Determine the isotherm that fits the data and give the constants of the equation using the given units.

Size: px
Start display at page:

Download "Determine the isotherm that fits the data and give the constants of the equation using the given units."

Transcription

1 CHEE 3 Solved examples - Adsorption Problem : The data given below are for the orption of CO on charcoal at 273 K. Describ the orption using an appropriate orption isotherm and calculate the corresponding Gibbs energy of orption. p / kpa V / cm Problem 2: Batch tests were performed in the laboratory using solutions of phenol in water and particles of granular activated carbong. The quilibrium data at room temperature are shown in the table below as the dependence of phenol surface concentration on the equilibrium concentration in the solution. Determine the isotherm that fits the data. c / kg m Γ / kg kg Problem 3: Equilibrium isotherm data for orption of glucose from an aqueous solution to activated alumina are as follows: c / g cm Γ / g solute g alumina Determine the isotherm that fits the data and give the constants of the equation using the given units. Problem 4: Interaction of serum and plasma proteins with implanted biomaterials plays one of the major roles in the biocompatibility of the biomaterial. This is especially significant in the first few hours after the implantation, during which biomaterial-protein interactions occur. Adsorption of a protein layer onto medical implants in the body can lead to adverse effects such as inflammation, clot formation, and increase corrosion of metallic implants. Hence, it is of the major importance to characterize orption of major blood/serum proteins onto biomaterials surfaces. (a) Table below lists equilibrium orption data for the orption of serum protein fibrinogen onto a medical-grade stainless steel surface (36LVM) at 33 K. Your task is to use the Langmuir isotherm to describe this interaction, and subsequently to calculate the Gibbs energy of orption. Evaluate a suitability of the Langmuir isotherm by examining both the Γ f(c) and θ f(c) relationships. (b) You are also required to determine the orientation of the protein on the surface (side-on, end-on, or tilted and at what angle) at % coverage. The dimensions of the protein molecule are 6.5 nm 47.5 nm, while the molecular weight is 34 g/mol. (c) As mentioned above, the first few hours after the implantation are crucial due to the orption of serum proteins on the biomaterial s surface. An experiment was perfmored at 33 K with 36LVM coupons ( cm 2 ) in which the dependence of the surface amount (concentration) of fibrinogen was measured with time, and the corresponding data is presented in Table 2. The experiment was done using an advanced version of a FTIR technique, and the table shows the dependence of the integrated intensity of Amide I peak on time. Amide I peak is an IR fingerprint of proteins, and the listed integrated intensity values (A amide I / cm - ) are direclty proportional to the corresponding surface concentration (Γ / mg m -2 ) of the protein as:

2 A amid I.4379 Γ. Your task is to apply a first-order kinetic orption model to fit the data in Table 2, and to calculate the corresponding orption and desorption constants, the equilibrium constant, and the Gibss energy of orption. Compre the latter value to the Gibss energy of orption you calculated in (a), and comment the difference (if any). How long it would take to completely cover the implant s surface under the conditions applied? To solve the problem, you can use either a Solver function in Excel, Mathlab or any other similar software package. Figure : Fibrinogen molecule dimensions: 6.5 nm 47.5 nm Table. Dependence of the fibrinogen surface concentration on the corresponding equilibrium concentration in the bulk solution. c fib / g L Γ / mg m c fib / g L Γ / mg m Table 2. Dependence of the integrated intensity on time for the orption of fibrinogen on 36LVM from a solution containing. g/l of fibrinogen.. Time / min A amide I / cm

3 SOLUTIONS Problem : Using the Langmuir isotherm, p V BV mono + p V Plot p/v vs. p y.9x R p/v /kpacm p /kpa In order to determine ΔG, we first evaluate V mono from the slope of the curve: V mono. cm 3. Then from the intercept of the curve we calculate B.75 kpa -.76 atm -. Now ΔG is: B ΔG P exp o RT ΔG.76 exp Δ G 623. J/mol

4 Problem 2: log(c). Using the Langmuir isotherm, plot c/γ vs. c. Also using the Freundlich isotherm plot log(γ) vs c/γ /kg kg-.5 y 6.489x +. R c /kg m-3 log (Γ) y.284x R log (c) The Freundlich isotherm shows a better fit (R 2.994) than the Langmuir isotherm (R ).

5 Problem 3: log(c). Using the Langmuir isotherm, plot c/γ vs. c. Also using the Freundlich isotherm plot log(γ) vs..6.4 c/γ /g g y 7.83x +.75 R c /g cm-3 log (Γ) y.3898x R log (c) It is obvious from the plots that the data fits the Langmuir isotherm (R 2.999) better than the Freundlich isotherm (R 2.899). From the slope of the curve: Γ mono.4 g solute g - alumina. From the intercept B 6.5 cm 3 g - solute.

6 Problem 4: (a) Using the Langmuir isotherm, plot c/γ vs. c c/γ /m- 2 5 y x + 64 R c /g m-3 In order to determine ΔG, we first evaluate Γ mono from the slope of the curve: Γ mono 2.29x -3 g m -2. Then from the intercept of the curve we calculate B.4 m 3 g - In order to calculate ΔG we need to convert B s units to L/mol. We do that by multiplying by the molar weight of fibrinogen. B.4 m 3 g - x 34 g mol - x L m x 7 L mol -. Now the ΔG value is: B c solvent ΔG exp RT.394x ΔG exp 8.34x33 Δ G -5.6 kj/mol

7 (b) In order to calculate the orientation (angle Φ) of fibrinogen molecules orbed on the surface, we need to calculate length l at % coverage. From the fit obtained in part (a) Γ mono 2.29x -3 g m -2. Using the relationship: Γ mono Mwt # molecules N A 2.29x 34 3 # molecules x # molecules 4.56 x 5 molecules/m 2 The number of molecules per square meter (n total ) is defined as the no. of molecules in the y direction (n y ) multiplied by the no. of molecules in the x direction (n x ), where: molecule m n y molecules / m m 5 ntotal nx molecules / m 8 n.538 y m m nm 37.9nm cosφ nm Φ 37

8 (c) Using a first order kinetic orption model to describe the orption of fibrinogen on the solid surface at constant temperature, we get: dθ k c fib ( θ) kdes dt θ Integrating the above expression and solving for θ, we get the following: We also know that θ(t) A/A max, where, kc fib θ ( t) fib des t k c + k fib des A max Γ [ exp[ ( k c + k ) ]] Γ max.69 mg m -2, which can be read from table at c fib. g L -. Therefore A max.74 cm -. Using Excel or any solver program, we can minimize the sum of error between the experimental data in table 2 and the data obtained from the model. Therefore we find: k.98 L g - min x 5 M - min - k des 3.63 x -2 min - max k B k des 26.96L / g 34g / mol L / mol ΔG -5.5 kj/mol The values of ΔG obtained in parts (a) and (c) are very close to each other. The discrepancy between the two values is due to experimental error. Under the conditions applied, the equilibrium coverage reached is ca. 74%. This maximum coverage is achieved at the time when the coverage becomes independent of time. This can be observed from the following curve where the surface coverage becomes flat at ca. 6 min.

9 .8.7 Aexp and Amodel /cm Exp data. model time /min

28 Processes at solid surfaces

28 Processes at solid surfaces 28 Processes at solid surfaces Solutions to exercises E28.b E28.2b E28.3b Discussion questions The motion of one section of a crystal past another a dislocation results in steps and terraces. See Figures

More information

Distinguish quantitatively between the adsorption isotherms of Gibbs, Freundlich and Langmuir.

Distinguish quantitatively between the adsorption isotherms of Gibbs, Freundlich and Langmuir. Module 8 : Surface Chemistry Lecture 36 : Adsorption Objectives After studying this lecture, you will be able to Distinguish between physisorption and chemisorption. Distinguish between monolayer adsorption

More information

Lecture 5. Solid surface: Adsorption and Catalysis

Lecture 5. Solid surface: Adsorption and Catalysis Lecture 5 Solid surface: Adsorption and Catalysis Adsorbtion G = H T S DG ads should be negative (spontaneous process) DS ads is negative (reduced freedom) DH should be negative for adsorption processes

More information

GAS-SURFACE INTERACTIONS

GAS-SURFACE INTERACTIONS Page 1 of 16 GAS-SURFACE INTERACTIONS In modern surface science, important technological processes often involve the adsorption of molecules in gaseous form onto a surface. We can treat this adsorption

More information

Foundations of Chemical Kinetics. Lecture 32: Heterogeneous kinetics: Gases and surfaces

Foundations of Chemical Kinetics. Lecture 32: Heterogeneous kinetics: Gases and surfaces Foundations of Chemical Kinetics Lecture 32: Heterogeneous kinetics: Gases and surfaces Marc R. Roussel Department of Chemistry and Biochemistry Gas-surface reactions Adsorption Adsorption: sticking of

More information

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA Dr. Aprael S. Yaro University of Baghdad College of Engineering Chemical Eng. Department Anees

More information

Tutorial Chemical Reaction Engineering:

Tutorial Chemical Reaction Engineering: Dipl.-Ing. ndreas Jöre Tutorial hemical Reaction Engineering: 6. Kinetics II Institute of Process Engineering, G25-27, andreas.joere@ovgu.de 26-May-5 Tas 6.: yrene polymerization in an isothermal batch

More information

[ A] 2. [ A] 2 = 2k dt. [ A] o

[ A] 2. [ A] 2 = 2k dt. [ A] o Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions The reaction 2A P follows second-order kinetics The rate constant for the reaction is k350 0 4 Lmol s Determine the time required for the concentration

More information

Part 1 (18 points) Define three out of six terms, given below.

Part 1 (18 points) Define three out of six terms, given below. Chemistry 45/456 3 August End-of-term Examination Professor G. Drobny Useful Constants and Conversions Universal Gas Constant= R = 8.31 J / mole K =.81 L atm / mole K Faraday s Constant= I= 96,458 Coulombs

More information

N h (6.02x10 )(6.63x10 )

N h (6.02x10 )(6.63x10 ) CHEM 5200 - Final Exam - December 13, 2018 INFORMATION PAGES (Use for reference and for scratch paper) Constants and Conversion Factors: R = 8.31 J/mol-K = 8.31 kpa-l/mol-k = 0.00831 kj/mol-k 1 L-atm =

More information

CHEM Exam 3 - March 31, 2017

CHEM Exam 3 - March 31, 2017 CHEM 3530 - Exam 3 - March 31, 2017 Constants and Conversion Factors NA = 6.02x10 23 mol -1 R = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 bar = 100 kpa = 750 torr 1 kpa = 7.50 torr 1 J = 1 kpa-l 1 kcal = 4.18

More information

CHEM Exam 3 - March 30, Given in the individual questions on this test.

CHEM Exam 3 - March 30, Given in the individual questions on this test. CHEM 3530 - Exam 3 - March 30, 2018 Constants and Conversion Factors NA = 6.02x10 23 mol -1 R = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 bar = 100 kpa = 750 torr 1 kpa = 7.50 torr 1 J = 1 kpa-l 1 kcal = 4.18

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Chemistry August Useful Constants and Conversions

Chemistry August Useful Constants and Conversions Chemistry 45 August 8 End- of-term Examination Key rofessor G. Drobny Useful Constants and Conversions Universal Gas Constant= R = 8.3 J / mole K =.8 L atm / mole K Faraday s Constant= I= 96,458 Coulombs

More information

3.5. Kinetic Approach for Isotherms

3.5. Kinetic Approach for Isotherms We have arrived isotherm equations which describe adsorption from the two dimensional equation of state via the Gibbs equation (with a saturation limit usually associated with monolayer coverage). The

More information

ANSWERS CIRCLE CORRECT SECTION

ANSWERS CIRCLE CORRECT SECTION CHEMISTRY 162 - EXAM I June 08, 2009 Name: SIGN: RU ID Number Choose the one best answer for each question and write the letter preceding it in the appropriate space on this answer sheet. Only the answer

More information

Adsorption Equilibria. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Equilibria. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Equilibria Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Adsorption isotherm models Langmuir isotherm Volmer isotherm Fowler-Guggenheim isotherm Hill-deBoer

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

Chapter 7 Adsorption thermodynamics and recovery of uranium

Chapter 7 Adsorption thermodynamics and recovery of uranium Chapter 7 Adsorption thermodynamics and recovery of uranium 99 Chapter 7. Adsorption thermodynamics and recovery of uranium from aqueous solutions by Spatoglossum 7.1. Materials 7.1.1. Preparation of sorbent

More information

Temperature C. Heat Added (Joules)

Temperature C. Heat Added (Joules) Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance.

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

SUPPLEMENTARY MATERIAL TO Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater

SUPPLEMENTARY MATERIAL TO Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater J. Serb. Chem. Soc. 83 (2) S37 S42 (28) Supplementary material SUPPLEMENTARY MATERIAL TO Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater FARIDEH

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

CHAPTER 5. EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND

CHAPTER 5. EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND CHAPTER 5 EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND 85 86 5.1. INTRODUCTION Since temperature plays an important role in the adsorption

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: CHEM1109 Answers to Problem Sheet 5 1. Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: Π = MRT where M is the molarity of the solution. Hence, M = Π 5 (8.3 10 atm)

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

Solution W2009 NYB Final exam

Solution W2009 NYB Final exam Solution W009 NYB Final exam Question Consider one liter of solution with [H SO 4 3.75 mol/l. Then : Mass of solution: 000 ml x.3 g/ml 30 g solution mass of H SO 4 : 3.75 mol /L x 98.078 g/mol 368 g mass

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

Concept review: Binding equilibria

Concept review: Binding equilibria Concept review: Binding equilibria 1 Binding equilibria and association/dissociation constants 2 The binding of a protein to a ligand at equilibrium can be written as: P + L PL And so the equilibrium constant

More information

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter Chapter 10 Chemical Quantities 101 The Mole: A Measurement of Matter 102 Mole-Mass and Mole- 103 Percent Composition and Chemical Formulas 1 http://wwwbrightstormcom/science/chem istry/chemical-reactions/molar-mass/

More information

Adsorption and Catalysis. Radha V Jayaram Institute of Chemical Technology, Mumbai

Adsorption and Catalysis. Radha V Jayaram Institute of Chemical Technology, Mumbai Adsorption and Catalysis Radha V Jayaram Institute of Chemical Technology, Mumbai 1 2 Different solids would adsorb different amounts of the same gas even under similar conditions. Substances like charcoal

More information

( g mol 1 )( J mol 1 K 1

( g mol 1 )( J mol 1 K 1 Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 11 Solutions 1. McQuarrie and Simon, 11-27. Paraphrase: If a solution

More information

Batch system example (previous midterm question)

Batch system example (previous midterm question) Batch system example (previous midterm question) You are to design a batch adsorber to remove an organic contaminant (A) from 400L of aqueous solution containing 0.05g/L of the contaminant. To facilitate

More information

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2 UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 006 CHEMISTRY CHEM30W: PHYSICAL CHEMISTRY TIME: 180 MINUTES MARKS: 100 EXAMINER: PROF S.B. JONNALAGADDA ANSWER FIVE QUESTIONS.

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005 SEPARATION OF WATER FROM ALIPHATIC ALCOHOLS USING ADSORPTION ON ZEOLITE 4A Elżbieta GABRUŚ ) and Daniela SZANIAWSKA ) ) Chemical Engineering and Environmental Protection Institute, Technical University

More information

Supporting Information For. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution

Supporting Information For. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Supporting Information For Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers that Are Decorated with Zirconium Oxide (ZrO 2 ) Jinming Luo,, Xubiao Luo,

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Suman Mor a,b*, Khaiwal Ravindra c and N. R. Bishnoi b a Department of Energy and Environmental Science, Chaudhary

More information

Adsorption of gases on solids (focus on physisorption)

Adsorption of gases on solids (focus on physisorption) Adsorption of gases on solids (focus on physisorption) Adsorption Solid surfaces show strong affinity towards gas molecules that it comes in contact with and some amt of them are trapped on the surface

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho Polish Journal of Environmental Studies Vol. 1, No. 1 (26), 81-86 Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods Department of Environmental

More information

A First Course on Kinetics and Reaction Engineering Example 15.2

A First Course on Kinetics and Reaction Engineering Example 15.2 Example 15.2 Problem Purpose This example illustrates the use of the integral method of data analysis with a rate expression that depends on the concentrations of more than one species. Problem Statement

More information

"Mathematics is a language in which one cannot express unprecise or nebulous thoughts." - Henri Poincaire

Mathematics is a language in which one cannot express unprecise or nebulous thoughts. - Henri Poincaire CHM 3400 Problem Set 1 Due date: Tuesday, September 2 nd Do all of the following problems. Show your work. (NOTE: Conversion factors between different pressure units are given in Table 0.1 of Atkins. Values

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #80 Notes Ch. 12, 13, 16, 17 Rates, Equilibriums, Energies Ch. 12 I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants, but

More information

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt R = 0.08206 L atm/mol K 1

More information

HW #3. Concentration of nitrogen within the surface (at the location in question), C B = 2 kg/m3

HW #3. Concentration of nitrogen within the surface (at the location in question), C B = 2 kg/m3 HW #3 Problem 5.7 a. To Find: The distance from the high-pressure side at which the concentration of nitrogen in steel equals 2.0 kg/m 3 under conditions of steady-state diffusion. b. Given: D = 6 10-11

More information

REVIEW EXAM 1 CHAP 11 &12

REVIEW EXAM 1 CHAP 11 &12 REVIEW EXAM 1 CHAP 11 &12 1.In a 0.1 molar solution of NaCl in water, which one of the following will be closest to 0.1? A) The mole fraction of NaCl. B) The mass fraction of NaCl. C) The mass percent

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC C PROBLEMS 1) This problem is a straightforward application of the combined gas law. In this case, the temperature remains the same, so we can eliminate it from the

More information

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol 4. CHEMICAL EQUILIBRIUM n Equilibrium Constants 4.1. 2A Y + 2Z Initial amounts: 4 0 0 mol Amounts at equilibrium: 1 1.5 3.0 mol Concentrations at equilibrium: 1 5 1.5 5 3.0 5 mol dm 3 K c (1.5/5) (3.0/5)2

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 005 Homework Assignment #5: Due at 500 pm Friday 9 July, Drobny Mailbox #10. 1) Here are some assorted phase equilibrium

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005 hemistry 122 (Tyvoll) ANSWERS T PRATIE EXAMINATIN I Fall 2005 1. Which statement is not correct? 1) A volatile liquid has a high boiling point. 2. Which of the following compounds is predicted to have

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

There are eight problems on the exam. Do all of the problems. Show your work

There are eight problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry Final Exam April 23, 2012 There are eight problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Put your name on this exam paper!!!

Put your name on this exam paper!!! DEPARTMENT OF CHEMISTRY Midterm Examination Chemistry 1110 (Modern Chemistry I) Name: Student ID Number: Instructions: 1. Put your name on this exam paper!!! Questions are to be answered directly on these

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution ISSN : 0974-746X Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution Zahra Abbasi 1 *, Mohammad Alikarami 2, Ali Homafar 1 1 Department of Chemistry, Eyvan-e-Gharb Branch,

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemistry 360 Dr Jean M Standard Problem Set 10 Solutions 1 Sketch (roughly to scale) a phase diagram for molecular oxygen given the following information: the triple point occurs at 543 K and 114 torr;

More information

Homework Problem Set 3 Solutions

Homework Problem Set 3 Solutions Chemistry 360 Dr. Jean M. Standard Homework Problem Set 3 Solutions 1. A bicycle tire was inflated to 9.3 bar total pressure in the cool of the morning when the temperature was 50 F. Later, the bicycle

More information

Ethers in a Porous Metal-Organic Framework

Ethers in a Porous Metal-Organic Framework Supporting Information Enhanced Isosteric Heat of H 2 Adsorption by Inclusion of Crown Ethers in a Porous Metal-Organic Framework Hye Jeong Park and Myunghyun Paik Suh* Department of Chemistry, Seoul National

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Particle Size Determinations: Dynamic Light Scattering: page 161 text

Particle Size Determinations: Dynamic Light Scattering: page 161 text Particle Size Determinations: Dynamic Light Scattering: page 161 text Dynamic light scattering (also known as Photon Correlation Spectroscopy or Quasi- Elastic Light Scattering) is a technique which can

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information

Midterm Examination 1

Midterm Examination 1 CHEM 331 Physical Chemistry Fall 2013 Name: Answer Key Midterm Examination 1 1. A goat weighing 20 kg produces about 375 cm 3 gas per hour in his intestines. Assume that the gas is Methane; CH 4 with M

More information

Isotherm study on adsorption removal of Pb (II) by MCM-41 zeolite synthesized from biomass ash TAN Gang1,a, XUE Yongjie2,b and CAI Jun3,c

Isotherm study on adsorption removal of Pb (II) by MCM-41 zeolite synthesized from biomass ash TAN Gang1,a, XUE Yongjie2,b and CAI Jun3,c 214 International Conference on Computer Science and Electronic Technology (ICCSET 214) Isotherm study on adsorption removal of Pb (II) by MCM-41 zeolite synthesized from biomass ash TAN Gang1,a, XUE Yongjie2,b

More information

Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin

Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin Portugaliae Electrochimica Acta 2009, 27(1), 57-68 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin A (Azithromycin)

More information

Supporting Information

Supporting Information A Calcium Coordination Framework Having Permanent Porosity and High CO 2 /N 2 Selectivity Debasis Banerjee, a, * Zhijuan Zhang, b Anna M. Plonka, c Jing Li, b, * and John B. Parise a, c, d, * (a) Department

More information

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems For Review 7. a. At constant temperature, the average kinetic energy of the He gas sample will equal the average kinetic energy of the Cl 2 gas sample. In order for the average kinetic energies to be the

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester HW Set2. Adsorption

Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester HW Set2. Adsorption Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester 2016-17 HW Set2 Adsorption Q1: For the following information, determine Langmuir and Freundlich model constants? Also plot Q of these models

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations:

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations: CHM 3400 Problem Set 5 Due date: Tuesday, October 7 th Do all of the following problems. Show your work. "The first essential in chemistry is that you should perform practical work and conduct experiments,

More information

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1. DATA THAT YOU MAY USE Units Conventional S.I. Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.013 10 5 Pa torr = 133.3 Pa Temperature C 0 C = 73.15 K PV L-atm = 1.013

More information

Supporting Information. Adsorption of Aromatic Chemicals by Carbonaceous Adsorbents: A

Supporting Information. Adsorption of Aromatic Chemicals by Carbonaceous Adsorbents: A Supporting Information Adsorption of Aromatic Chemicals by Carbonaceous Adsorbents: A Comparative Study on Granular Activated Carbon, Activated Carbon Fiber and Carbon Nanotubes Shujuan Zhang, Ting Shao,

More information

BMM 305 Biomaterials. Biological Recognition. Dr. Ersin Emre Oren

BMM 305 Biomaterials. Biological Recognition. Dr. Ersin Emre Oren BMM 305 Biomaterials Dr. Ersin Emre Oren Department of Biomedical Engineering Department of Materials Science & Nanotechnology Engineering TOBB University of Economics and Technology Ankara - TURKEY Bionanodesign

More information

Solutions for Assignment-6

Solutions for Assignment-6 Solutions for Assignment-6 Q1. What is the aim of thin film deposition? [1] (a) To maintain surface uniformity (b) To reduce the amount (or mass) of light absorbing materials (c) To decrease the weight

More information

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j Reaction rate ChE 400 - Reactive Process Engineering reaction rate describes change in concentration of reactants and products with time -> r = dc j /dt r is proportional to the reactant concentrations

More information

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2.

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2. CHM 5423 Atmospheric Chemistry Problem Set 1 Due date: Thursday, September 10 th. Do the following problems. Show your work. Data for Titan, a moon of Saturn, is given below, and may be used to answer

More information

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture Kjemisk reaksjonsteknikk Chemical Reaction Engineering Review of previous lectures Kinetic data analysis of heterogeneous reactions. Characterization of t catalysts. Kinetic study, find a kinetic

More information

A First Course on Kinetics and Reaction Engineering Example 14.3

A First Course on Kinetics and Reaction Engineering Example 14.3 Example 14.3 Problem Purpose This problem illustrates differential analysis using data from a differentially operated PFR. Problem Statement The isomerization of cyclopropane, equation (1), was known from

More information

Thermodynamics. Joule-Thomson effect Ideal and Real Gases. What you need: Complete Equipment Set, Manual on CD-ROM included

Thermodynamics. Joule-Thomson effect Ideal and Real Gases. What you need: Complete Equipment Set, Manual on CD-ROM included Ideal Real Gases Thermodynamics 30600 What you can learn about Real gas Intrinsic energy Gay-Lussac theory Throttling Van der Waals equation Van der Waals force Inverse Inversion temperature Principle:

More information