Electronic and optical properties of graphene- and graphane-like SiC layers

Size: px
Start display at page:

Download "Electronic and optical properties of graphene- and graphane-like SiC layers"

Transcription

1 Electronic and optical properties of graphene- and graphane-like SiC layers Paola Gori, ISM, CNR, Rome, Italy Olivia Pulci, Margherita Marsili, Università di Tor Vergata, Rome, Italy Friedhelm Bechstedt, IFTO, Friedrich-Schiller- Universitat, Jena, Germany ESF Workshop on Polaritonics, March 20-23, Marino (Rome), Italy

2 Outline Graphene and graphane-like SiC based 2D sheets: structure Electronic properties: face-dependent behaviour Optical properties: polarizability, bound excitons Conclusions and outlook

3 Theoretical tools: ab-initio methods MBPT c hn c hn EXC wcv c W v DFT ground state v GW Band structure, I, A v BSE Optical properties

4 Theoretical tools: ab-initio methods MBPT c hn c hn EXC wcv c W v DFT v GW v BSE 1) 2) 3)

5 Quasiparticle equation Lars Hedin 1965 igw G: single particle Green s function 1 W V W: screened Coulomb interaction

6 Optical properties: Bethe Salpeter equation MBPT c hn c hn EXC wcv c W v DFT v GW v BSE 1) 2) 3)

7 hn Bethe Salpeter equation c v Absorption spectra A photon excites an electron from an occupied state to a conduction state e h 4 P 4 P IQP 4 P IQP 4 4 P Bethe Salpeter Equation (BSE) Kernel: v W GW BSE e-h exchange bound excitons

8 SiC-based nanostructures SiC nanotubes SiC nanowires Pan et al., Adv. Mater. 12, 1186 (2000) Sun et al., JACS 124, (2002) Applications for hydrogen storage, nanoelectronics, microelectromechanical systems

9 Graphene and graphane-like 2D SiC layers Silicongraphene Silicongraphane Flat honeycomb structure (sp 2 +p z ) C-Si bond length = 1.79 Å intermediate between graphene (C-C = 1.42 Å) and silicene (Si-Si = 2.28 Å) Buckling ( z) = 0.58 Å (sp 3 hybridization) C-Si bond = 1.9 Å intermediate between graphane (C-C = 1.54 Å) and silicane (Si-Si = 2.36 Å)

10 2D SiC:H from a SiC surface? Is it possible to obtain 2D SiC:H form a slab of hydrogenated C-terminated 3C-SiC(111)? [E tot (SiC:H 5bil_slab ) + E tot (2D-SiC:H)]-[E tot (SiC:H 6bil_slab ) + E tot (H 2 )] = ev, E tot (SiC:H 5(6)bil_slab ) = total energy of a 5(6)-bilayer 1x1 SiC(111) slab E tot (H2) = total energy of an hydrogen molecule An hydrogenated slab of 3C-SiC(111) in presence of hydrogen can give rise to a stable 2D hydrogenated sheet of SiC

11 Quasiparticle band structures SiC SiC:H

12 Quasiparticle band gaps 2D sheet SiC SiC:H C:H Si:H GW direct gap (ev) 3.7 (K) 5.3 (G) 5.4 (G) 3.6 (G)

13 SiC:H band edge density of states The fundamental gap of SiC:H approaches the value found for graphane: near the gap the DOS is dominated by C and H(C) states.

14 SiC:H - Electrostatic potential

15 SiC:H - Electrostatic potential Two vacuum levels appear as a consequence of the sheet polarity. A dipole discontinuity V=1.7 ev occurs, related to the electron transfer Qe between Si and C. According to Gauss law, 4 Qe V A s 0 where s =2.03, A 0 =8.48 Å 2, =0.58 Å. This gives Q=0.25, smaller than expected for ionic bonding significant covalent bonding contribution. Possible application of 2D SiC:H as electron/hole filter in LED or solar cells P. Gori, O. Pulci et al., APL 100, (2012)

16 Other systems with orientation-dependent ionization energy a-sexithiophene/ag(111) Standing 6T molecules Ionization potential varied of 0.6 ev Duhm et al., Nature Mat. 7, 326 (2008) Lying 6T molecules

17 Optical properties (RPA) SiC SiC:H

18 Bound excitons in 2D SiC, SiC:H

19 2D SiC: first exciton in k-space Holes in the last valence band, Electron in the first conduction band

20 2D SiC: third exciton in k-space Holes in the last valence band, Electron in the first conduction band

21 2D SiC:H: first exciton in k-space Holes in the two last valence bands, Electron in the first conduction band

22 2D SiC:H: third exciton in k-space Holes in the last valence band, Electron in the first conduction band

23 Bound excitons in 2D hydrogenated C, Si, Ge Ge:H Si:H C:H

24 Excitons in 2D systems Exciton size and/or binding energies are heavily influenced by confinement In particular, screening is hindered and binding energies are consequently very large Rough estimate of the binding energy and excitonic radius for the lowest bound exciton through a simplified model similar to a 2D hydrogenic model of the excitons

25 2D Screened Coulomb potential For vanishing sheet thickness, the screened Coulomb potential is W r 2 e r r H 0 N0 4a 2D 2 a 2D 2 a 2 With the two limits: D r = in-plane radius H 0 = Struve function N 0 = Neumann function 2D electronic polarizability: a 2D L L = distance between sheets W r 2 e for 2 a2d r 2D hydrogen atom r W r 2 e 2 a r ln 4 a for 2 a 2D 2D D r Log e-h attraction

26 2D Screened Coulomb potential Log e-h attraction 2D hydrogen atom

27 2D Screened Coulomb potential Log e-h attraction 2D-C:H 2D-Si:H 2D-Ge:H 2D-SiC 2D-SiC:H 2D hydrogen atom

28 Bound excitons in 2D systems SiC, Si:H, Ge:H Large oscillator strength Short radiative lifetime No possibility of BEC C:H, SiC:H Vanishing dipole matrix element Not so small radiative lifetime BEC? SiC, Si:H, Ge:H Large oscillator strength AND Possible significant RT exciton-polariton effects Large exciton binding energy

29 Conclusions and outlook 2D-based SiC and SiC:H: interesting properties + possibilities of integration with Si technology Side-dependent electronic behaviour in SiC:H applicability for hole/electrons filters Strongly bound excitons both in SiC and in SiC:H. Similarities with 2D-C:H, Si:H, Ge:H Laboratory for studies of fundamental physics, e.g. bosonic effects at room temperature Possible applications for polaritons lasers

Modeling of optical properties of 2D crystals: Silicene, germanene and stanene

Modeling of optical properties of 2D crystals: Silicene, germanene and stanene Modeling of optical properties of 2D crystals: Silicene, germanene and stanene Friedhelm Bechstedt 1 collaboration: L. Matthes 1 and O. Pulci 2 1 Friedrich-Schiller-Universität Jena, Germany 2 Università

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Periodic Trends in Properties of Homonuclear

Periodic Trends in Properties of Homonuclear Chapter 8 Periodic Trends in Properties of Homonuclear Diatomic Molecules Up to now, we have discussed various physical properties of nanostructures, namely, two-dimensional - graphene-like structures:

More information

Optical properties of single-layer, double-layer, and bulk MoS2

Optical properties of single-layer, double-layer, and bulk MoS2 Optical properties of single-layer, double-layer, and bulk MoS Alejandro Molina-Sánchez, Ludger Wirtz, Davide Sangalli, Andrea Marini, Kerstin Hummer Single-layer semiconductors From graphene to a new

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Physical Properties of Mono-layer of

Physical Properties of Mono-layer of Chapter 3 Physical Properties of Mono-layer of Silicene The fascinating physical properties[ 6] associated with graphene have motivated many researchers to search for new graphene-like two-dimensional

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory Noa Marom Center for Computational Materials Institute for Computational Engineering and Sciences The University

More information

High pressure core structures of Si nanoparticles for solar energy conversion

High pressure core structures of Si nanoparticles for solar energy conversion High pressure core structures of Si nanoparticles for solar energy conversion S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli [Phys. Rev. Lett. 11, 4684 (213)] NSF/Solar DMR-135468 NISE-project

More information

Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW

Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW David A. Strubbe Department of Physics, University of California, Merced Benasque, Spain 23 August 2018 Band gaps:

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) Advanced Workshop on High-Performance & High-Throughput Materials Simulations using Quantum ESPRESSO ICTP, Trieste, Italy, January 16 to 27, 2017 Time-dependent density functional theory (TDDFT) Ralph

More information

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table.

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. 1.6. Review of Electronegativity (χ) CONCEPT: Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. There are many definitions

More information

Supporting information for: Novel Excitonic Solar Cells in Phosphorene-TiO 2. Heterostructures with Extraordinary Charge. Separation Efficiency

Supporting information for: Novel Excitonic Solar Cells in Phosphorene-TiO 2. Heterostructures with Extraordinary Charge. Separation Efficiency Supporting information for: Novel Excitonic Solar Cells in Phosphorene-TiO 2 Heterostructures with Extraordinary Charge Separation Efficiency Liujiang Zhou,,, Jin Zhang,, Zhiwen Zhuo, Liangzhi Kou, Wei

More information

Puckering and spin orbit interaction in nano-slabs

Puckering and spin orbit interaction in nano-slabs Electronic structure of monolayers of group V atoms: Puckering and spin orbit interaction in nano-slabs Dat T. Do* and Subhendra D. Mahanti* Department of Physics and Astronomy, Michigan State University,

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 West Taylor Street (M/C 273), Chicago, IL 60607 Russ

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) 04/05/16 Hands-on workshop and Humboldt-Kolleg: Density-Functional Theory and Beyond - Basic Principles and Modern Insights Isfahan University of Technology, Isfahan, Iran, May 2 to 13, 2016 Time-dependent

More information

Electronic excitations in materials for solar cells

Electronic excitations in materials for solar cells Electronic excitations in materials for solar cells beyond standard density functional theory Silvana Botti 1 LSI, École Polytechnique-CNRS-CEA, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli NanoMatFutur DPG-214, 4/3/214 Multiple Exciton

More information

Electronic and Optical Properties of Silicon Nanocrystals

Electronic and Optical Properties of Silicon Nanocrystals Electronic and Optical Properties of Silicon Nanocrystals Ceyhun Bulutay and Stefano Ossicini 2 Department of Physics, Bilkent University, Bilkent, Ankara 68, Turkey 2 CNR-INFM-S 3 and Dipartimento di

More information

Inelastic losses and satellites in x-ray and electron spectra*

Inelastic losses and satellites in x-ray and electron spectra* HoW Exciting! Workshop 2016 August 3-11, 2016 Humboldt-Universität -Berlin Berlin, Germany Inelastic losses and satellites in x-ray and electron spectra* J. J. Rehr, J. J. Kas & L. Reining+ Department

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

Defects in Semiconductors

Defects in Semiconductors Defects in Semiconductors Mater. Res. Soc. Symp. Proc. Vol. 1370 2011 Materials Research Society DOI: 10.1557/opl.2011. 771 Electronic Structure of O-vacancy in High-k Dielectrics and Oxide Semiconductors

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations

Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations W.G. Schmidt 1,3, S. Blankenburg 1,S.Wippermann 1,A.Hermann 2, P.H. Hahn 3,M.Preuss 3,K.Seino 3, and F. Bechstedt 3 1 Theoretische

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Ab initio calculation of the exchange-correlation kernel in extended systems

Ab initio calculation of the exchange-correlation kernel in extended systems Ab initio calculation of the exchange-correlation kernel in extended systems Gianni Adragna, 1 Rodolfo Del Sole, 1 and Andrea Marini 2 1 Istituto Nazionale per la Fisica della Materia e Dipartimento di

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were performed for the Platonic model of PbI 3 -based perovskites

More information

Accurate van der Waals interactions from ground state electron density

Accurate van der Waals interactions from ground state electron density Accurate van der Waals interactions from ground state electron density Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute EXCITCM09,

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Exciton Photophysics of Carbon Nanotubes

Exciton Photophysics of Carbon Nanotubes Annu. Rev. Phys. Chem. 27.58:719-747. Downloaded from arjournals.annualreviews.org Annu. Rev. Phys. Chem. 27. 58:719 47 First published online as a Review in Advance on January 2, 27 The Annual Review

More information

Chemical bonds. In some minerals, other (less important) bond types include:

Chemical bonds. In some minerals, other (less important) bond types include: Chemical bonds Chemical bond: force of attraction between two or more atoms/ions Types of bonds in crystals: Ionic bond: electrostatic attraction between two oppositely charged ions. This type of bond

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations S. Wippermann, G. Galli ICAMP-12, 08/10/2012 Search for materials to harvest light: Desperately seeking

More information

arxiv: v1 [cond-mat.str-el] 16 Jan 2011

arxiv: v1 [cond-mat.str-el] 16 Jan 2011 Direct observation of room temperature high-energy resonant excitonic effects in graphene I. Santoso 1,3,4,8, P.K Gogoi 1,2, H.B. Su 5, H. Huang 2, Y. Lu 2, D. Qi 1,2,3, W. Chen 2,4, M.A. Majidi 1,2, Y.

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives Igor Bondarev Math & Physics Department North Carolina Central University Durham,

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Theoretical approaches towards the understanding of organic semiconductors:

Theoretical approaches towards the understanding of organic semiconductors: Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University of Leoben Theoretical approaches towards the understanding of organic semiconductors: from electronic and optical

More information

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study INFN Laboratori Nazionali Frascati (LNF), Italy Univ. Calabria,

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

III. Inelastic losses and many-body effects in x-ray spectra

III. Inelastic losses and many-body effects in x-ray spectra TIMES Lecture Series SIMES-SLAC-Stanford March 2, 2017 III. Inelastic losses and many-body effects in x-ray spectra J. J. Rehr TALK: Inelastic losses and many-body effects in x-ray spectra Inelastic losses

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 10 May 2006

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 10 May 2006 Optical excitations in organic molecules, clusters and defects studied by first-principles Green s function methods arxiv:cond-mat/65248v [cond-mat.mtrl-sci] May 26 Murilo L. Tiago (a) and James R. Chelikowsky

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Jun 2007

arxiv: v1 [cond-mat.mtrl-sci] 6 Jun 2007 Optical properties of graphene nanoribbons: the role of many-body effects arxiv:76.916v1 [cond-mat.mtrl-sci] 6 Jun 7 Deborah Prezzi, 1,, Daniele Varsano, 1 Alice Ruini, 1, Andrea Marini, 3 and Elisa Molinari

More information

GW quasiparticle energies

GW quasiparticle energies Chapter 4 GW quasiparticle energies Density functional theory provides a good description of ground state properties by mapping the problem of interacting electrons onto a KS system of independent particles

More information

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box ) Metallic Bond The outer electrons are weakly bound. They roam freely in the space between the atoms and thus are able to conduct electricity. They can be approximated by free electrons in a constant,

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

Topological Dirac & Weyl fermions in optical properties

Topological Dirac & Weyl fermions in optical properties Topological Dirac & Weyl fermions in optical properties Friedhelm Bechstedt 1 L. Matthes 1, S. Küfner 1, J. Furthmüller 1 A. Mosca Conte 2, D. Grassano 3, O. Pulci 2,3 1 Friedrich-Schiller-Universität

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Electronic Structure of Surfaces

Electronic Structure of Surfaces Electronic Structure of Surfaces When solids made of an infinite number of atoms are formed, it is a common misconception to consider each atom individually. Rather, we must consider the structure of the

More information

Understanding the anomalous water optical absorption from large-scale first-principles simulations

Understanding the anomalous water optical absorption from large-scale first-principles simulations Understanding the anomalous water optical absorption from large-scale first-principles simulations W.G. Schmidt 1, S. Blankenburg 1,S.Wippermann 1,A.Hermann 2,P.H. Hahn 3,M.Preuss 3,K.Seino 3,andF.Bechstedt

More information

Chapter 12: Semiconductors

Chapter 12: Semiconductors Chapter 12: Semiconductors Bardeen & Shottky January 30, 2017 Contents 1 Band Structure 4 2 Charge Carrier Density in Intrinsic Semiconductors. 6 3 Doping of Semiconductors 12 4 Carrier Densities in Doped

More information

Hydrogenated Graphene

Hydrogenated Graphene Hydrogenated Graphene Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Epitaxial Graphene Hydrogen Chemisorbed on Graphene Hydrogen-Intercalated Graphene Outline

More information

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation Summary lecture VII Boltzmann scattering equation reads in second-order Born-Markov approximation and describes time- and momentum-resolved electron scattering dynamics in non-equilibrium Markov approximation

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) Electron energy loss spectroscopy (EELS) Phil Hasnip Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~pjh503 Many slides courtesy of Jonathan

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Interaction between Single-walled Carbon Nanotubes and Water Molecules

Interaction between Single-walled Carbon Nanotubes and Water Molecules Workshop on Molecular Thermal Engineering Univ. of Tokyo 2013. 07. 05 Interaction between Single-walled Carbon Nanotubes and Water Molecules Shohei Chiashi Dept. of Mech. Eng., The Univ. of Tokyo, Japan

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15 1 Lecture contents Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect Absorption edges in semiconductors Offset corresponds to bandgap Abs. coefficient is orders

More information

Chapter 29 Molecular and Solid-State Physics

Chapter 29 Molecular and Solid-State Physics Chapter 29 Molecular and Solid-State Physics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Carrier Recombination

Carrier Recombination Notes for ECE-606: Spring 013 Carrier Recombination Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu /19/13 1 carrier recombination-generation

More information

Valence electrons are the electrons in the highest occupied energy level of an element s atoms.

Valence electrons are the electrons in the highest occupied energy level of an element s atoms. 7.1 Periodic Trends > Valence Electrons Valence electrons are the electrons in the highest occupied energy level of an element s atoms. 1 of 31 Periodic Trends > 2 of 31 Periodic Trends > 3 of 31 7.1 Periodic

More information

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Dr. Alex Zakhidov Assistant Professor, Physics Department Core faculty at Materials Science, Engineering

More information

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

Photoelectronic properties of chalcopyrites for photovoltaic conversion: Photoelectronic properties of chalcopyrites for photovoltaic conversion: self-consistent GW calculations Silvana Botti 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon

More information

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter HoW exciting! Workshop Humboldt University Berlin 7 August, 2018 Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter J. J. Rehr & J. J. Kas University

More information

Opacity. requirement (aim): radiative equilibrium: near surface: Opacity

Opacity. requirement (aim): radiative equilibrium: near surface: Opacity (Gray) Diffusion approximation to radiative transport: (assumes isotropy valid only in the deep stellar interior) - opacity is a function of frequency (wave length ). - aim: to reduce the (rather complex)

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(4): 589-595 Altering the electronic properties of adamantane

More information

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light) Chapter 2 An Introduction Chemistry Lecture 2: Energy Levels and Chemical Bonding Electrons are always moving Outside the nucleus in atomic orbitals Maybe usually Average distance from nucleus (size of

More information

Free energy sampling for electrochemical systems

Free energy sampling for electrochemical systems Free energy sampling for electrochemical systems Mira Todorova, Anoop Kishore Vatti, Suhyun Yoo and Jörg Neugebauer Department of Computational Materials Design Düsseldorf, Germany m.todorova@mpie.de IPAM,

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

X-ray diffraction and Crystal Structure Solutions from Thin Films

X-ray diffraction and Crystal Structure Solutions from Thin Films X-ray diffraction and Crystal Structure Solutions from Thin Films Ingo Salzmann Humboldt-Universität zu Berlin Institut für Physik Overview Experimental technique X-ray diffraction The principal phenomenon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthesis of an open-framework allotrope of silicon Duck Young Kim, Stevce Stefanoski, Oleksandr O. Kurakevych, Timothy A. Strobel Electronic structure calculations Electronic structure calculations and

More information