The large amount of information provided by ab initio calculations has great value, but it must be tailored to fulfill the needs of the problem that is being solved. Thus, it is imperative that reduced-order models be developed. 4

5 Objective METHODOLOGY: Developing non-equilibrium models for hypersonic flows based on microscopic theory and applying them to macroscopic scale. Work at the interface between computational chemistry, experimental data, and CFD. 5

6 Background: State-to-State Kinetics MT Models: Conventional methodologies rely on the assumption of Maxwell-Boltzmann distribution: James Clerk Maxwell Ludwig Eduard Boltzmann State to State Models: the internal states are treated as independent species governed by their own kinetics. Boltzmann Plot 6

7 High Fidelity Modeling: Roadmap Objectives: To assess the fundamental assumptions adopted in the modeling of hypersonic plasma flows. Key Relaxation Processes: 1. Energy Transfer: It is crucial to the understanding on the shock layer kinetics 2. Dissociation: critical process governing the redistribution of the kinetic energy within the internal energy modes and chemistry. 3. Recombination: critical in the boundary layer area, and in the expansion regions of the flow-field. Dissociation N 2 + N = N + N + N Rotational equilibrium (T = T rot ) Landau-Teller VT relaxation model Internal Energy Chemistry relaxation coupling (e.g., VC) Existence of a QSS rates Rovibrational State-to-state method 7

8 Analysis of Dissociating and Recombining Flows Test cases under consideration: 1. Master Equation 2. Flow Behind a normal shock wave 3. Quasi 1D nozzle flow 8

9 A Novel Approach to the Modeling of Non-equilibrium Flows First Principles Computation: 1. Quantum chemistry calculations to generate realistic nuclear interaction potentials (PES) 2. Quasi classical trajectory (QCT) method for the reaction cross-sections 9

10 Non-equilibrium Flow Behind a Normal Shock Wave 10

11 Flow-field Quantities Rovibrational STS model predicts larger relaxation distance with respect to the vibrational STS model 11

12 Post-Shock: Rovibrational Populations The distribution deviates from the Maxwell Boltzmann distribution Distribution is dissected into multiple strands for different v 12

13 1D Shock Tube Problem Left: rotational and vibrational temperatures Right: population of the first vibrational levels Assumption of fast rotational equilibrium is questionable Dissociation is better described by a unique temperature 13

14 Master Equation Solution QSS Rates Estimation 1. Rate Coefficient is in EXCELLENT agreement with Appleton data 2. Exchange reaction is important for correct estimation of reaction rate constant. 3. In the high temperature region the QSS assumption FAILS! 14

15 Comparison MT and STS Models Can we use QCT derived rate coefficients and relaxation parameters in the conventional MT models? NO! Using QCT derived rates based on the QSS assumption (or Boltzmann) are unable to reproduce the STS results. 15

16 Conclusions of the STS Analysis MT modeling (QSS based) Conventional MT models are unable to reproduce the STS results, because of the invalidity of the QSS assumption. 16

17 Model Reduction A c c u r a c y CGM State To State - RVC State To State - VC STS - EC MT T T, T R T, T R,T V T, T R,T V, T E Increasing Number of Assumptions Complexity 17

18 Coarse Grained Method The methodology of reduction consists of two distinct steps: 1. Local Representation and Reconstruction. It relies on the lumping of the internal energy levels in macroscopic energy groups and the reconstruction of the population of each grouped state, n i, using macroscopic quantities. The coefficients and are retrieved using constraints based on the maximum entropy principle and a variational method. 18

19 Coarse Grained Method 2. Macroscopic Moment Equations and Rate Coefficients. Macroscopic governing equations (referred to as macroscopic moment equations) are obtained by taking moments of the master equations and by using the reconstructed local representation. Governing Equations Zero Order Moment: Uniform Grouping (piece-wise reconstruction). First Order Moment: Boltzmann Grouping (linear reconstruction). 19

20 Coarse Grained Method Novel lumping scheme obtained by sorting the levels by energy and grouping in a bin all levels with similar energies 20

21 Coarse Grained Method reconstruction of the population of each grouped state, n i, using macroscopic quantities. 21

22 Considerations 1. Grouping strategy is crucial The choice of the grouping or grouping strategy should be guided by the physical intuition. For example, levels characterized by similar energies are likely to be in equilibrium between each other and should be grouped together. 2. State to state models and Multi-temperature models are a particular case of coarse grained approach. For example, conventional TTv model can be obtained by grouping the vibrational levels in a single bin and prescribing a Boltzmann distribution for each rotational level with T=T Rot 22

23 Conventional Model and Coarse Grain Modeling MT MT is a particular case of coarse grain model (1 Group) Boltzmann distribution (T Vib, T Rot ) Conventional TT Vib model if T Rot =T VCR(n) VCR is a particular case of coarse grain model (n Group) Boltzmann distribution (T rot ) Conventional Vib. STS model when T Rot = T 23

24 Novel Grouping Strategy Hyb(2,2) Two groups in the vibrational energy structure Two different rotational temperature for the two groups VCR(i) Vibrational specific model BC(3) VCR Three energy groups Three internal energy equations MT is a special case (1 internal temperature) 24

25 Evolution of the Vibrational Distribution MT models are unable to predict the distribution function 25

26 Evolution of the Vibrational Distribution BC(3) model is in good agreement with the STS model 26

27 Evolution of the Vibrational Distribution HyBVC shows excellent agreement with the STS model 27

28 Evolution of the Vibrational Distribution VCR2 shows excellent agreement with the STS model 28

29 Technical Challenges Remaining Diatom-Diatom Reactions Given the large number of possible channels the derivation of the exact rovibrational STS model is not feasible. Analysis of Recombining Flows Challenges are due to the strong deviation from the equilibrium distribution in expanding flows. Application to CFD (e.g., US3D) and Validation Validation data should include spatially resolved population measurements of the (ro-) vibrational population and atomic densities. (E.g., S.Sharma, et al. JTHT, Vol. 7, No. 4 (1993), pp ) Other systems, gas mixtures, higher order reconstruction 29

30 Publications and Honors Research Honors Air Force Summer Faculty Fellowship Program, California, USA. (2015) Award on Physical Modelling (8th Symposium on Aerothermodynamics for Space Vehicles - ESA) (2015) Air Force Young Investigator Award (YIP) (2015) Journal Publications 1. A., Munafo, Y. Liu, M. Panesi Physics of dissociation and energy transfer in shock heated nitrogen flows, Physics of Fluids, Under Review, (2015) 2. Y. Liu, M. Panesi, A. Sahai and M. Vinokur General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures J. Chem. Phys. 142, (2015); 3. Panesi, M., Munafo, A., Magin, T. E., and Jaffe, R. L., Study of the nonequilibrium shock heated nitrogen flows using a rovibrational state-to-state method, Phys. Rev. E, Vol. 90, (2014). 4. Panesi, M. Jaffe, R.L. Schwenke, D.W. Magin, T.E Rovibrational internal energy transfer and dissociation of N2-N system in hypersonic flows. J. Chem. 30 Phys. 138, (2013).

31 Conclusions Using the classical moment method, we introduced a general methodology for modeling thermal and chemical non-equilibrium processes. Based on the maximum entropy principle subject to a series of moment constraints, the logarithm of the distribution function in each energy group is expressed and reconstructed as a power series in internal energy. Conventional MT and STS models are only particular cases of the more general Coarse-Grain Method. These models have been applied to the study of rovibrational energy excitation and dissociation processes behind strong one-dimensional shock waves in nitrogen flow. 31

32 NEQRAD Group 32

33 Acknowledgments Special thanks to: AFOSR YIP Grant No: FA DEF UIUC Dr. A. Munafo (UIUC) Dr. R. Macdonald (UIUC) - NDSEG Dr. S. Venturi (UIUC) NASA Dr. R.L. Jaffe (NASA Ames Research Center) Dr. D.W. Schwenke (NASA Ames Research Center) Dr. Y. Liu (NASA Ames Research Center) AIRFORCE Dr. J.L. Cambier (USAF, AFOSR) Dr. E. Josyula (USAF, AFRL Wright Patterson) 33

34 Backup Slides 34

35 Summary (and Conclusions) 35

36 Summary (and Conclusions) Significant reduction of the CPU time is obtained with the Bin model N 2 -N System: CPU Time in function of the # of BINS 36

37 Convective Heating The MT model over-estimate the convective heating by 18 % if the parameters are calibrated using the RVC model Park Model over-predict by a factor 2 37

38 Detecting QSS Breakdown 38

39 Coarse Grained Method Novel lumping scheme obtained by sorting the levels by energy and grouping in a bin all levels with similar energies 39

40 Energy Transfer 40

Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions

Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions Iain D. Boyd, Jae Gang Kim, Abhilasha Anna Nonequilibrium Gas & Plasma Dynamics Laboratory Department of Aerospace Engineering

More information

Energy Transfer in Nonequilibrium Air (ETNA): Multidisciplinary Computation and Shock Tube Experiments

Energy Transfer in Nonequilibrium Air (ETNA): Multidisciplinary Computation and Shock Tube Experiments Energy Transfer in Nonequilibrium Air (ETNA): Multidisciplinary Computation and Shock Tube Experiments Iain D. Boyd, University of Michigan Ronald K. Hanson, Stanford University Rigoberto Hernandez, Georgia

More information

Predictive Engineering and Computational Sciences. Detailed and simplified kinetic mechanisms for high enthalpy flows

Predictive Engineering and Computational Sciences. Detailed and simplified kinetic mechanisms for high enthalpy flows Marco Panesi Non-equilibriumst ionization January 31 st, 211 1 / 22 PECOS Predictive Engineering and Computational Sciences Detailed and simplified kinetic mechanisms for high enthalpy flows Application

More information

Direct Molecular Simulation of Hypersonic Flows

Direct Molecular Simulation of Hypersonic Flows Direct Molecular Simulation of Hypersonic Flows Thomas E. Schwartzentruber Aerospace Engineering & Mechanics University of Minnesota UMN Students and Researchers: Savio Poovathingal 1 Paul Norman 3 Chonglin

More information

arxiv: v1 [physics.chem-ph] 24 Oct 2018

arxiv: v1 [physics.chem-ph] 24 Oct 2018 State-resolved coarse-grain cross sections for rovibrational excitation and dissociation of nitrogen based on ab initio data for the N 2 -N system Eri Torres, 1, a) Richard L. Jaffe, 2 David Schwene, 2

More information

Direct Molecular Simulation of Nonequilibrium Flows

Direct Molecular Simulation of Nonequilibrium Flows Direct Molecular Simulation of Nonequilibrium Flows Thomas E. Schwartzentruber Aerospace Engineering and Mechanics University of Minnesota AFOSR Young Investigator Program Grant # FA9550-10-1-0075 Direct

More information

arxiv: v1 [physics.chem-ph] 25 Oct 2018

arxiv: v1 [physics.chem-ph] 25 Oct 2018 Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation Erik Torres 1, a) and Thierry E. Magin

More information

Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model

Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model YANG Wei ( ) and DONG Zhiwei ( ) Institute of Applied Physics and Computational

More information

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas MARIO CAPITELLI Department of Chemistry, University of Bari (Italy) CNR Institute of Inorganic Methodologies and Plasmas Bari (Italy) MOLECULAR

More information

Vibrational degrees of freedom in the Total Collision Energy DSMC chemistry model

Vibrational degrees of freedom in the Total Collision Energy DSMC chemistry model Vibrational degrees of freedom in the Total Collision Energy DSMC chemistry model Mark Goldsworthy, Michael Macrossan Centre for Hypersonics, School of Engineering, University of Queensland, Brisbane,

More information

Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture

Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture E.V. Kustova, E.A. Nagnibeda, Yu.D. Shevelev and N.G. Syzranova Department of Mathematics and Mechanics,

More information

DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach

DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach R.G. Wilmoth a, D.B. VanGilder a, and J.L. Papp a a Combustion Research and Flow Technology, Inc., 6210 Keller

More information

Non-Equilibrium Reaction Rates in Hydrogen Combustion

Non-Equilibrium Reaction Rates in Hydrogen Combustion 25 th ICDERS August 2 7, 25 Leeds, UK Non-Equilibrium Reaction Rates in Hydrogen Combustion Stephen J. Voelkel, Venkat Raman 2, Philip Varghese The University of Texas at Austin, Austin, TX 7872, USA 2

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

State Resolved Thermochemical Modeling of Nitrogen Using DSMC. University of Michigan, Ann Arbor, MI 48109, USA

State Resolved Thermochemical Modeling of Nitrogen Using DSMC. University of Michigan, Ann Arbor, MI 48109, USA 43rd AIAA Thermophysics Conference 25-28 June 212, New Orleans, Louisiana AIAA 212-2991 State Resolved Thermochemical Modeling of Nitrogen Using DSMC Jae Gang Kim and Iain D. Boyd University of Michigan,

More information

Shock Waves by DSMC. D. Bruno C.N.R. - I.M.I.P. Italy

Shock Waves by DSMC. D. Bruno C.N.R. - I.M.I.P. Italy Shock Waves by DSMC D. Bruno C.N.R. - I.M.I.P. Italy Overview Shock Waves Rankine-Hugoniot relations DSMC simulation of shock waves The shock profile Translational nonequilibrium Rotational relaxation

More information

Application of SMILE++ Computational Tool to High-enthalpy Ionized Flows

Application of SMILE++ Computational Tool to High-enthalpy Ionized Flows Application of SMILE++ Computational Tool to High-enthalpy Ionized Flows A. Shevyrin, P. Vashchenkov, A. Kashkovsky, Ye. Bondar Khristianovich Institute of Theoretical and Applied Mechanics Novosibirsk

More information

Compressible Flow - TME085

Compressible Flow - TME085 Compressible Flow - TME085 Lecture 14 Niklas Andersson Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden niklas.andersson@chalmers.se

More information

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF TAU Extensions for High Enthalpy Flows Sebastian Karl AS-RF Contents Motivation Extensions available in the current release: Numerical schemes for super- and hypersonic flow fields Models for gas mixtures,

More information

Finite-rate oxidation model for carbon surfaces from molecular beam experiments

Finite-rate oxidation model for carbon surfaces from molecular beam experiments Finite-rate oxidation model for carbon surfaces from molecular beam experiments Savio Poovathingal, Thomas E. Schwartzentruber, Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota,

More information

Vibrational Population Depletion in Thermal Dissociation for Nonequilibrium Energy Distribution

Vibrational Population Depletion in Thermal Dissociation for Nonequilibrium Energy Distribution Vibrational Population Depletion in Thermal Dissociation for Nonequilibrium Energy Distribution Eswar Josyula and William F. Bailey Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio

More information

Theoretical models of nonequlibrium dissociation in air

Theoretical models of nonequlibrium dissociation in air Theoretical models of nonequlibrium dissociation in air Sergey Macheret Purdue University 61st Course Hypersonic Meteoroid Entry Physics (HyMEP) of the International School of Quantum Electronics, Ettore

More information

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering

More information

Modeling of Plasma Formation in Rarefied Hypersonic Entry Flows

Modeling of Plasma Formation in Rarefied Hypersonic Entry Flows 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 2007, Reno, Nevada AIAA 2007-206 Modeling of Plasma Formation in Rarefied Hypersonic Entry Flows Iain D. Boyd University of Michigan, Ann Arbor,

More information

Chemical kinetic and radiating species studies of Titan aerocapture entry

Chemical kinetic and radiating species studies of Titan aerocapture entry 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Chemical kinetic and radiating species studies of Titan aerocapture entry Pénélope Leyland 1, Raffaello

More information

An Investigation into Electron-Impact Ionization in Hypersonic Conditions. Abstract. 1. Introduction

An Investigation into Electron-Impact Ionization in Hypersonic Conditions. Abstract. 1. Introduction An Investigation into Electron-Impact Ionization in Hypersonic Conditions C. Ciccarino and D.W. Savin Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA Abstract Hypersonic

More information

Compressible Flow - TME085

Compressible Flow - TME085 Compressible Flow - TME085 Lecture 13 Niklas Andersson Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden niklas.andersson@chalmers.se

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

44th AIAA Thermophysics Conference, June, San Diego, California

44th AIAA Thermophysics Conference, June, San Diego, California 44th AIAA Thermophysics Conference, 4 7 June, San Diego, California 13-18484 Coupled Hydrodynamic/State-Specific High-Temperature Modeling of Nitrogen Vibrational Excitation and Dissociation B. Lopez,

More information

PROGRESS IN PROBABILISTIC MODELLING OF ATOMIC SPONTANEOUS EMISSION PROCESSES IN DSMC

PROGRESS IN PROBABILISTIC MODELLING OF ATOMIC SPONTANEOUS EMISSION PROCESSES IN DSMC PROGRESS IN PROBABILISTIC MODELLING OF ATOMIC SPONTANEOUS EMISSION PROCESSES IN DSMC Dejan Petkow (1), Maria Zaretskaya (1), Alexandre Kling (1), Georg Herdrich (2) (1) Advanced Concepts Team (ACT), ESA-ESTEC,

More information

Thermal Mode Nonequilibrium

Thermal Mode Nonequilibrium Plasmadynamics and Lasers Award Lecture Thermal Mode Nonequilibrium in Gas Dynamic and Plasma Flows by Igor Adamovich, Walter Lempert, Vish Subramaniam and William Rich The Michael A. Chaszeyka Dept. of

More information

Collisional-Radiative Model of Molecular Hydrogen

Collisional-Radiative Model of Molecular Hydrogen 016.3 IAEA Collisional-Radiative Model of Molecular Hydrogen Keiji Sawada and Shinichi Hidaka Shinshu University, Japan Motoshi Goto NIFS, Japan Introduction : Our models elastic collision Collisional

More information

Transport Properties of Non-Equilibrium Vibrational Reacting Flows

Transport Properties of Non-Equilibrium Vibrational Reacting Flows Transport Properties of Non-Equilibrium Vibrational Reacting Flows Elena Kustova Saint Petersburg State University 41 st Course: Molecular Physics and Plasmas in Hypersonics, Ettore Majorana Centre, Erice,

More information

IMPROVED MOLECULAR COLLISION MODELS FOR NONEQUILIBRIUM RAREFIED GASES

IMPROVED MOLECULAR COLLISION MODELS FOR NONEQUILIBRIUM RAREFIED GASES The Pennsylvania State University The Graduate School Department of Aerospace Engineering IMPROVED MOLECULAR COLLISION MODELS FOR NONEQUILIBRIUM RAREFIED GASES A Dissertation in Aerospace Engineering by

More information

Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows

Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows Professor James McDaniel*, Eric Cecil*, Erin Reed* and Josh Codoni* Professor Iain

More information

Title of communication, titles not fitting in one line will break automatically

Title of communication, titles not fitting in one line will break automatically Title of communication titles not fitting in one line will break automatically First Author Second Author 2 Department University City Country 2 Other Institute City Country Abstract If you want to add

More information

AFRL-OSR-VA-TR

AFRL-OSR-VA-TR AFRL-OSR-VA-TR-2013-0148 Explicit particle dynamics (XPD) for multi-scale non-equilibrium chemistry (Berman-Molecular Dynamics and Theoretical Chemistry Program Prof. Rigoberto Hernandez, Ph.D. Georgia

More information

Computation of Shock Waves in Inert Binary Gas Mixtures in Nonequilibrium Using the Generalized Boltzmann Equation

Computation of Shock Waves in Inert Binary Gas Mixtures in Nonequilibrium Using the Generalized Boltzmann Equation 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0361 Computation of Shock Waves in Inert Binary Gas Mixtures

More information

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

List of publications, E. Kustova

List of publications, E. Kustova Monographs and Chapters in Monographs List of publications, E. Kustova 1. Nagnibeda E., Kustova E. Non-equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Berlin, Heidelberg:

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Thermodynamics and Kinetics

Thermodynamics and Kinetics Thermodynamics and Kinetics C. Paolucci University of Notre Dame Department of Chemical & Biomolecular Engineering What is the energy we calculated? You used GAMESS to calculate the internal (ground state)

More information

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE J. Comput. Fluids Eng. Vol.17, No.4, pp.69-74, 2012. 12 / 69 CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW M. Ahn Furudate * Dept. of Mechatronics Engineering,

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory 2017 AFOSR High Speed Aerodynamics Portfolio Overview July 24-27, 2017 NASA Langley, VA Integrity Service Excellence Ivett A Leyva, Ph.D., P.E. Program Officer, AFOSR Air

More information

KAPPA: an object-oriented C++ library for kinetic theory computations

KAPPA: an object-oriented C++ library for kinetic theory computations 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE KAPPA: an object-oriented C++ library for kinetic theory computations Istomin Vladimir, Karpenko Anton,

More information

Thomas E. Schwartzentruber

Thomas E. Schwartzentruber Thomas E. Schwartzentruber Aerospace Engineering and Mechanics University of Minnesota AFOSR FA9550-09-1-0157 AFOSR MURI Fundamental Processes in High Temp. Gas-Surface Interactions Acknowledgments Dr.

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007)

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007) The mathematical description of the motion of Atoms, Molecules Other Particles Particle Dynamics Mixture of gases are made of different entities: atoms, molecules, ions, electrons. In principle, the knowledge

More information

Elaboration of collisional-radiative models applied to Earth and Mars entry problems

Elaboration of collisional-radiative models applied to Earth and Mars entry problems Journal of Physics: Conference Series OPEN ACCESS Elaboration of collisional-radiative models applied to Earth and Mars entry problems To cite this article: Julien Annaloro et al 2014 J. Phys.: Conf. Ser.

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS MICROWAVE PLASMA

CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS MICROWAVE PLASMA Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00295 CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS

More information

Energy conversion in transient molecular plasmas:

Energy conversion in transient molecular plasmas: Plenary lecture, 13 th International Conference on Flow Dynamics October 10-12, 2016, Sendai, Japan Energy conversion in transient molecular plasmas: Implications for plasma flow control and plasma assisted

More information

Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows

Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows Timothy R. Deschenes and Iain D. Boyd Department of Aerospace Engineering, University of Michigan, Ann Arbor,

More information

EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY

EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY Znamenskaya I.A., Koroteev D.А., Popov N.A. Moscow State

More information

Plasma models physically consistent from kinetic scale to hydrodynamic scale

Plasma models physically consistent from kinetic scale to hydrodynamic scale Plasma models physically consistent from kinetic scale to hydrodynamic scale Thierry Magin Aeronautics and Aerospace Department von Karman Institute for Fluid Dynamics, Belgium Workshop on Moment Methods

More information

Introduction to thermodynamics

Introduction to thermodynamics Chapter 6 Introduction to thermodynamics Topics First law of thermodynamics Definitions of internal energy and work done, leading to du = dq + dw Heat capacities, C p = C V + R Reversible and irreversible

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Development of an evaporation boundary condition for DSMC method with application to meteoroid entry

Development of an evaporation boundary condition for DSMC method with application to meteoroid entry Development of an evaporation boundary condition for DSMC method with application to meteoroid entry F. Bariselli, S. Boccelli, A. Frezzotti, A. Hubin, T. Magin Annual METRO meeting 29th November 2016

More information

Nonequilibrium radiation measurements and modelling relevant to Titan entry

Nonequilibrium radiation measurements and modelling relevant to Titan entry 6 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Nonequilibrium radiation measurements and modelling relevant to Titan entry A.M. Brandis, R.G. Morgan, C.O.

More information

Reconsideration of DSMC Models for Internal Energy Transfer and Chemical Reactions

Reconsideration of DSMC Models for Internal Energy Transfer and Chemical Reactions Reconsideration of Models for Internal Energy Transfer and Chemical Reactions N.E. Gimelshein, S.F. Gimelshein, D.A. Levin, M.S. Ivanov and I.J. Wysong Penn State University, University Park, PA 16802

More information

Particle Simulation of Nonequilibrium Hypersonic Flows

Particle Simulation of Nonequilibrium Hypersonic Flows Particle Simulation of Nonequilibrium Hypersonic Flows Thomas E. Schwartzentruber Assistant Professor Department of Aerospace Engineering and Mechanics (AEM) University of Minnesota [1 /36] Molecular Simulation

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

DSMC Study of Flowfield and Kinetic Effects on Vibrational Excitations in Jet-Freestream Interactions

DSMC Study of Flowfield and Kinetic Effects on Vibrational Excitations in Jet-Freestream Interactions DSMC Study of Flowfield and Kinetic Effects on Vibrational Excitations in Jet-Freestream Interactions David H. Campbell a and Ingrid J. Wysong b a ERC, Incorporated Air Force Research Laboratory, Edwards

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

BOLTZMANN KINETIC THEORY FOR INELASTIC MAXWELL MIXTURES

BOLTZMANN KINETIC THEORY FOR INELASTIC MAXWELL MIXTURES BOLTZMANN KINETIC THEORY FOR INELASTIC MAXWELL MIXTURES Vicente Garzó Departamento de Física, Universidad de Extremadura Badajoz, SPAIN Collaborations Antonio Astillero, Universidad de Extremadura José

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 INVESTIGATION OF AMPLITUDE DEPENDENCE ON NONLINEAR ACOUSTICS USING THE DIRECT SIMULATION MONTE CARLO METHOD PACS: 43.5.Ed Hanford, Amanda

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

All-Particle Multiscale Computation of Hypersonic Rarefied Flow

All-Particle Multiscale Computation of Hypersonic Rarefied Flow 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-822 All-Particle Multiscale Computation of Hypersonic Rarefied

More information

Plot the interatomic distances as a function of time and characterize the reactants and products through the plot. w

Plot the interatomic distances as a function of time and characterize the reactants and products through the plot. w Module 7 : Theories of Reaction Rates Lecture 35 : Potential Energy Surfaces (PES) II Objectives After studying this Lecture you will learn to do the following Relate a trajectory on a PES to a collision

More information

Thermochemical and Particulate Interfacing for Hybrid High-Altitude Plume and Control Jet Simulations

Thermochemical and Particulate Interfacing for Hybrid High-Altitude Plume and Control Jet Simulations Thermochemical and Particulate Interfacing for Hybrid High-Altitude Plume and Control Jet Simulations D.B. VanGilder, R.G. Wilmoth, and J.L. Papp Combustion Research and Flow Technology, Inc., 6210 Keller

More information

A Hybrid CFD-DSMC Method of Modeling Continuum-Rarefied Flows

A Hybrid CFD-DSMC Method of Modeling Continuum-Rarefied Flows 42nd AIAA Aerospace Sciences Meeting and Exhibit 5-8 January 24, Reno, Nevada AIAA 24-8 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV January 5 8, 24 A - Method of Modeling Continuum-Rarefied

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

Vibrational Levels and Resonances on a new Potential Energy Surface for the Ground Electronic State of Ozone

Vibrational Levels and Resonances on a new Potential Energy Surface for the Ground Electronic State of Ozone Vibrational Levels and on a new for the Ground Electronic State of Ozone Steve Ndengué, Richard Dawes, Xiaogang Wang and Tucker Carrington Jr. 69th Meeting of the International Symposium on Molecular Spectroscopy,

More information

Chem 105 Friday 3 Dec 2010

Chem 105 Friday 3 Dec 2010 Chem 105 Friday 3 Dec 010 Today: Kinetic-molecular theory Diffusion and effusion Course Questionnaires Real gases & Van der Waals equation Hour Exam 4 (Chap 9, 10, 11) Friday. Dec 10 A practice exam will

More information

Assessing Hypersonic Boundary Layer Stability in the Presence of Panel Scale Protuberances

Assessing Hypersonic Boundary Layer Stability in the Presence of Panel Scale Protuberances AIAA Paper 2013-1745 Assessing Hypersonic Boundary Layer Stability in the Presence of Panel Scale Protuberances Zachary Riley Graduate Fellow C A E L Computational AeroElasticity Laboratory Jack McNamara

More information

Non-equilibrium Effects in Viscous Reacting Gas Flows

Non-equilibrium Effects in Viscous Reacting Gas Flows Issues in Solving the Boltzmann Equation for Aerospace ICERM, Brown University, Providence June 3 7, 2013 Non-equilibrium Effects in Viscous Reacting Gas Flows Elena Kustova Saint Petersburg State University

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 9 Thierry Magin Thierry.Magin@vki.ac.be Aeronautics and Aerospace Department von Karman Institute for Fluid Dynamics Aerospace and Mechanical

More information

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel National Aeronautics and Space Administration Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel Karl Edquist (Karl.T.Edquist@nasa.gov) and Ashley Korzun NASA Langley

More information

Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge

Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge L. Marques 1, A. Salabas 1, G. Gousset 2, L. L. Alves 1 1 Centro de Física dos Plasmas, Instituto Superior Técnico,

More information

The Ozone Isotope Effect. Answers and Questions

The Ozone Isotope Effect. Answers and Questions The Ozone Isotope Effect Answers and Questions The Ozone Isotope Effect Answers and Questions Dynamical studies of the ozone isotope effect: A status report Ann. Rev. Phys. Chem. 57, 625 661 (2006) R.

More information

VERIFICATION AND VALIDATION OF A PARALLEL 3D DIRECT SIMULATION MONTE CARLO SOLVER FOR ATMOSPHERIC ENTRY APPLICATIONS

VERIFICATION AND VALIDATION OF A PARALLEL 3D DIRECT SIMULATION MONTE CARLO SOLVER FOR ATMOSPHERIC ENTRY APPLICATIONS VERIFICATION AND VALIDATION OF A PARALLEL 3D DIRECT SIMULATION MONTE CARLO SOLVER FOR ATMOSPHERIC ENTRY APPLICATIONS Paul Nizenkov and Stefanos Fasoulas Institut für Raumfahrtsysteme (IRS), Universität

More information

Editorial Board Member Dr. S A Sherif

Editorial Board Member Dr. S A Sherif Editorial Board Member Dr. S A Sherif Professor Department of Mechanical & Aerospace Engineering University of Florida USA Tel. 352 392 7821 Biography Dr. S.A. Sherif is a tenured Professor of Mechanical

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

CHEMICAL KINETICS EDITED BY C. H. BAMFORD

CHEMICAL KINETICS EDITED BY C. H. BAMFORD CHEMICAL KINETICS EDITED BY C. H. BAMFORD M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C, F.R.S. Campbell-Brown Professor of Industriell Chemistry, University of Liverpool AND C. F. H. TIPPER Ph.D. (Bristol), D.Sc.

More information

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the Module 7 : Theories of Reaction Rates Lecture 33 : Transition State Theory Objectives After studying this Lecture you will be able to do the following. Distinguish between collision theory and transition

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

C O MP U TATIO NA L FLU ID DY NA MIC S FO R ATMO S P HE RIC E NTRY

C O MP U TATIO NA L FLU ID DY NA MIC S FO R ATMO S P HE RIC E NTRY Von Karman Institute for Fluid Dynamics Lecture Series Hypersonic Entry and Cruise Vehicles C O MP U TATIO NA L FLU ID DY NA MIC S FO R ATMO S P HE RIC E NTRY Graham V. Candler Ioannis Nompelis Department

More information

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4 MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM AND BOLTZMANN ENTROPY Contents 1 Macroscopic Variables 3 2 Local quantities and Hydrodynamics fields 4 3 Coarse-graining 6 4 Thermal equilibrium 9 5 Two systems

More information

Hypersonics Research at The University of Queensland. Richard Morgan Centre for Hypersonics The University of Queensland

Hypersonics Research at The University of Queensland. Richard Morgan Centre for Hypersonics The University of Queensland Hypersonics Research at The University of Queensland Richard Morgan Centre for Hypersonics The University of Queensland Current activities All aspects of Scramjet propulsion Radiating flows Optical diagnostics

More information

Thomas E. Schwartzentruber Assistant Professor

Thomas E. Schwartzentruber Assistant Professor Thomas E. Schwartzentruber Assistant Professor Department of Aerospace Engineering & Mechanics, University of Minnesota #222 Akerman Hall, 110 Union St. SE Minneapolis, MN 55455 Tel: 612-625-6027 schwartz@aem.umn.edu

More information

Concept: Thermodynamics

Concept: Thermodynamics 1 Concept: Thermodynamics 2 Narayanan Komerath 3 Keywords: First law, Second law, Entropy, Work, Energy, Heat 4 5 6 1. Definition Thermodynamics relates heat to work and energy. In some ways it is a philosophical

More information

Scientific opportunities with ultrafast electron diffraction & microscopy

Scientific opportunities with ultrafast electron diffraction & microscopy Scientific opportunities with ultrafast electron diffraction & microscopy Jim Cao Frontier of ultrafast science MeV UED Transition pathways Rate and time scale Elementary steps Probe dynamics on the atomic

More information

Hypersonic Vehicle (HSV) Modeling

Hypersonic Vehicle (HSV) Modeling Hypersonic Vehicle (HSV) Modeling Carlos E. S. Cesnik Associate Professor of Aerospace Engineering University of Michigan, Ann Arbor HSV Concentration MA Kickoff Meeting Ann Arbor, 29 August 2007 Team

More information