Suggested solutions for Chapter 27

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Suggested solutions for Chapter 27"

Transcription

1 uggested solutions for Chapter PRBLEM 1 uggest a mechanism for this reaction, commenting on the selectivity and the stereochemistry. Me 2 1. t-buk 2. Raney Ni Et The opportunity to explore the consequences of the intramolecular version of an important reaction. uggested solution The original work can be found in R.. Matthews and T. E. Meteyer, J. Chem. oc., Chem. Commun, 1971, The ylid forms in the usual way but can t reach across the ring to attack the carbonyl group directly so it has to do conjugate addition instead. It also has to attack from the top face as it is tethered there. Completion of the cyclopropane forming reaction leaves the sulfur still attached to the angular methyl group. Raney nickel reduces the C bond (this reagent is commonly used for this purpose). This reaction shows that simple sulfonium ylids can do conjugate addition they just prefer to add to carbonyl groups if that possibility is available. Me 2 t-buk C 2 Me Me Me

2 2 olutions Manual to accompany rganic Chemistry 2e PRBLEM 2 Explain the regiochemistry and stereochemistry of this reaction.. + Me 2 C 2 Et Et 2 C Exploration of sulfur ylid chemistry. uggested solution tereochemistry and stereoselectivity in fused rings is discussed in detail in chapter 32. The ylid is stabilised by conjugation with the ester group you can think of it also as an enolate. We can expect reversible addition to the carbonyl group and hence conjugate addition under thermodynamic control. The stereochemistry of the ring junction is inevitable: only a cis ring can be made (a trans- fused ring would be too strained). The interesting centre is that of the ester on the three- membered ring. It too is in a more stable configuration: on the outside of a folded molecule. The intermediate is probably a mixture of diastereoisomers, but as the conjugate addition is reversible the cyclopropane may be formed by cyclisation of only the diastereoisomer that can give the more stable product. Et 2 C Et 2 C Et 2 C Me 2 Me 2

3 olutions for Chapter 27 ulfur, ilicon and osphorus in rganic Chemistry 3 PRBLEM 3 Give mechanisms for these reactions, explaining the role of sulfur. Me 1. BuLi 2. MeI Me Cl, CCl 3 3. BuLi 4. gcl 2 2 acetone ulfur acetals as good nucleophiles: in the terminology of chapter 28, acyl anion equivalents or d 1 reagents. uggested solution The first reaction is an acetal exchange controlled by entropy: three molecules go in and four come out (the product, two molecules of methanol and one of water). We show just part of the mechanism. This chemistry was used to make the perfume cis- jasmone by R. A. Ellison and W. D. Woessner, J. Chem. oc., Chem. Commun., 1972, 529. Me Me Me Me Me Me Me Me Me

4 4 olutions Manual to accompany rganic Chemistry 2e continued... etc Me Now the sulfur atoms work to stabilise an anion (organolithium) formed by deprotonation. Alkylation and hydrolysis with a mercury catalyst gives the product. 1. BuLi Li 2. MeI Me 3. BuLi Me 4. RC 2 Me Li R PRBLEM 4 uggest a mechanism by which this cyclopropane might be formed. Me + Me 2 C 2 Me Attempts to repeat this synthesis on the related compound below led to a different type of product. What is different this time? + Me 2 C 2 Can you disentangle a curious variation on a simple mechanism?

5 olutions for Chapter 27 ulfur, ilicon and osphorus in rganic Chemistry 5 uggested solution The first reaction is a straightforward cyclopropane formation with a sulfoxonium ylid and a conjugated ketone. The only unusual feature, the Me group, makes no difference. Me C 2 Me 2 Me Me 2 Me In the second example, the bromine atom and the phenolic evidently do make a difference. No doubt the reaction starts in the textbook. same way and a cyclopropane is formed. Under the reaction conditions, the phenol will exist as an anion and this displaces the bromine. This unusual N2 reaction at a tertiary centre is possible because of activation by the carbonyl group. The accelerating effect of the carbonyl group on N2 reactions is demonstrated on p. 342 of the Me 2 C 2 PRBLEM 5 Deduce the structure of the product of this reaction from the NMR spectra and explain the stereochemistry. Compound A has δ 0.95 (6, d, J 7 z), 1.60 (3, d, J 5), 2.65 (1, double septuplet, J 4 and 7), 5.10 (1, dd, J 10 and 4), and 5.35 (1, dq, J, 10 and 5). 3 P 1. NaN 2 2. i-prc A C 6 12 A simple way to make Z- alkenes, with a bit of NMR revision. uggested solution This is obviously a Wittig reaction and we should expect a Z- alkene as the ylid is not stabilized by further conjugation. The evidence is plain:

6 6 olutions Manual to accompany rganic Chemistry 2e the signals at 5.10 and 5.35 are the alkene hydrogens and the coupling constant between them is 10 z. This is definitely a Z- alkene. 3 P 1. NaN 2 3 P 2. i-prc J 7 δ 0.95 δ 2.65 Me δ 0.95 Me δ 1.60 Me J 5 δ 5.35 J 4 δ 5.10 J 10 PRBLEM 6 A single geometrical isomer of an insect pheromone was prepared in the following way. Which isomer is formed and why? 3 P C Me 2 C C Me Me 2 C A C=CC 3 P 1. NaN 2 2. A Me 2 C C=C C=CEt 1. LiAl 4 2. Ac 2 pyridine Ac C=C C=CEt Testing your knowledge of the stereochemistry of the Wittig reaction. uggested solution The first Wittig with a stabilised ylid gives the E- enal A. The second, with an unstabilised ylid, gives a Z alkene so the final product is an E,Z- diene. Me 2 C A C Ac the insect pheromome

7 olutions for Chapter 27 ulfur, ilicon and osphorus in rganic Chemistry 7 PRBLEM 7 ow would you prepare samples of both geometrical isomers of this compound? C 2 A simple stereocontrolled alkene synthesis but both isomers are needed. uggested solution There are many methods that can be used to tackle this question. The only snags are protecting the group if necessary and care in isolating the Z- compound as it may isomerise easily to the E- compound by reversible conjugate addition. ne way to the Z- alkene uses reduction of an alkyne to control the stereochemistry. The group is protected as a benzyl ether removed by hydrogenation, perhaps under the same conditions as the reduction of the alkyne. 1. BuLi 2. Bn Bn 1. BuLi 2. C 2 Bn C 2 2, Pd Lindlar catalyst C 2 The E- alkene might be produced by reduction of the alkyne with an alkali metal in liquid ammonia but a Wittig reaction is probably easier. Either a phosphonium ylid or a phosphonate ester could be used. Protection of the alcohol as an ester allows hydrolysis of both esters in one step. 3 P 1. Me 2. Ac C 2 Me C Ac C 2 Me Na 2 C 2

8 8 olutions Manual to accompany rganic Chemistry 2e PRBLEM 8 Which alkene would be formed in each of these elimination reactions? Explain your answer mechanistically. 3 P base? 2 R 2 Na/g R 1? Ac Me 3 i base? Me 3 i acid? Revision of the three main methods for stereoselective (or stereospecific) alkene bond formation. uggested solution The first is sort of a Wittig reaction (the starting material is made by opening an epoxide with 3P), the second a Julia reaction and the third and the fourth are Peterson reactions under different conditions. Each is described in detail in chapter 27 of the textbook. The Wittig reaction is under kinetic control and is a stereospecific cis elimination. In this case the product is a Z- alkene. 3 P base 3 P R 1 R 2 3 P R1 R 2 R 1 3 P R P The Julia reaction is under thermodynamic control as equilibration occurs under the reaction conditions. The stereoselective product is the E- alkene. 2 Ac Na/g R 2 R 1 Ac Ac

9 olutions for Chapter 27 ulfur, ilicon and osphorus in rganic Chemistry 9 The Peterson reaction is a syn elimination under basic conditions, giving the Z- alkene from this starting material, but an E2 anti- elimination under acidic conditions, giving the E- alkene from this starting material. syn Me 3 i Me 3 i R 1 elimination base R 2 acid R 1 R 1 R 2 Z-alkene R 2 Nu Me 3 i 2 E-alkene PRBLEM 9 Give mechanisms for these reactions, explaining the role of silicon. 1. Na, Me 3 i Ms 2 2. Bu 4 NF 2 Reminder of the anion- stabilizing role of sulfones and the excellence of the mesylate leaving group plus the special role of fluoride as a nucleophile for silicon. uggested solution odium hydride removes a proton from the sulfone to give an anion that can act as a nucelophile. Displacement of mesylate gives an allyl silane, which is converted into an allylic anion by fluoride. Addition to the ketone gives a 5/5 fused system with the more stable cis ring junction. ime 3 Na ime Ms ime 3 F

10 10 olutions Manual to accompany rganic Chemistry 2e PRBLEM 10 Give mechanisms for these reactions, explaining the role of silicon. Why is this type of lactone difficult to make by ordinary acid- or base- catalysed reactions? Et 2 C Me 3 i MgCl Cl Et 2 C + ime 3 R R Lewis acid Basic organosilicon chemistry: the Peterson reaction and allyl silanes as nucleophiles. uggested solution Acylation of the Grignard reagent is followed by a second attack on the ketone as expected but the tertiary alcohol is a Peterson intermediate and eliminates to give the alkene. Et 2 C MgCl ime 3 Cl Et 2 C ClMg ime 3 ime 3 Et 2 C ime 3 ime 3 ime 3 Et 2 C ime 3 Et 2 C ime 3 Now a Lewis acid catalysed reaction of the allyl silane via a β- silyl cation gives the lactone. The double bond in these exo- methylene lactones easily moves into the ring in acid or base so mild conditions are ideal for these reactions. R LA = Lewis acid LA R R R R Et 2 C ime 3 ime 3 X cyclisation on work-up R Et R Et

11 olutions for Chapter 27 ulfur, ilicon and osphorus in rganic Chemistry 11 PRBLEM 11 ow would you carry out the first step in this sequence? Give a mechansims for the second step and suggest an explanation for the stereochemistry. You may find that a Newman projection helps.? EtAlCl 2 C ime 3 An important way to make an allyl silane and an important reaction of the product. uggested solution The best route to the allyl silane is the Wittig reaction (p. 675). The ylid is not stabilised by and extra conjugation so the Z- isomer is favoured. 3 P ime 3 C ime 3 The reaction with EtAlCl 2 is a Lewis acid- catalysed conjugate addition of the allyl silane to the enone. Conjugate addition is preferred because the nucleophile (the allyl silane) is tethered to the electrophile (enone) and the five- membered ring is preferred to a seven- membered ring. Cl Et Al ime 3 ime 3 The stereochemistry comes from the way the molecule prefers to fold and the Newman projection below should make that clear. The hydrogen atom on the allyl silane tucks underneath the six- membered

12 12 olutions Manual to accompany rganic Chemistry 2e ring while the double bond of the allyl silane projects out into space to give the stereochemistry found in the product. The ratio between this diastereoisomer and the other varies from 2:1 to 7.5:1 depending on conditions so the preference is really quite weak. ClEtAl ime 3 ime 3

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

Suggested solutions for Chapter 28

Suggested solutions for Chapter 28 s for Chapter 28 28 PBLEM 1 ow would you make these four compounds? Give your disconnections, explain why you chose them and then give reagents for the. 2 2 Me S Exercises in basic one- group C X disconnections.

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Suggested solutions for Chapter 19

Suggested solutions for Chapter 19 s for Chapter 19 19 PRBLEM 1 Predict the orientation of addition to these alkenes. Simple examples of addition with regioselectivity. The first and last alkenes have different numbers of substituents at

More information

Suggested solutions for Chapter 34

Suggested solutions for Chapter 34 s for Chapter 34 34 PRBLEM 1 Predict the structure of the product of this Diels- Alder reaction. C 2 +? 3 Si Can you deal with a moderately complicated Diels- Alder? The diene is electron- rich and will

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

Suggested solutions for Chapter 30

Suggested solutions for Chapter 30 s for Chapter 30 30 PRBLEM 1 uggest a mechanism for this synthesis of a tricyclic aromatic heterocycle. 2 Cl base A simple exercise in the synthesis of a pyridine fused to a pyrrole (or an indole with

More information

Suggested solutions for Chapter 29

Suggested solutions for Chapter 29 s for Chapter 29 29 PRBLEM 1 or each of the following reactions (a) state what kind of substitution is suggested and (b) suggest what product might be formed if monosubstitution occured. Br 2 3 2 S 4 S

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Suggested solutions for Chapter 31

Suggested solutions for Chapter 31 s for Chapter 31 31 PRBLEM 1 Predict the most favourable conformation for these insect pheromones. Practice drawing the conformations of cyclic acetals. There are many good ways to draw these conformations

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

Suggested solutions for Chapter 6

Suggested solutions for Chapter 6 s for Chapter 6 6 PRBLEM 1 Draw mechanisms for these reactions: NaB 4 Et, 2 1. LiAl 4 C 2. 2 Rehearsal of a simple but important mechanism that works for all aldehydes and ketones. Draw out the B 4 and

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Suggested solutions for Chapter 16

Suggested solutions for Chapter 16 s for Chapter 16 16 PRBLEM 1 Identify the chair or boat rings in the following structures and say why this particular structure is adopted.. Exploration of simple examples of chair and boat forms. The

More information

Chapter 8 Reactions of Alkenes

Chapter 8 Reactions of Alkenes Chapter 8 Reactions of Alkenes Electrophilic Additions o Regio vs stereoselectivity Regio where do the pieces add? Markovnikov s rule hydrogen will go to the side of the double bond with most hydrogens.

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

ANSWER KEY PAGE 1 of 11

ANSWER KEY PAGE 1 of 11 ANSWER KEY PAGE 1 of 11 UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY CHEM 3390 STRUCTURAL TRANSFORMATIONS IN ORGANIC CHEMISTRY FINAL EXAMINATION Dr. Phil Hultin Tuesday December 13, 2011 9:00 am. NAME:

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

Chapter 11 - Alcohols and Ethers 1

Chapter 11 - Alcohols and Ethers 1 Andrew Rosen Chapter 11 - Alcohols and Ethers 1 11.1 - Structure and Nomenclature - The common naming calls alcohols as alkyl alcohols (eg: methyl alcohol) - The common names of ethers have the groups

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H AWER GUIDE APRIL/MAY 2006 EXAMIATI CEMITRY 249 1. (a) PDC / C 2 2 (b) t-bume 2 i (1 equiv) / imidazole (1 equiv) i TBDM protection of the less sterically hindered alcohol (c) BuLi (1 equiv) then (d) 2

More information

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck!

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! CEMISTRY 314-01 MIDTERM # 2 November 02, 2009 Name... The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! 1. (8 pts) Mark as true (T) or false (F) the following

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Organic Chemistry I (Chem340), Spring Final Exam

Organic Chemistry I (Chem340), Spring Final Exam rganic Chemistry I (Chem340), pring 2005 Final Exam This is a closed-book exam. No aid is to be given to or received from another person. Model set and calculator may be used, but cannot be shared. Please

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

2.222 Introductory Organic Chemistry II Midterm Exam

2.222 Introductory Organic Chemistry II Midterm Exam NAME: STUDENT NUMBE: Page 1 of 7 University of Manitoba Department of hemistry 2.222 Introductory rganic hemistry II Midterm Exam Wednesday February 20, 2002 Put all answers in the spaces provided. If

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? CEM 331: Chapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N C 2 C N C 2 C N 1 2 3 4 1: three sigma bonds and

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Organic Chemistry: Structure and Reactivity Tutorial Six Question 1

Organic Chemistry: Structure and Reactivity Tutorial Six Question 1 en Mills, University of istol, 4 March 2008 rganic Chemistry: Structure and Reactivity Tutorial Six Question 1 ydrobromination of styrene hydrogen adds to the terminal carbon, so that the carbocation can

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions.

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ucleophilic ubstitution & Elimination Chemistry Beauchamp 1 Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ources of

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

followed by H 2, Ni 2 B (P-2)

followed by H 2, Ni 2 B (P-2) Chemistry 263 omework 1 Part 2 Spring 2018 Out: 04/04/18 Due: 04/13/18 1 Value: A very generous 9 points 2 All questions are valued at ½ point per question unless otherwise noted. Name: KEY 1. Which of

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Double and Triple Bonds. The addition of an electrophile and a

Double and Triple Bonds. The addition of an electrophile and a Chapter 11 Additions to Carbon-Carbon Double and Triple Bonds The addition of an electrophile and a nucleophile to a C-C C double or triple bonds 11.1 The General Mechanism Pi electrons of the double bond

More information

CHAPTER 23 HW: ENOLS + ENOLATES

CHAPTER 23 HW: ENOLS + ENOLATES CAPTER 23 W: ENLS + ENLATES KET-ENL TAUTMERSM 1. Draw the curved arrow mechanism to show the interconversion of the keto and enol form in either trace acid or base. trace - 2 trace 3 + 2 + E1 2 c. trace

More information

Conjugated Systems & Pericyclic Reactions

Conjugated Systems & Pericyclic Reactions onjugated Systems & Pericyclic Reactions 1 onjugated Dienes from heats of hydrogenation-relative stabilities of conjugated vs unconjugated dienes can be studied: Name 1-Butene 1-Pentene Structural Formula

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

Effect of nucleophile on reaction

Effect of nucleophile on reaction 1 Effect of nucleophile on reaction X DS c X c c X DS c + X cleophile not involved in DS of S N 1 so does not effect the reaction (well obviously it controls the formula of the product!) cleophile has

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

PHOSPHORUS AND SULPHUR YLIDES

PHOSPHORUS AND SULPHUR YLIDES PHOSPHORUS AND SULPHUR YLIDES 1 The Chemistry of Phosphorus and Sulphur Ylides A ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

HOMEWORK PROBLEMS: ALKYNES. 1. Provide the complete IUPAC name for the following compounds:

HOMEWORK PROBLEMS: ALKYNES. 1. Provide the complete IUPAC name for the following compounds: CEM 31 MEWRK PRBLEMS: ALKYNES 1. Provide the complete IUPAC name for the following compounds: 2. When the compound below is treated with one equivalent of B 3, where does it react Explain. Where would

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Practice Synthetic Problems: CHEM 235 Page 2

Practice Synthetic Problems: CHEM 235 Page 2 Practice Synthetic Problems: CM 235 Page 2 Syntheses based on diethyl malonate, ethyl acetoacetate, etc. Using diethyl malonate and any other necessary organic reagents, show a synthesis of: a) 2,2-dimethyl-1,3-propanediamine

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Chemistry 3720 Old Exams. Practice Exams & Keys

Chemistry 3720 Old Exams. Practice Exams & Keys Chemistry 3720 ld Exams Practice Exams & Keys 2015-17 Spring 2017 Page File 3 Spring 2017 Exam 1 10 Spring 2017 Exam 1 Key 16 Spring 2017 Exam 2 23 Spring 2017 Exam 2 Key 29 Spring 2017 Exam 3 36 Spring

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

What is in Common for the Following Reactions, and How Do They Work?

What is in Common for the Following Reactions, and How Do They Work? What is in Common for the Following Reactions, and ow Do They Work? You should eventually be able to draw the mechanism for these (and other) reactions 13 Key Intermediate 1 Br-Br Na Br 2 C 3 -I Me NaMe

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013 C2710 - rganic Chemistry I (Katz) Practice Exam #3- all 2013 Name: Score: Part I - Choose the best answer and write the letter of your choice in the space provided. (32 pts) 1. f the following, which reaction

More information

+ + CH 11: Substitution and Elimination Substitution reactions

+ + CH 11: Substitution and Elimination Substitution reactions C 11: Substitution and Elimination Substitution reactions Things to sort out: Nucleophile Electrophile -- > substrate Leaving Group S N 2 S N 1 E 1 E 2 Analysis Scheme Kinetics Reaction profile Substrates

More information

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 19 eview: Aldehydes and Ketones CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 Beginning with this chapter, we re looking at a very important functional group: the carbonyl. We ve seen

More information

Suggested solutions for Chapter 36

Suggested solutions for Chapter 36 s for Chapter 6 6 PBLEM 1 earrangements by numbers: just draw a mechanism for each reaction. BF C C Zn BF This problem is just to help you acquire the skill of tracking down rearrangements by numbering

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

REVIEW PROBLEMS Key. 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. H H.

REVIEW PROBLEMS Key. 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. H H. rganic hemistry II (E325) REVIEW PRBLEMS Key 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. 3 3 sp3 orbital p orbital sp2 orbital s orbital molecule

More information

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base CEM 263 ct 25, 2016 Reactions and Synthesis (Preparation) of R- Breaking the - Bond of R- with Metals R + Li 0 or Na 0 or K 0 metal R Li + 1/2 2 alkoxide Breaking the - Bond of R- by Acid-Base Reaction

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Suggested solutions for Chapter 14

Suggested solutions for Chapter 14 s for Chapter 14 14 PRBLEM 1 Are these molecules chiral? Draw diagrams to justify your answer. 2 C 2 C Reinforcement of the very important criterion for chirality. Make sure you understand the answer.

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

First Year Organic Chemistry THE CHEMISTRY OF THE CARBONYL GROUP: CORE CARBONYL CHEMISTRY

First Year Organic Chemistry THE CHEMISTRY OF THE CARBONYL GROUP: CORE CARBONYL CHEMISTRY First Year rganic Chemistry TE CEMISTY F TE CABNYL GUP: CE CABNYL CEMISTY Professor Tim Donohoe 8 lectures, T, weeks 1-4, 2015 Wednesdays at 9am; Fridays at 10am (Dyson Perrins) andout A You will be able

More information

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion:

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion: Lecture 5 Carbonyl Chemistry III September 26, 2013 Ketone substrates form tertiary alcohol products, and aldehyde substrates form secondary alcohol products. The second step (treatment with aqueous acid)

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Chem Final Examination August 7, 2004

Chem Final Examination August 7, 2004 Chem 281 2004-2 Final Examination August 7, 2004 Name: Student Number: Note: You are allowed to use models for this exam. Notes, textbooks and calculators are strictly prohibited. Write your final answers

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Reducing Agents. Linda M. Sweeting 1998

Reducing Agents. Linda M. Sweeting 1998 Reducing Agents Linda M. Sweeting 1998 Reduction is defined in chemistry as loss of oxygen, gain of hydrogen or gain of electrons; the gain of electrons enables you to calculate an oxidation state. Hydride

More information

p Bonds as Nucleophiles

p Bonds as Nucleophiles Chapter 8 p Bonds as Nucleophiles REACTIONS OF ALKENES, ALKYNES, DIENES, AND ENOLS Copyright 2018 by Nelson Education Limited 1 8.2.1 Orbital structure of alkenes Geometry: Electrostatic potential: Electron-rich

More information

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR" 2R"OH R + H 2 O OR" 3/8/16

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR 2ROH R + H 2 O OR 3/8/16 Lecture 15 More Carbonyl Chemistry R" R C + R' 2R" R C R" R' + 2 March 8, 2016 Alcohols React with Aldehydes and Ketones in two steps first R', + R R 1 emiacetal reacts further in acid to yield an acetal

More information

20.3 Alkylation of Enolate Anions

20.3 Alkylation of Enolate Anions 864 APTER 20 ELATE AD TER ARB ULEPILES which precipitates as a yellow solid, provides a positive test for the presence of a methyl ketone The reaction can also be used in synthesis to convert a methyl

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Your name: Final Exam December 18, 2013 ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3.

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

Ethers. Synthesis of Ethers. Chemical Properties of Ethers Page 1 of 6 like alcohols are organic derivatives of water, but lack the labile -OH group. As a result, ethers, except for epoxides, are usually not very reactive and are often used as solvents for organic

More information

Reactivity in Organic Chemistry. Mid term test October 31 st 2011, 9:30-12:30. Problem 1 (25p)

Reactivity in Organic Chemistry. Mid term test October 31 st 2011, 9:30-12:30. Problem 1 (25p) eactivity in rganic Chemistry Mid term test ctober 31 st 2011, 9:30-12:30 Problem 1 (25p) - (+)- Limonone can be epoxidized (using peracetic acid) to give an inseparable mixture of two diastereomeric limonene

More information

Organic Chemistry Curriculum Content Outline

Organic Chemistry Curriculum Content Outline Organic Chemistry 2014-15 Curriculum Content Outline CHEM 0203: Organic Structure and Reactivity 1. Structure & Bonding (Brief Review from General Chemistry) a. Ionic & Covalent Bonding b. Lewis Structures

More information

Synthetic possibilities Chem 315 Beauchamp 1

Synthetic possibilities Chem 315 Beauchamp 1 Synthetic possibilities hem Beauchamp Propose reasonable syntheses f the following target molecules (TM-#). You can use the given starting materials and any typical ganic reagents studied in our course

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double (e.g.

More information

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018 An alkyne is any molecule with a triple bond between two carbon atoms. This triple bond consists of one σ bond and two π bonds: the σ bond exists on a straight line between carbon atoms, while one π bond

More information

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1 Name: Student Number: University of Manitoba - Department of Chemistry CEM 2220 - Introductory Organic Chemistry II - Term Test 1 Thursday, February 13, 2014; 7-9 PM This is a 2-hour test, marked out of

More information

TOPIC 3 - ALDEHYDES AND KETONES (Chapters 12 & 16)

TOPIC 3 - ALDEHYDES AND KETONES (Chapters 12 & 16) TPIC 3 - ALDEYDES AND KETNES (Chapters 12 & 16) Lecture 15 Web12 12.1 Introduction 16.1 Introduction 16.2 Nomenclature of Aldehydes and Ketones 16.3 ysical Properties 12.2 xidation Reduction Reactions

More information