Investigations of Organocuprates

Size: px
Start display at page:

Download "Investigations of Organocuprates"

Transcription

1 Investigations of rganocuprates Department of Chemistry University of North Carolina at Charlotte Andy Thomas

2 Rapid injection NMR Why is RINMR so useful? Time intervals between spectra can be modified to fit the reaction profile. Integration feature along with an internal standard is a convenient tool for kinetic and quantitative studies. Nitrogen cooling allows for low temperature experimentation. Nitrogen cooling/heating also provides an environment similar to a chlenk flask. Allows for the preparation, characterization and subsequent reaction of unstable intermediates! Rapid injection NMR: a simple technique for the observation of reactive intermediates. McGarrity, Prodolliet & myth rganic Magnetic Resonance (1981), 17(1),

3 The RI-NMR setup

4 Copper Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction -andmeyer reaction -Glaser reaction organocuprate reactions: -Alkylation reaction -Allylation reaction -Conjugate addition reaction

5 Copper 2 R Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction R R -andmeyer reaction Br! -Glaser reaction organocuprate reactions: -Alkylation reaction -Allylation reaction -Conjugate addition reaction Ullmann, F. Ber. Dtsch.Chrm. Ges. 1903, 36, 2382

6 Copper Biology: Found in metalloenzymes R rganic ynthesis: organocopper reactions R -Ullmann reaction CN -andmeyer reaction N + 2! CN -Glaser reaction organocuprate reactions: -Alkylation reaction -Allylation reaction -Conjugate addition reaction andmeyer, T. Ber. Dtsch.Chrm. Ges. 1884, 17,

7 Copper 2 R Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction -andmeyer reaction -Glaser reaction 2 Cl 2 NH 3 (aq), EtH / 2 R R organocuprate reactions: -Alkylation reaction -Allylation reaction -Conjugate addition reaction Glaser, C F. Ber. Dtsch.Chrm. Ges. 1869, 2,

8 Copper Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction -andmeyer reaction -Glaser reaction CH 3 Gilman Reagent I CH CH 3 3 (CH 3 ) 2 organocuprate reactions: -Alkylation reaction I -Allylation reaction -Conjugate addition reaction Gilman, H., Jones R. G., Woods, L. A., J. rg. Chem. 1952, 17, 1630

9 Copper Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction -andmeyer reaction -Glaser reaction CH 3 Gilman Reagent I CH CH 3 3 THF (CH 3 ) 2 organocuprate reactions: -Alkylation reaction I -Allylation reaction -Conjugate addition reaction H 3 C THF X H 3 C THF THF. H. Bertz, R. A. J. mith, J. P. nyder, and A.. Vellekoop, rganometallics 1995, 1213

10 I Ac Copper Biology: Found in metalloenzymes rganic ynthesis: organocopper reactions -Ullmann reaction R R 2 -andmeyer reaction -R -Glaser reaction R 2 -R R organocuprate reactions: -Alkylation reaction -Allylation reaction -Conjugate addition reaction R 2 -R R House, H.., Respess, W.L., Whitesides, G.M., J. rg. Chem. 1966, 31, 3128 Corey, E.J., Posner, G.G., J. Am. Chem. oc. 1968, 89, 3911

11 Alkylation Reaction Bertz,.H., Cope,., Dorton, D. Murphy, M., gle, C.A., Angew. Chem. Int. Ed. 2007,46, Bartholomew, E.R.; Bertz,.H.; Cope,.K.; Dorton, D., Murphy, M.D.; gle; C.A. Commun. 2008,

12 Product of CH 3 13 CH 2 I with ( 13 CH 3 ) 2 I/PBu 3 2 J trans ( 13 C 31 P) = Hz 2 J cis ( 13 C 31 P) = 14.6 Hz CH 3 CH !0.06 CH 3! + PBu 3 CH 3 31 P NMR spectrum of CH 3 13 CH 2 ( 13 CH 3 ) 2 (PBu 3 ) Bartholomew, Erika R.; Bertz, teven H.; Cope, tephen; Dorton, Donna C.; Murphy, Michael; gle, Craig A. Neutral organocopper(iii) complexes. Chemical Communications (2008),

13 Allylation Reaction

14 Cl Cl 2 2 H 2 C C CH 2 Bartholomew, E.R.; Bertz,.H.; Cope,.K.; Murphy, M.D.; gle; C.A.; Thomas, A.A. Chem. Commun. 2010, 46,

15 Preparation of ( 13 CH 3 ) 4 Fully couple 13 C NMR spectrum of ( 13 CH 3 ) 4 Erika R. Bartholomew, teven H. Bertz, tephen K. Cope, Michael D. Murphy, Craig A. gle and Andy A. Thomas, Chemical Communications, 2010, 46,

16 Reactions of (CH 3 ) 4 : Reactivity of Copper(III) CH 3! CH 3 CH 3 + C(CH 3 ) 3 + CH 4 C(CH 3 ) 3 H N CH 3! CH 3 N CH 3 N + + CH 4 H N CH 3! CH 3 CN CH CH 3 Br BrCN CH 3! CH 3 CH 3 CH 3 + CH 3 H No RXN at -100 C Ph 2 P Ph 2 PH C 2 CH 3! CH 3 + CH 3 PPh 2 No RXN at -100 C Bartholomew, E.R.; Bertz,.H.; Cope,.K.; Murphy, M.D.; gle; C.A.; Thomas, A.A. Chem. Commun. 2010, 46,

17 Cl Cl 2 2 H 2 C C CH 2 2 Bartholomew, E.R.; Bertz,.H.; Cope,.K.; Murphy, M.D.; gle; C.A.; Thomas, A.A. Chem. Commun. 2010, 46,

18 1 H NMR of 13 C # + " 13 C! Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

19 1 H NMR of 13 C C NMR Coupling Constants J cis = 4 Hz J trans = 28 Hz # + " 13 C! Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

20 Complexes with thioketones (M =, ) Ph " + Ph! Ph " M + Ph " + " ! M Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

21 Complexes with dithioesters (M =, ) F 3 C ! Ph! Ar 1! Ar 2! " M + " M + Ph Ar 1 Ar 2 " M + " M + Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

22 tructures of substrates, complexes and addition products " +! " M " +! " M + N X N " + Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

23 Complexes with isothiocyanates N C C N! + " N! M + N C n/d Ph C N! Ph C N! + Bertz,.H.; Moazami, Y., Murphy, M.D.; gle, C.A.; Richter, J.D. Thomas, A.A. J. Am. Chem. oc. 2010, 132,

24 RI-NMR of 2 /I with phenyl isothiocyanate n/d C Ph N CH 3 CH Time!100 o C, THF-d C Ph N CH 3 CH

25 Displacement reactions C # + # + "! C 2

26 Displacement reactions C # + # + "! C 2 > > > > C 2 F 3 C NC CN NC CN NC CN > > > NC CN Ph > > > Ph Ph

27 Conjugate Addition Reaction Pathway Homocuprate ( ) 2 TMCl TM TM = CH 3 xidative Addition Nu Nu! -Nu( ) Reductive Elimination TM

28 1 H spectra of! 3 and! 2 "-complexes

29 rganocuprate Reactions: Atom Economy

30 rganocuprate Reactions: Atom Economy H H H

31 Mixed cuprates: Non transferable ligands (dummy ligands) Corey et al, J. rg. Chem. 1978, 17, Nilsson et al, J. rganometallic Chem., 1986, 334, Posner et al, J. Am. Chem. oc. 1973, 95, Bertz et al, J. Am. Chem. oc. 1996,

32 Mixed organocuprate preparation route 1: I R R R -78 o C -78 o C RR olid oluble R = H 2 CD C 3 i CD3 CD 3 Ph P Ph

33

34

35 ynthesis of: (CD 3 ) 3 ich 2

36

37 Mixed organocuprate preparation route 2: R R -78 o C RR R = CN, Ph

38 CD 3 D 3 C CH MgCl CN -78 o C D 3 C H C CNMgCl D 3 C

39 ummary of cyano based mixed cuprates CN RM -78 o C RCNM R = H 3 C H 3 C H 2 C MgCl H CD 3 D3 C C MgCl H 3 C H 2 C CH2 H 2 C

40

41 Conjugate addition pathway with mixed cuprates = CH 3 = dummy lignad TMCN xidative Addition TM TM NC NC! -CN( ) TM

42 Conjugate addition pathway with mixed cuprates = CH 3 = dummy lignad TMCN xidative Addition TM TM NC NC! -CN( ) TM

43

44

45 H 3 C Chalcone -100 C Ph CH3 Ph

46 CH 2 i(cd 3 ) 3 /I H 2 C i(cd 3) 3 i(cd 3 ) 3 CH2 CH 3

47 CH 2 i(cd 3 ) 3 /I H 2 C i(cd 3) 3 i(cd 3 ) 3 CH2 CH 3 i(cd 3 ) 3 CH3 (D 3 C) 3 i C H 3 CH 3 Yamanaka, M., Nakamura, E., J Am. Chem. oc. 2005, 127,

48 Characterization: Trans effect

49 Ph + Chalcone NE

50 H 3 C C C MVK

51 H 3 C C C

52 Asymmetric Induction with mixed organocuprates gle, C. A.; Human, J. B. Tetrahedron: Asymmetry 2003, 14,

53 Ph Ar!I Ph Ar CH3 Ph Ar CH3 Ph CH 3 CH3 Ph Ph Ph Ph N = Ar

54 Possible tathesis Pathways Equilibration through the mixed cuprates Reaction of a mixed cuprate with a "-complex

55 1 st Possible tathesis Pathway

56 2 nd Possible tathesis Pathway

57 Proposed product formation pathways Ph Ph (Ph) 2 + Ph + CH3 -Ph CH 3 Ph CH 3 + CH3 CH 3 (Ph) 2

58 Examples of Michael Acceptors Used in tudy

59 Conclusions (III) intermediates have been observed in the conjugate addition reactions, alkylation reactions and allylation reactions. Tetraalkylcuprates react with electrophilic reagents and slowly with weak acids such as methanol at low temperatures. The conjugate addition reaction pathway was originally thought to be straightforward nly one of two possible "-complexes was formed, and the methyl was poised for transfer ome of the mixed cuprate "-complexes readily underwent metathesis to the corresponding homocuprate "- complexes

60 ACKNWLEDGEMENT ACKNWLEDGEMENT Dr. Craig gle, Dr. Mike Murphy and Dr. teve Bertz teven Cope, Richard Hardin, Josh Richter NF # & RACheL

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Chem 530A Chemistry 530A Advanced Organic Chemistry Lecture notes part 8 Carbanions Organolithium and Grignard reagents Organocopper reagents 1. Direct metalation 2. From radical

More information

Organocopper Chemistry

Organocopper Chemistry rganocopper Chemistry ave a great historical importance, but still remain highly useful reactions. If not the first organometallic reactions developed they are among the first. Most often used in conjugate

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

12.5 Organometallic Compounds

12.5 Organometallic Compounds 12.5 rganometallic Compounds Compounds that contain carbon-metal bond are called organometallic compounds. C M C δ δ + M C M Primarily ionic Primarily covalent (M = Na + or K + )(M = Mg or Li) (M = Pb,

More information

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis Development of Chiral osphine lefin Ligands and Their Use in Asymmetric Catalysis 2 Wei-Liang Duan July 31, 2007 Research Works in Hayashi Group, Kyoto University (ct, 2003 Mar, 2007) Conventional Chiral

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Ready; Catalysis Conjugate Addition

Ready; Catalysis Conjugate Addition eady; Catalysis Conjugate Addition Topics covered 1. 1,4 addition involving copper a. stoichiometric reactions b. catalytic reactions c. allylic substitution. Conjugate addition without copper a. Ni-based

More information

Organic Chemistry I (Chem340), Spring Final Exam

Organic Chemistry I (Chem340), Spring Final Exam rganic Chemistry I (Chem340), pring 2005 Final Exam This is a closed-book exam. No aid is to be given to or received from another person. Model set and calculator may be used, but cannot be shared. Please

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Study of Chemical Reactions

Study of Chemical Reactions Study of Chemical Reactions Introduction to Mechanisms There are four different types of organic reactions: Additions Eliminations Substitutions Rearrangements 149 Addition Reactions Occur when 2 reactants

More information

Journal Club Presentation by Remond Moningka 04/17/2006

Journal Club Presentation by Remond Moningka 04/17/2006 β-alkyl-α-allylation of Michael Acceptors through the Palladium-Catalyzed Three-Component Coupling between Allylic Substrate, Trialkylboranes, and Activated lefins Yoshinori Yamamoto, et al. J. rg. Chem.

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

Organic Chemistry II KEY March 25, a) I only b) II only c) II & III d) III & IV e) I, II, III & IV

Organic Chemistry II KEY March 25, a) I only b) II only c) II & III d) III & IV e) I, II, III & IV rganic Chemistry II KEY March 25, 2015 Exam 2: VERSIN A 1. Which of the following compounds will give rise to an aromatic conjugate base? E a) I only b) II only c) II & III d) III & IV e) I, II, III &

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

Suggested solutions for Chapter 27

Suggested solutions for Chapter 27 uggested solutions for Chapter 27 27 PRBLEM 1 uggest a mechanism for this reaction, commenting on the selectivity and the stereochemistry. Me 2 1. t-buk 2. Raney Ni Et The opportunity to explore the consequences

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

A. Organometallic Mechanisms

A. Organometallic Mechanisms Dr. P. Wipf - Chem 2320 1 4/10/2006 II. Special Topics IIC. Organometallics Boger Notes: p. 395-426 (Chapter XII) Carey/Sundberg: B p. 477-546 (Chapter B 8) A. Organometallic Mechanisms Oxidation State:

More information

MODULE CODE: CHEM10003 ORGANIC CHEMISTRY 4 EXAM

MODULE CODE: CHEM10003 ORGANIC CHEMISTRY 4 EXAM School of Science and Sport Physical Sciences, Chemistry Paisley Campus Session 2014-15 Trimester 2 MDULE CDE: CHEM10003 RGANIC CHEMISTRY 4 EXAM Date: 15th May 2015 Time: 10.00am 12.00pm Attempt THREE

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information for Chiral Brönsted Acid Catalyzed Asymmetric Baeyer-Villiger Reaction of 3-Substituted Cyclobutanones Using Aqueous

More information

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Nucleophilic substitution and base induced elimination are among most widely occurring and versatile reaction types in organic

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

Trifluoroacetic acid: a unique solvent for atom transfer radical cyclization reactions

Trifluoroacetic acid: a unique solvent for atom transfer radical cyclization reactions ssue in Honor of Prof. Cheng-Ye Yuan ARKVC 2004 (ix) 60-65 Trifluoroacetic acid: a unique solvent for atom transfer radical cyclization reactions Tao Wu, Hui Yu, and Chaozhong Li* Shanghai nstitute of

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

COPPER-CATALYZED, ENANTIOSELECTIVE CONJUGATE ADDITION. Reported by Monica Jo Patten December 6, 2004

COPPER-CATALYZED, ENANTIOSELECTIVE CONJUGATE ADDITION. Reported by Monica Jo Patten December 6, 2004 CPPE-CATALYZED, EATISELECTIVE CJUGATE ADDITI eported by Monica Jo Patten December 6, 2004 ITDUCTI Conjugate addition of carbon nucleophiles to α,β-unsaturated electrophiles is an essential carbon-carbon

More information

Mechanistic Studies in Copper Catalysis

Mechanistic Studies in Copper Catalysis chanistic Studies in Copper Catalysis Jen Alleva May 1st 2013 Timeline of Achievements in Copper Chemistry General istorical verview first cross-couplings 1869 Ullmann Goldberg Glaser 1903 Glaser, C. Ann.

More information

Chemistry I (Organic) Aromatic Chemistry. LECTURE 4 Electrophilic Substitution (part 3)

Chemistry I (Organic) Aromatic Chemistry. LECTURE 4 Electrophilic Substitution (part 3) 1 Chemistry I (Organic) Aromatic Chemistry LCTU 4 lectrophilic Substitution (part 3) Alan C. Spivey a.c.spivey@imperial.ac.uk Dec 2009 2 Format and scope of presentation lectrophilic aromatic substitution

More information

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1-What is substitution reaction? 2-What are can Nucleophilic Substitution eaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1- SUBSTITUTION EACTIONS 1-Substitution eaction In this type

More information

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams.

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. 2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. Disclaimer.: Use only to help learn what you need to know and don t expect the final to be in the same form. 1 1. Short

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate M. E. Krafft,* T. F. N. Haxell, K. A. Seibert, and K. A. Abboud Department of Chemistry

More information

Hydroboration. Carreira: Chapter 7

Hydroboration. Carreira: Chapter 7 ydroboration Carreira: Chapter 7 ydroboration of alkenes/alkynes is one of the most versatile reactions available. Most commonly, the resulting alkyl borane intermediates are not isolated, but are used

More information

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009 Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction chanisms Group eting Aaron Bailey 12 May 2009 What is a Non-Linear Effect? In asymmetric catalysis, the ee (er) of the

More information

Walden discovered a series of reactions that could interconvert (-)-malic acid and (+)-malic acid.

Walden discovered a series of reactions that could interconvert (-)-malic acid and (+)-malic acid. Chapter 11: Reactions of alkyl halides: nucleophilic substitutions and eliminations Alkyl halides are polarized in the C-X bond, making carbon δ+ (electrophilic). A nucleophilecan attack this carbon, displacing

More information

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION Haloalkanes (also known as halogenoalkanes and alkyl halides) are organic compounds where one of the hydrogens of an alkane or cycloalkane has been

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Proton NMR. Four Questions

Proton NMR. Four Questions Proton NMR Four Questions How many signals? Equivalence Where on spectrum? Chemical Shift How big? Integration Shape? Splitting (coupling) 1 Proton NMR Shifts Basic Correlation Chart How many 1 H signals?

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Asymmetric Alklylation of Enolates

Asymmetric Alklylation of Enolates Asymmetric Alklylation of Enolates M with material from A G Meyers http://faculty.chemistry.harvard.edu/myers/pages/chem-215-handouts 745 rganic Synthesis Spring 2015 Asymmetric Alkylation - eed to control

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

Objective 11. Apply Reactivity Principles to Substitution and Elimination Reactions: compare size and strength of nucleophile to predict major product

Objective 11. Apply Reactivity Principles to Substitution and Elimination Reactions: compare size and strength of nucleophile to predict major product Objective 11 Apply Reactivity Principles to Substitution and Elimination Reactions: compare size and strength of nucleophile to predict major product Given Reactants ----> Predict Products How to figure

More information

PART I: Organic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) d) O 2 N CHO

PART I: Organic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) d) O 2 N CHO PART I: rganic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) a) C 2 50% 2 S 4 / 2 b) + C 2 N 2 NaB 3 CN c) Br Ph C NaC 3 Br d) 2 N C + 2

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Molecular Orbitals for Alkyl Halide Electrophiles. Chemistry 335 Supplemental Slides: Chapter 2

Molecular Orbitals for Alkyl Halide Electrophiles. Chemistry 335 Supplemental Slides: Chapter 2 Molecular Orbitals for Alkyl Halide Electrophiles To build molecular orbitals, first recall that the energy of the starting atomic orbitals depends the electronegativity of the element, which you can get

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

E. Dithianes (S,S-Acetals)

E. Dithianes (S,S-Acetals) E. Dithianes (,-Acetals) bjectives By the end of this section you will be able to: 1) prepare,-acetals (dithianes) from aldehydes and ketones; 2) draw an arrow-pushing mechanism for the formation of dithianes

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Supplementary Information

Supplementary Information 3 Et 2 and TMSTf: A Synergistic Combination of Lewis Acids Eddie L. Myers a, Craig P. utts a and Varinder K. Aggarwal* a Contents Supplementary Information (a) Analysis of mixtures of TMSTf and 3 Et 2

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! CHEM 345 Problem Set 4 Key Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. To use them effectively, it will require some knowledge from

More information

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Halogen compounds are important for several reasons. Simple alkyl and aryl halides, especially chlorides and bromides, are versatile

More information

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers CHEM 303 rganic Chemistry II Problem Set III Chapter 14 Answers 1) Give the major products of each of the following reactions. If a mixture is expected, identify the major product. + H 3 CHC CHCH 3 H 2

More information

Chapter 15: Reactions of Substituted Benzenes

Chapter 15: Reactions of Substituted Benzenes Learning Objectives: Chapter 15: Reactions of Substituted Benzenes 1. Be able to recognize and utilize the oxidative and reductive reactions involving the substituents on benzene. 2. Recognize whether

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

+ + CH 11: Substitution and Elimination Substitution reactions

+ + CH 11: Substitution and Elimination Substitution reactions C 11: Substitution and Elimination Substitution reactions Things to sort out: Nucleophile Electrophile -- > substrate Leaving Group S N 2 S N 1 E 1 E 2 Analysis Scheme Kinetics Reaction profile Substrates

More information

Essential Organic Chemistry. Chapter 9

Essential Organic Chemistry. Chapter 9 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 9 Substitution and Elimination Reactions of Alkyl Halides 9.1 How Alkyl Halides React Substitution Reactions One group takes the place of another.

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Preparation of the reagent TMPMgCl LiCl [1] (1):

Preparation of the reagent TMPMgCl LiCl [1] (1): Regio- and Chemoselective Magnesiation of Protected Uracils and Thiouracils using TMPMgCl LiCl and TMP 2 Mg 2LiCl upporting nformation Marc Mosrin, adège Boudet and Paul Knochel Ludwig-Maximilians-Universität

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 CHM 321: Summary of Important Concepts Concepts for Chapter 7: Substitution Reactions I. Nomenclature of

More information

10. Alkyl Halides. What Is an Alkyl Halide. An organic compound containing at least one carbonhalogen

10. Alkyl Halides. What Is an Alkyl Halide. An organic compound containing at least one carbonhalogen 10. Alkyl Halides What Is an Alkyl Halide An organic compound containing at least one carbonhalogen bond (C-X) X (F, Cl, Br, I) replaces H Can contain many C-X bonds Properties and some uses Fire-resistant

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Suggested solutions for Chapter 19

Suggested solutions for Chapter 19 s for Chapter 19 19 PRBLEM 1 Predict the orientation of addition to these alkenes. Simple examples of addition with regioselectivity. The first and last alkenes have different numbers of substituents at

More information

Modern Synthetic Methods

Modern Synthetic Methods Modern Synthetic Methods Dr. Dorian Didier dodich@cup.uni-muenchen.de Functionnalized Organometallic Reagents C-N, C-O and C-S Bond Formation Introduction to Organoboron Chemistry Introduction to Organosilicon

More information

Reactions at α-position

Reactions at α-position Reactions at α-position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site NUC NUC Another reaction that

More information

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 First Three Letters of Last Name NAME Network ID CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 The following materials are permissible during the exam: molecular model kits, course notes (printed, electronic,

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far.

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Literature Presentation Aman Desai 06.16.06 1. Angew. Chem. Int. Ed. 2006, 45, 3689 2. Angew. Chem. Int. Ed. 2006, 45, 3093 3. Tetrahedron:

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Synthesis of 1,3-Diols via Controlled, Radical-Mediated C-H Functionalization

Synthesis of 1,3-Diols via Controlled, Radical-Mediated C-H Functionalization Synthesis of 1,3-Diols via Controlled, Radical-Mediated C- Functionalization Chen, K.; Richter, J. M.; Baran, P. S. J. Amer. Chem. Soc. 2008, 130, 7247-7249. Literature Group Presentation Wynter Gilson

More information

Homework for Chapter 7 Chem 2310

Homework for Chapter 7 Chem 2310 omework for Chapter 7 Chem 2310 Name I. Introduction to Reactions 1. Explain why the following fits the definition of a chemical reaction. C 3 Na C 3 Na 2. Using the chemical reaction above, give all compounds

More information

Nucleophilic Substitutions. Ionic liquids

Nucleophilic Substitutions. Ionic liquids ucleophilic Substitutions & Ionic liquids S 2 Reaction S 2 Substitution Reaction ucleophilic (electron rich) Bimolecular The rate depends on the concentration of both of the reactants S 2 Reaction Mechanism

More information

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections CEM 221 section 01 LECTURE #13 Tues., Oct.18, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSGNED READNGS: TODAY S CLASS: Sections 4.1 4.6 NEXT CLASS: rest of Ch.4 http://artsandscience.concordia.ca/facstaff/p-r/rogers

More information

Homework for Chapter 17 Chem 2320

Homework for Chapter 17 Chem 2320 Homework for Chapter 17 Chem 2320 I. Cumulated, isolated, and conjugated dienes Name 1. Draw structures which fit the following descriptions. Use correct geometry! a conjugated diene with the formula C

More information

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade)

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade) rganic Chemistry CM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl alides: Substitution Reactions - Chapter 6 (Wade) Chapter utline I. Intro to RX (6-1 - 6-7) II. Substitution Reactions A) S N 2 (6-8,

More information

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions Subject Chemistry Paper No and Title Module No and Title Module Tag 5; Organic Chemistry-II 13; Mixed S N 1 and S N 2 Reactions CHE_P5_M13 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Nature

More information

Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization

Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization Denmark, S.E. and Collins, W.R. rg. Lett. 2007, 9, 3801-3804. C 2 H + Se Lewis Base CH 2 Cl 2 Se Presented

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information