Part 1 (18 points) Define three out of six terms, given below.

Size: px
Start display at page:

Download "Part 1 (18 points) Define three out of six terms, given below."

Transcription

1 Chemistry 45/456 3 August End-of-term Examination Professor G. Drobny Useful Constants and Conversions Universal Gas Constant= R = 8.31 J / mole K =.81 L atm / mole K Faraday s Constant= I= 96,458 Coulombs / mole gravitational constant=g=9.8m/s Avagadro s Number=N A =6.x1 3 molecules/mole 1 atm=11,35 Nt/m =76 torr 1 bar=1 5 Nt/m = atm=75.5 torr 1 Nt/m =1Pa 1 torr=1 mmhg 1L=1m 3 Part 1 (18 points) Define three out of six terms, given below. 1.1) Donnan Effect. Define and explain how the Donnan effect perturbs osmotic pressure measurements. Answer: The unequal equilibrium distribution of small diffusible ions on two sides of a membrane that is permeable to these ions but impermeable to a macromolecular ion, that is on one side of the membrane. The unequal ion distribution produces two opposing osmotic pressures. The net pressure deviates from the van t Hoff Law. 1.) The Gibbs Phase Rule. Define and give the equation for the degrees of freedom in a multi-component, multi-phase system. What is the physical meaning of degrees of freedom, as the term is used in the phase rule? Answer: The Gibbs Phase Rule gives a relationship between the degrees of freedom f of the system, the number of components c, and the number of phases p. The relationship is f=c-p+. The number of degrees of freedom f is the number of intensive variables required to specify the state of the system. Their values can be altered independently without changing the number of phases. 1.3) Fugacity. Define and describe two methods for measuring the fugacity coefficient. Answer: The fugacity is a measurement of general escape tendency from a system and is related to the pressure P by f = γ f P where γ f is the fugacity coefficient, which measures the deviation of a gas from ideal behavior. If PV=nRT then γ f =1. The fugacity coefficient P 1 RT γ f = exp αdp whereα V RT =. The quantity a can therefore be obtained by P independent measurements of V, P, and T or can be calculated from the equation of state. 1.4) Cooperativity. Define as the term as it is used in ligand binding. Give the binding isotherm equation for complete cooperativity.

2 Answer: A mechanism whereby binding of one ligand to a target macromolecule promotes binding of other ligands. For complete cooperativity the isotherm equation is N ν K[ A] θ = f = = where f (or θ ) is the fraction of sites bound, K is the affinity N N 1 + K [ A] constant, N is the number of binding sites, and [A] is the concentration of free ligand. 1.5) The B.E.T. Isotherm Equation. Give the equation, state the assumptions behind the equation and describe the utility of B.E.T. isotherm data. Answer: This is the Brunauer, Emmett, and Teller isotherm equation V cz P = where Z = Vm ( 1 Z) ( 1 ( 1 c) Z) P V is the volume of adsorbed gas, referenced to a standard temperature and pressure, V m is the volume of gas adsorbed into a monolayer, similarly references, P is the pressure the gas exerts on the surface at equilibrium, P is the pressure exerted on a layer of adsorbed gas greater than a monolayer and approaching bulk liquid. C is a constant dependent on the enthalpy of adsorption. This isotherm equation assumes adsorbed layers of gas can act as a substrate for subsequent adsorption, which can proceed to indefinite limits. B.E.T. isotherm data is used to estimate the surface area of solid substrates. 1.6) Henry s Law Solution. Explain the Henry s Law Solution Model. In particular explain the manner in which the physical behavior of the Henry s Law solute differs from the components of an ideal solution. Explain how the Henry s Law solute standard state differs from the standard state of a component of an ideal solution. Solution: In a Henry s Law solution, the partial pressure of the solute vapor is related to µ soln µ vap the solution composition by P = kh χ where k H = exp. In an ideal solution RT the standard state of a component is the pure liquid form of the component. The solute standard state is defined as a situation where the solute is energetically equivalent to being surrounded by solvent molecules. Part ( points total) Answer two out of four questions, given below..1) Although the surface tension of water opposes expansion of the surface area of water, certain insects are observed to support their weight on small bubbles at the water surface, rather than directly on the water surface itself. Explain. What is the surface tension force for a bubble relative to a droplet of water of the same shape and size? Explain. Answer: The insect s weight is supported on the water surface by the surface tension, which resists the tendency to expand the surface area of the liquid. The bubble supports the insect s weight because it has two surfaces, an inner surface and an outer surface.

3 .) Hemoglobin is a protein that transports oxygen from the lungs to actively metabolizing tissue. There are four oxygen binding sites on each hemoglobin molecule. Carbon monoxide poisoning occurs when a person is exposed to CO and as a result, CO binds to hemoglobin instead of oxygen. Death can occur when 5% of the total binding sites on hemoglobin are occupied by CO. On the other hand, a person with sickle cell anemia can have up to half of their hemoglobin inactive and still live. Explain. Answer: Sickle cell anemia inactivates half the hemoglobin molecules, but the other half can function normally. On the other hand, oxygen binding to hemoglobin is cooperative. Binding to a given site enhances binding to other sites on the same protein. CO will not do this and so if half the hemoglobin sites are saturated with CO, the other half do not have normal oxygen binding affinities..3) Time release drugs have the advantage of releasing the drug to the body at a constant rate so that the drug concentration at any time is not high enough to have harmful side effects or so low as to be ineffective. A schematic diagram of a timerelease capsule is shown below. Explain how it works, thermodynamically..4) Workers in deep sea diving suits necessarily breath air at greater than normal pressure. At a point 4 meters below the surface air is breathed at 6 atm of pressure, and if the diver returns to the surface too quickly, small gas bubbles called emboli form in the blood stream and can cause decompression sickness and death. Explain why divers breath oxygen in a gas mixture other than air. What gas would you mix with oxygen in order to avoid decompression sickness? Use the concept of Henry s Law in your explanation. A table of Henry s Law constants K H are given below. Gas Hydrogen Helium Nitrogen Oxygen Carbon Dioxide K H (torr) 5.54x x x x x1 6

4 Solution: Henry s Law states that the partial pressure of a vapor above a solution is related to the concentration in the solution by P = KH χ. This means that at a given a pressure, the larger the Henry s Law constant the lower the solubility of the gas and the less tendency to form emboli during decompression. For this reason helium, with the largest Henry s Law constant, is mixed with oxygen. Part 3 (3 points total) Calculate three out of five problems 3.1) Calculate the mean activity coefficient for a.1m solution of copper sulfate (CuSO 4 ) at T=98K. Solution: logγ ± =.59zz + µ 1 whereµ = zc i i i 1 µ = (( + ) (.1) + ( ) (.1) ) =.4 1/ logγ ± =.59zz + µ = (.59)( )( )(.4) = γ = 1 =.39 ± 3.) Consider the two compartments, separated by a membrane that is permeable to the passage of sodium and chloride ions, but impermeable to the passage of a protein P. Assume the protein exists in solution as a monovalent anion P -1. Initially in the left compartment [P - ]=[Na + ]=.1M, and in the right compartment [Na + ]=[Cl - ]=.5M (see diagram). Calculate the net osmotic pressure at T=3K when the system reaches equilibrium. Solution: x is the amount of chloride ion that moves from right to left. Cl right, initial (.5) (.5) x = = = =.3M P + Cl.1+ (.5).11 left, final right, initial + Na =.5 + x = =.73 Na + = Cl =.5 x =.7 M right, final right, final 3.3) The concentration of sodium ion in a nerve cell is [Na + ] in =.1 M and the concentration outside the cell is [Na + ] out =.14 M. The difference in

5 electrostatic potential across the membrane is ψ =ψ in -ψ out =-.8V. Calculate the work required to move reversibly one mole of sodium ion from inside the membrane to outside the membrane. Assume the standard chemical potential of sodium inside the membrane is the same as the chemical potential outside the membrane. Assume T=31K and assume all activity coefficients equal 1. Solution: The reversible work per mole is the change in chemical potential required to move the sodium. Therefore a out w= µ = µ out µ in = RTln + zi( ψout ψin ) ain.14 = 1mole 8.31 J / mole K 31K ln mole 96,485 C / mole.8v.1 = 6798J J = 14,517J ( )( )( ) ( )( )( )( ) 3.4) The data show, as a function of temperature, the pressures of carbon monoxide required to adsorb 1cm 3 (corrected to P=1 atm and T=73K) of gas onto charcoal. Calculate the differential heat of adsorption for CO on charcoal. A graph is useful but not necessary. T(K) P(kPa) lnp /T ln P H a ln P Ha Solution: The equation is = or = T θ RT ( 1/ T) R. This means θ the slope of the graph of lnp versus 1/T gives the heat of adsorption divided by R. If the student choses to do a graph it should appear as above. Note the x axis is reversed

6 so the slope is actually negative. The slope is H a 1 1 = 9K Ha = ( 8.31 J / mole K)( 9K ) = 7496J : R 1 1 If a graph is not used the correct integrated equation is ln P Ha = P1 R T T1 Part 4 (3 points total). Perform one of the two multi-step calculations, given below. 4.1) Heptane and -methylpentane are liquids at T=315K which form ideal solutions when mixed. Suppose you mix one mole of heptane and three moles of -methylpentane at T=315K. Calculate the entropy of mixing, the Gibbs free energy of mixing, and the enthalpy of mixing for this process. Also, calculate the vapor pressures of heptane and -methylpentane above the resulting solution. At 315K the vapor pressure of pure heptane is.13 atm and the vapor pressure of pure -methylpentane is.53 atm. What are the mole fractions of heptane and -methylpentane in the vapor phase? Solution: For an ideal solution =. H mix nhept 1 χhept = = =.5 nhept + nmp 1+ 3 nmp 3 χmp = = =.75 nhept + nmp 1+ 3 or χmp = 1 χhept =.75 S = R χ ln χ + χ ln χ ( ) i ( ) i ( ) mix hept hept MP MP ( 8.31 J / mole K).5ln (.5).75ln (.75) ( 8.31 J / mole K) (.5)( 1.38) (.75)(.8) ( 8.31 J / moleik)(.345.1) ( 8.31 J / moleik)(.56) = + = + = = = 4.65 J / moleik There are 4 moles total so Smix = ( 4moles) Smix = ( 4)( 4.65 J / K) = J / K Gmix = T Smix = ( 315K)( J / K) = 586J Phept = χheptphept = (.5)(.13atm) =.35atm P = χ P =.75.53atm =.4atm MP MP MP ( )( )

7 Dalton s Law of Partial Pressure states PT = Pheptan e + P MP = =.435atm Phep tan e.35 χhep tan e = = =.75 PT.435 χ = 1 χ = 1.75 =.95 MP hep tane 4.) I. Langmuir measured the following data for the adsorption of methane onto 1 gram of mica at T=9K: P (bars) V (mm 3 ) Where P is the pressure of the methane above the mica surface at equilibrium, and V is the volume of gas adsorbed onto the surface, measured at T=93K and at a pressure of 1 atm. a) If adsorption of methane onto mica at T=9K occurs without interactions between methane molecules on the surface, all surface sites are equivalent, and adsorption P 1 P cannot proceed beyond monolayer coverage, show that = +, where V VmK Vm V m is the volume of gas adsorbed at T=93K and P=1 atm to form a monolayer, and K is the equilibrium constant for adsorption. Solution: From the conditions mentioned the appropriate isotherm equation is the Langmuir isotherm. Then VKP m V VP V = V + VKP = VmKP P = + 1+ KP VmK Vm P 1 P = + V VmK Vm b) From an appropriate graph of the data in the Table, determine V m and K. Note: You do not have to graph all the data but you must graph enough data to establish linear behavior (i.e. more than two points). Express V m in units of meters 3.

8 P/V (bars/mm^3) P(bars) Solution: Slope=1/V m =.8mm -3. So V m =14mm 3 =1.4x1-7 m 3. The y intercept is.484 bars/mm 3. Therefore 1 1 =.484 bars / mm K = =.167 bars 3 3 VK.484 bars / mm 14mm m 3 1 ( )( ) c) From the information determined in part b, determine the pressure of methane at which the surface is half covered at T=9K. Gives you answer in bars. Hint: Use the equation from part a. Solution: P 1 P Vm P 1 P 1 = + V = = + P = V VmK Vm Vm VmK Vm K 1 P = = 6 bars 1.167bars d) Suppose the cross sectional area of a methane molecule is σ=1-19 m. Use the information obtained in part b to determine the surface area of one gram of mica. Assume the methane vapor behaves ideally. Solution: You need the molar volume at T=93K and P=1atm. This is V RT (.81 L atm/ moles K)( 93K) 3 = V = = = 4L=.4m n P 1atm

9 Then the surface area per gram is A = σ NV V m A m = =.311 / gm ( 19 )( m 6. 1 mole )( m 3 / gm).4m 3

Chemistry August Useful Constants and Conversions

Chemistry August Useful Constants and Conversions Chemistry 45 August 8 End- of-term Examination Key rofessor G. Drobny Useful Constants and Conversions Universal Gas Constant= R = 8.3 J / mole K =.8 L atm / mole K Faraday s Constant= I= 96,458 Coulombs

More information

Chemistry 452/ August 2012

Chemistry 452/ August 2012 Chemistry 45/456 7 August 0 End- of-term Examination Professor G. Drobny Enter your answers into a blue or green Composition Book. Perform only the number of problems required. Answers must be given in

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 9 CHAPTER 4 Physical Equilibria Basic Concepts Biological organisms are highly inhomogeneous. Different regions of each cell have

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 9 8//4 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 04. Solutions that re Very, Very on-ideal In the prior lectures on non-ideal solution behavior, we have considered

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

3.5. Kinetic Approach for Isotherms

3.5. Kinetic Approach for Isotherms We have arrived isotherm equations which describe adsorption from the two dimensional equation of state via the Gibbs equation (with a saturation limit usually associated with monolayer coverage). The

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol 4. CHEMICAL EQUILIBRIUM n Equilibrium Constants 4.1. 2A Y + 2Z Initial amounts: 4 0 0 mol Amounts at equilibrium: 1 1.5 3.0 mol Concentrations at equilibrium: 1 5 1.5 5 3.0 5 mol dm 3 K c (1.5/5) (3.0/5)2

More information

the equilibrium: 2 M where C D is the concentration

the equilibrium: 2 M where C D is the concentration Problem Set #11 Assigned November 15, 2013 Due Friday, November 22, 2013 Please show all work for credit Colligative properties: 1. P8.7) Assume that 1-bromobutane and 1-chlorobutane form an ideal solution.

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.

Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A sample of carbon dioxide occupies 22.4 L at STP. Which of the

More information

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2 EXAM 2 PRACTICE QUESTIONS NOTE- THIS IS ONLY A SELECTION OF POSSIBLE TYPES OF QUESTIONS: REFER TO THE EXAM 2 REVIEW GUIDELINES FOR THE LIST OF LEARNING TARGETS. There will likely be other questions on

More information

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical Subject PHYSICAL Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 34, Method for determining molar mass - I CHE_P6_M34 Table of Contents 1. Learning Outcomes 2. Introduction

More information

Particle Size Determinations: Dynamic Light Scattering: page 161 text

Particle Size Determinations: Dynamic Light Scattering: page 161 text Particle Size Determinations: Dynamic Light Scattering: page 161 text Dynamic light scattering (also known as Photon Correlation Spectroscopy or Quasi- Elastic Light Scattering) is a technique which can

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, 2011. 6:30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Dr. A. Fenster Name: Associate Examiner: A. Fenster

More information

Lecture 5. Solid surface: Adsorption and Catalysis

Lecture 5. Solid surface: Adsorption and Catalysis Lecture 5 Solid surface: Adsorption and Catalysis Adsorbtion G = H T S DG ads should be negative (spontaneous process) DS ads is negative (reduced freedom) DH should be negative for adsorption processes

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10 B & C. Subject: CHEMISTRY. Teacher Signature

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10 B & C. Subject: CHEMISTRY. Teacher Signature SY 2017/2018 2 nd Final Term Revision Student s Name: Grade: 10 B & C Subject: CHEMISTRY Teacher Signature 1- Complete. a-avogadros law b-henrys law REVISION SHEET CHEMISTRY GR-10B 2-What is the difference

More information

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz).

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz). I: Life and Energy Lecture 1: What is life? An attempt at definition. Energy, heat, and work: Temperature and thermal equilibrium. The First Law. Thermodynamic states and state functions. Reversible and

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 005 Homework Assignment #5: Due at 500 pm Friday 9 July, Drobny Mailbox #10. 1) Here are some assorted phase equilibrium

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

GAS-SURFACE INTERACTIONS

GAS-SURFACE INTERACTIONS Page 1 of 16 GAS-SURFACE INTERACTIONS In modern surface science, important technological processes often involve the adsorption of molecules in gaseous form onto a surface. We can treat this adsorption

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

1 Which of the following compounds has the lowest solubility in water? (4 pts)

1 Which of the following compounds has the lowest solubility in water? (4 pts) version: 516 Exam 1 - Sparks This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

Powder Surface Area and Porosity

Powder Surface Area and Porosity Powder Surface Area and Porosity Powder Technology Series Edited by B. Scarlett Department of Chemical Engineering University of Technology Loughborough Powder Surface Area and Porosity S. Lowell PhD Quantachrome

More information

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix?

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix? PART 1 Name: All matter around us exists in a mixed state. Chemists look at the atomic level and try to explain why certain matters mix homogeneously (uniformly) and certain types of matters (or compounds)

More information

Distinguish quantitatively between the adsorption isotherms of Gibbs, Freundlich and Langmuir.

Distinguish quantitatively between the adsorption isotherms of Gibbs, Freundlich and Langmuir. Module 8 : Surface Chemistry Lecture 36 : Adsorption Objectives After studying this lecture, you will be able to Distinguish between physisorption and chemisorption. Distinguish between monolayer adsorption

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University School of Chemical & iological Engineering, Konkuk University Lecture 7 Ch. 5 Simple Mixtures Colligative properties Prof. Yo-Sep Min Physical Chemistry I, Spring 2009 Ch. 5-2 he presence of a solute in

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94 CHAPTER 5GASES 1,,8,9,11,1,14,17,19,0,,4,6,8,0,,8,40,4,45,46,51,5,55,57,6,6,80,8,88,94 5.1 a) The volume of the liquid remains constant, but the volume of the gas increases to the volume of the larger

More information

Cell membrane resistance and capacitance

Cell membrane resistance and capacitance Cell membrane resistance and capacitance 1 Two properties of a cell membrane gives rise to two passive electrical properties: Resistance: Leakage pathways allow inorganic ions to cross the membrane. Capacitance:

More information

Chapter 11. Molecular Composition of Gases

Chapter 11. Molecular Composition of Gases Chapter 11 Molecular Composition of Gases PART 1 Volume-Mass Relationships of Gases Avogadro s Law Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Recall

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

Downloaded from

Downloaded from : Bhubaneswar Region CHAPTER 2-SOLUTIONS 1 MARK QUESTIONS 1 What is molarity? 2 What do you understand by saying that molality of a solution is 0.2? 3 Why is the vapour pressure of a liquid remains constant

More information

CHEM Exam 3 - March 31, 2017

CHEM Exam 3 - March 31, 2017 CHEM 3530 - Exam 3 - March 31, 2017 Constants and Conversion Factors NA = 6.02x10 23 mol -1 R = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 bar = 100 kpa = 750 torr 1 kpa = 7.50 torr 1 J = 1 kpa-l 1 kcal = 4.18

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

Chem 260 Quiz - Chapter 4 (11/19/99)

Chem 260 Quiz - Chapter 4 (11/19/99) Chem 260 Quiz - Chapter 4 (11/19/99) Name (print) Signature Terms in bold: phase transitions transition temperature phase diagram phase boundaries vapor pressure thermal analysis dynamic equilibrium boiling

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

solubility solubilities that increase with increasing temperature

solubility solubilities that increase with increasing temperature Solubility The concentration of the solute in a saturated solution is the solubility of the solute About 95% of all ionic compounds have aqueous solubilities that increase with increasing temperature Temperature

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Lecture outline: Chapter 13

Lecture outline: Chapter 13 Lecture outline: Chapter 13 Properties of solutions Why solutions form at the molecular l levell Units of solution concentration Colligative properties: effects of solutes on BP, MP, and vapor pressure

More information

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys 1 of 6 I. The solution process Solutions, colloids, and suspensions Solution: homogeneous mixture, equally dispersed at the molecular level, uniform throughout in its physical and chemical properties Colloid:

More information

SSLC CHEMISTRY UNIT 2 MOLE CONCEPT - WORK SHEETS WORK SHEET 1

SSLC CHEMISTRY UNIT 2 MOLE CONCEPT - WORK SHEETS WORK SHEET 1 1 SSLC CHEMISTRY UNIT 2 MOLE CONCEPT - WORK SHEETS WORK SHEET 1 1 GAM atoms Mass in grams equal to its Atomic mass Element and GAM Number of Atoms Mass in grams 1 GAM Hydrogen atoms 1 g 1 GAM Helium atoms

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

Lecture 4. Donnan Potential

Lecture 4. Donnan Potential Lecture 4 Langmuir-Blodgett films II Langmuir Blodgett films. II. Donnan Potential Floating monolayers Generally, amphiphilic molecules adsorb on the liquid-air interface Insoluble amphiphiles can create

More information

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 = Summary of Gas Laws Boyle s Law (T and n constant) p 1 V 1 = p 2 V 2 Charles Law (p and n constant) V 1 = T 1 V T 2 2 Combined Gas Law (n constant) pv 1 T 1 1 = pv 2 T 2 2 1 Ideal Gas Equation pv = nrt

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C). 1. Using your knowledge of the types of intermolecular forces present in CO 2, CH 3 CN, Ne, and CH 4 gases, assign each gas to its van der Waals a parameter. a ( ) 17.58 3.392 2.253 0.2107 gas 2. Match

More information

Surface Chemistry & States of Matter

Surface Chemistry & States of Matter Surface Chemistry & States of Matter S. Sunil Kumar Lecturer in Chemistry 1. Adsorption is a. Colligative property b. Oxidation process c. Reduction process d. Surface phenomenon Ans. d 2. When adsorption

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts)

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) 1) Complete the following statement: We can expect vapor pressure when the molecules of a liquid are held together by intermolecular

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

Solution KEY CONCEPTS

Solution KEY CONCEPTS Solution KEY CONCEPTS Solution is the homogeneous mixture of two or more substances in which the components are uniformly distributed into each other. The substances which make the solution are called

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

Solutions. π = n RT = M RT V

Solutions. π = n RT = M RT V Solutions Factors that affect solubility intermolecular interactions (like dissolves like) temperature pressure Colligative Properties vapor pressure lowering Raoult s Law: P A = X A P A boiling point

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state Chapter 5 Gases and Their Properties Why Study Gases? some very common elements exist in a gaseous state our gaseous atmosphere provides one means of transferring energy and material throughout the globe

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) increase in the Gibbs free energy of the system when 1 mole of i is added to a large amount

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces! When two molecules approach one another, they are attracted to some extent! Polar molecules are attracted through the electrostatic interaction of their dipole moments! Non-polar

More information

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm 1. (6 pts) A sample of gas with a volume of 750 ml exerts a pressure of 756 mm Hg at 30.0 0 C. What pressure (atm) will the sample exert when it is compressed to 250 ml and cooled to -25.0 0 C? a) 1.3

More information

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE UNIT III STUDY GUIDE Properties of Solutions Course Learning Outcomes for Unit III Upon completion of this unit, students should be able to: 1. Describe how enthalpy and entropy changes affect solution

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Physics 207 Lecture 23. Lecture 23

Physics 207 Lecture 23. Lecture 23 Goals: Lecture 3 Chapter 6 Use the ideal-gas law. Use pv diagrams for ideal-gas processes. Chapter 7 Employ energy conservation in terms of st law of TD Understand the concept of heat. Relate heat to temperature

More information

REMEMBER: Bubble in ALL Bubblesheet information!

REMEMBER: Bubble in ALL Bubblesheet information! 005 version last name first name signature practiceexam 1 practice MWF Classes Spring 2016 REMEMBER: Bubble in ALL Bubblesheet information! This includes your first and last name, your UTEID, and your

More information

REMEMBER: Bubble in ALL Bubblesheet information!

REMEMBER: Bubble in ALL Bubblesheet information! 004 version last name first name signature practiceexam 1 practice MWF Classes Spring 2016 REMEMBER: Bubble in ALL Bubblesheet information! This includes your first and last name, your UTEID, and your

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

SOLUTIONS. (i) Mass Percentage(w/w): Amount of solute present in grams dissolved per 100g of solution.

SOLUTIONS. (i) Mass Percentage(w/w): Amount of solute present in grams dissolved per 100g of solution. SOLUTIONS Section A : LEARNING POINTS: Units of concentration of Solution : (i) Mass Percentage(w/w): Amount of solute present in grams dissolved per 100g of solution. Ex : 10% (w/w) glucose in water by

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

Some Fundamental Definitions:

Some Fundamental Definitions: Lecture 2. The GAS LAWS Some Fundamental Definitions: SYSTEM: the part of the universe being the subject of study 1 Some Fundamental Definitions: State of the System: condition of a system at any given

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS CHEM 150 Section 01, Q2 2016 Midterm 1 Student name... Student number... Time: 90 Mins ATTEMPT ALL THE QUESTIONS 1 Formulae and constants pv = nrt P 1 V 1 T 1 = P 2V 2 T 2 Ptotal = p1 + p2 + p3 +... U

More information

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 12 Physical Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Elements that exist as gases at 250C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases Chapter 10 part 1: Ideal Gases Read: BLB 10.1 5 HW: BLB 10.2,19a,b, 23, 26, 30, 39, 41, 45, 49 Sup 10:1 6 Know: What is pressure? Gases Which elements exist as gases at ordinary temperature and pressure?

More information

Adsorption Equilibria. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Equilibria. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Equilibria Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Adsorption isotherm models Langmuir isotherm Volmer isotherm Fowler-Guggenheim isotherm Hill-deBoer

More information

Hood River Valley High

Hood River Valley High Chemistry Hood River Valley High Name: Period: Unit 7 States of Matter and the Behavior of Gases Unit Goals- As you work through this unit, you should be able to: 1. Describe, at the molecular level, the

More information