Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils

Size: px
Start display at page:

Download "Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils"

Transcription

1 Journal of Radioanalytical and Nuclear Chemistry, Vol. 249, No. 2 (2001) Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils H. M. Dion, 1,3 * J. B. Harsh, 2,3 ** H. H. Hill Jr. 1,3+ 1 Department of Chemistry, Washington State University, USA 2 Department of Crop and Soil Sciences, Washington State University, USA 3 Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164, USA (Received December 13, 2000) Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. We examine sorption of glyphosate in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. We found glyphosate sorption strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. Introduction Glyphosate [N-(phosphonomethyl)glycine] is a nonselective, broad-spectrum, post-emergent herbicide used in a variety of agricultural and domestic settings. It is already one of the most commonly applied herbicides and its use is likely to increase in the coming years due to the increased demand for Round-up Ready crops. 3 It has been determined that the phosphate moiety of glyphosate is responsible for its strong adsorption to soils and that soil phosphate capacity is related directly to glyphosate adsorption. 4,9,10 Competitive effects of phosphate on glyphosate adsorption have yet to be quantified which is of increasing importance due to the inception of Round-up Ready crops. It is estimated that 57% of all soybeans grown in the United States are Round-up Ready (USDA 1999). Knowledge of the fate and transport of pesticides applied to soils has become increasingly important as we seek to protect groundwater from toxic chemicals and crops from persistence. The residence time for a specific pesticide depends upon soil and analyte characteristics, such as, texture, cation exchange capacity, ph, organic carbon content, degradation or transformation rate, and analyte chemical properties. One of the factors that is particularly important with regard to more polar compounds, such as weak acids and bases, is the clay content of the soil. The objective of this study was to quantify the competitive chemical adsorption phenomenon between glyphosate and ortho-phosphate using dual-tracer batch equilibrium experiments. Studies were conducted on several whole soils (kaolinitic, illitic, smectitic) before and after removing organic matter and pure clay minerals. Pure minerals were examined in order to develop a comparison between sorption on high clay subsoils and clay minerals. Chemicals Experimental Unlabeled and 14 C-labeled glyphosate, 98.7% pure, were obtained from Monsanto (St. Louis, MO). Potassium phosphate dibasic was used in addition to diammonium hydrogen phosphate to achieve desired phosphate concentrations (96% pure, J. T. Baker). All compounds were used as delivered. Neutron activation The 32 P was prepared at Washington State University s Nuclear Radiation Center by neutron activation using the 31 P(n,γ) 32 P reaction. Diammonium hydrogen phosphate [(NH 4 ) 2 HPO 4 ] was purchased from J. T. Baker (99.6% pure) and used as received. A known amount of dry ammonium phosphate was triple sealed in polyethylene vials and irradiated in the WSU Triga III fueled reactor for 6 hours, which equals a thermal neutron fluence of ~10 16 cm 2. A cool-down time of 12 hours was used to allow for short-lived activation products to decay. After 12 hours the sample was counted on a germanium detector, this revealed trace quantities of 24 Na (T 1/2 = 14.5 h); however, this impurity does not interfere with competitive sorption because the 24 Na was completely decayed before the experiments were begun. Ammonium phosphate was quantitatively dissolved in ultra-pure water. The solution ph was * h_dion@wsu.edu ** harsh@wsu.edu + hhhill@wsu.edu /2001/USD Akadémiai Kiadó, Budapest 2001 Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

2 Table 1. Soil physical and chemical characteristics Soil Organic carbon, % ph Sand, % Silt, % Clay, % Illitic ± ± ± ± 2.01 Kaolinitic ± ± ± ± 2.55 Smectitic ± ± ± ± 1.70 Soils Three soils were collected and air-dried for the experiments. X-ray diffraction analysis was conducted on the three soils to determine the underlying mineralogy (Philips X-ray diffractometer). Oriented samples of the three test soils were used and treatments included airdried, heated to 300 and 550 C saturated with both potassium and magnesium, and glycerol solvated. The three soils used were an illitic Palouse silt loam; an unmapped weathered kaolinite soil obtained from a roadcut in Latah County, Idaho; and a Sharpsburg silty clay loam dominated by smectites obtained from Union County, Iowa. Each of the three soils was characterized for texture (pipet method, modified by WSU Pedology and Quaternary Studies Laboratory), organic carbon content, 7 and ph (soil saturation extract). Results of the soil characterization are contained in Table 1. Clay minerals Pure clay minerals were selected for comparison to the clay fraction in the selected soils. Illite and kaolinite clay minerals were obtained from Washington State University s mineral collection and were pulverized prior to obtain a mean particle size between 25 and 2 µm. Beidellite clay (Bid-1) was purchased from the Clay Mineral Repository and pulverized prior to use (University of Missouri, St. Louis, MO). Competitive sorption experiments The procedure for the sorption experiments was conducted using a soil:solution ratio of 1:10 m/m. One gram of soil or clay mineral was placed in a sterilized 50 ml polyethylene centrifuge tube and 10 ml of solution was added. The 32 P was added as a spike to a matrix solution of potassium phosphate dibasic to reach the desired initial concentration, 0.005, 0.05, and 0.1 mol/l. A mixture of unlabeled and carbon 14-labeled glyphosate was added at 7.75E-3 (3.82E+3 dpm), 7.78E- 1 (2.785E+3 dpm), 1.48 (4.35E+3 dpm), and 2.96 mmol/l (8.68E+3 dpm) with initial activity shown in brackets. All glyphosate and phosphate spike additions were less than ml in total added volume. Blanks carried out through the same sample treatments showed that degradation due to microbiological or chemical pathways or loss to equipment was negligible. Sampling time was determined elsewhere by conducting timed experiments during which samples were taken at 1, 5, 12, 24, 48, 72 h, 1, 2, 4, and 6 weeks. After 48 hours, glyphosate sorption from solution was negligible, for all soils tested, as determined by linear regression analysis on the data points from 48 to 72 hours. 1 Suspensions were placed on an end-over-end mixer until sampling. At 48 hours, the suspensions were centrifuged at 10,000 rpm for 15 minutes with the supernatant solution retained for analysis. In addition to the competitive sorption experiments, glyphosate sorption was examined without added phosphate. 1 Liquid scintillation counting Two ml of supernatant solution was added to 12 ml of scintillation cocktail (ScintiVerse II, Fisher Chemical, Fair Lawn, NJ) and counted by LSC (Model 1900TR LSC, Packard/Canberra, Meriden, CT). Because 32 P is a high-energy beta-emitter, crossover calculations were necessary to deconvolute the 14 C spectra from the 32 P spectra. Energy window A was set between 0 and 156 kev and window B was set between 156 and 2,000 kev; this allowed for minimal 14 C contributions to the activity in window B. Although, there was a significant contribution to the activity in region A from the 32 P, this overlap was corrected by determining contribution to the counts in region A due to 32 P. In addition, it was found that a certain ratio of 32 P counts were being detected in both region A and region B; this was corrected by calculating a cross talk value which allowed determinations to be made based on separate samples containing only the initial activities of 14 C and 32 P respectively: Ratio of counts in region A versus cpmb blank counts in region B = (1) cpma blank Cross talk calculation = corrected cpmb ratio A B (2) cpm 32 P = countsb blank (3) cpm 14 C = (countsa blank) crosstalk (4) 386

3 Sorbed glyphosate and phosphate were determined through back calculations using the initial aqueous concentration and the final aqueous concentration. Results accurate prediction of total phosphate capacity it would be necessary to determine sorbed concentrations much higher than those studied in this experiment: y = ax ( + bx) 1 Sorption experiments where y glyphosate or phosphate sorbed (mmol. kg 1 ), x glyphosate or phosphate concentration (mmol. l 1 ), a empirical fitting parameter, b empirical fitting parameter. Adsorption isotherms from the soils and clay minerals were plotted using the 48-hour equilibrium concentrations. Previous studies have shown sorption past 48 hours is inconsequential to the total amount sorbed. 1 Initial phosphate concentrations were 5.3, 50.5, and mmol/l in order to represent concentrations normally added to agricultural soils and glyphosate concentrations ranged from 7.75E-3 to 2.96 mmol/l. Isotherms depicting glyphosate sorption with varying levels of phosphate are shown in Fig. 1. As the initial level of phosphate increases, sorption of glyphosate decreases. For all systems, addition of as little as 5.3 mmol/l of phosphate causes a significant decrease in sorption of glyphosate. Also, as initial levels of glyphosate increased, the effect of the phosphate tended to have less of an impact on glyphosate sorption. Isotherms were characterized as being of the Langmuir type, indicating a decrease in the slope of the sorption isotherm, consistent with sorption on material with a limited number of sorption sites. It is also consistent with the hypothesis that glyphosate sorption will decrease in the presence of ortho-phosphate assuming that they compete for the same surface sites. Table 2 contains the Langmuir curves and regression analysis for the phosphate and glyphosate sorption isotherms. Langmuir curves are used to estimate the total sorption due to surface site saturation [Eq. (5)]. Results indicate that glyphosate sorption should be much greater than phosphate sorption; however, only three points were used to generate the phosphate curve and underestimation is possible. In order to make a more Nevertheless, the Langmuir a parameter, which is related to the strength of interaction of the sorbate with the sorbent, indicates that glyphosate is more strongly sorbed than phosphate to both smectitic and illitic minerals and soils. The results for kaolinite and the weathered soil containing kaolinite indicate that phosphate and glyphosate are on a more equal footing in competition for sorption sites. The Langmuir parameters do not differ significantly for phosphate sorption among the minerals and soils; therefore, the low a parameter for glyphosate on kaolinite may indicate a fundamental difference in sorption mechanism on this mineral. Figure 2 qualitatively shows the relationship between glyphosate sorption as a function of phosphate concentration. This relationship was investigated further by plotting the equilibrium sorbed glyphosate concentration (initial concentration 2.96 mmol/l) versus the equilibrium sorbed phosphate concentration (mmol/l) at each phosphate concentration. This plot was examined using linear regression analysis (Table 3): (5) y = mx + b (6) where y glyphosate sorbed (mmol. kg 1 ), x phosphate sorbed (mmol. kg 1 ), m slope of regression line, b y-intercept. Table 2. Langmuir fit for phosphate and glyphosate sorption isotherms Phosphate Glyphosate Soil K b r 2 K b r 2 Illite soil E E Illite mineral E E Kaolinite soil E E Kaolinite mineral E E Smectite soil E E

4 Fig. 1. Glyphosate sorption on selected soils and clay minerals; a illitic soil, b illite mineral, c kaolinitic soil 388

5 Fig. 1. Glyphosate sorption on selected soils and clay minerals; d kaolinite, e smectitic soil Table 3. Linear regression analysis of glyphosate sorption (initial concentration of 2.96 mmol/l) versus phosphate sorption (initial concentrations of 5.3, 50.5, and mmol/l) Soil m b r 2 surfaces in the order smectitic soil > kaolinitic soil > kaolinite mineral. This preference for glyphosate on the soils and minerals studied may be due to glyphosate s multiple reactive functional groups, which could form bidentate or tridentate complexes with the mineral surface. These results agree with the Langmuir K values which show glyphosate sorbed far more strongly than phosphate. Illite soil Illite mineral Kaolinite soil Kaolinite mineral Smectite soil Sorption of glyphosate and phosphate on the soils are If sorption was preferential for either of the analytes then the slope of the regression line would be either less than one indicating preference for glyphosate or greater than one indicating phosphate preference. In all of the systems, there appears to be preferential adsorption of glyphosate to the surface sites because the slope of each of the systems studied was less than one. The greatest preference was on the illitic soil and illite mineral with slopes of and 19.66, respectively, with the other similar to sorption on the clay minerals chosen as analogs. This supports the idea that the predominant clay minerals in a soil system may be the most important factor for predicting glyphosate/phosphate sorption in low organic carbon systems. Competition between phosphate and glyphosate reinforces other studies that implicate the phosphate moiety in glyphosate sorption to soils. A quantitative analysis leads to the conclusion that glyphosate is preferentially adsorbed over phosphate with the exception of the kaolinitic soil. 389

6 * H. D. was partially supported by the National Science Foundation s Integrative Graduate Education and Research Training Grant to Washington State University under Grant # In addition, we would like to acknowledge Pat FUERST for loaning of radio labeled 14 C glyphosate and WSU s Nuclear Radiation Center for reactor time in preparation of the 32 P used in these experiments. References 1. H. M. DION, J. B. HARSH, H. H. HILL, Jr., Soil Sci. Soc. Am. J., to be published. 2. Farmer Reported Genetically Enhanced Varieties, 1999 Crop Production Report Economic Research Service USDA, p J. E. FRANZ, M. K. MAO, J. A. SIKORSKI, Glyphosate: A Unique Global Herbicide. ACS Monograph 189. American Chemical Society, Washington, DC R. J. HANCE, Pestic. Sci., 7 (1976) L. M. LAVKULICH, J. H. WIENS, Soil Sci. Soc. Amer. Proc., 34 (1970) R. H. LOEPPERT, W. P. INSKEEP, in: Methods of Soil Analysis Part 3-Chemical Methods, D. L. SPARKS (Ed.), SSSA Book Series:5. Soil Sci. Soc. Am., Inc. and Amer. Soc. Agronomy, Inc. Madison, WI. 1996, Chapter 23: Iron. 7. D. W. NELSON, L. E. SOMMERS, in: Methods of Soil Analysis Part 3-Chemical Methods, J. M. BIGHAM (Ed.), SSSA Book Series:5. Soil Sci. Soc. Am., Inc. and Amer. Soc. Agronomy, Inc. Madison, WI. 1996, Chapter 34: Total Carbon, Organic Carbon, and Organic Matter. 8. Particle Size Analysis. Pedology and Quaternary Studies Laboratory, Department of Crop and Soil Science, WSU. Rev. 4/ A. PICCOLO, G. CELANO, M. ARIENZO, A. MIRABELLA, J. Environ. Sci. Health, B29 (1994) P. SPRANKLE, W. F. MEGGITT, D. PENNER, Weed Sci., 23 (1975) M. E. SUMNER, W. P. MILLER, in: Methods of Soil Analysis Part 3-Chemical Methods, J. M. BIGHAM (Ed.), SSSA Book Series:5. Soil Sci. Soc. Am. Inc. Amer. Soc. Agronomy, Inc. Madison, WI. 1996, Cation Exchange Capacity and Exchange Coefficients, p Fig. 2. Sorption of glyphosate on selected soils and clay minerals with and without the presence of phosphate; a illitic soil and illite mineral, b kaolinitic soil and kaolinite mineral, c smectitic soil and beidellite mineral 390

Thermodynamic parameters of Cs + sorption on natural clays

Thermodynamic parameters of Cs + sorption on natural clays Journal of Radioanalytical and Nuclear Chemistry, Vol. 253, No. 1 (2002) 115 120 Thermodynamic parameters of Cs + sorption on natural clays T. Shahwan, H. N. Erten* Department of Chemistry, Bilkent University,

More information

STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS

STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS I.J.S.N., VOL. 2(2) 211: 327-333 ISSN 2229 6441 STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS Bansal, O. P. Chemistry Department, D.S. College, Aligarh-221

More information

Effect of Heat Treatment on Phosphate Sorption by Soils from Different Ecologies

Effect of Heat Treatment on Phosphate Sorption by Soils from Different Ecologies Effect of Heat Treatment on Phosphate Sorption by Soils from Different Ecologies 1* Aghedo, J.E., 2 Ukpebor, E. and 3 Oviasogie, P.O., 4 Omorogbe, S.O. 1Department of Chemistry, College of Education, Ekiadolor,

More information

TECHNETIUM-99 IN SOIL

TECHNETIUM-99 IN SOIL Analytical Procedure TECHNETIUM-99 IN SOIL 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in soil. 1.2. This method does not address all aspects of safety, quality

More information

EXTRAPOLATION STUDIES ON ADSORPTION OF THORIUM AND URANIUM AT DIFFERENT SOLUTION COMPOSITIONS ON SOIL SEDIMENTS Syed Hakimi Sakuma

EXTRAPOLATION STUDIES ON ADSORPTION OF THORIUM AND URANIUM AT DIFFERENT SOLUTION COMPOSITIONS ON SOIL SEDIMENTS Syed Hakimi Sakuma EXTRAPOLATION STUDIES ON ADSORPTION OF THORIUM AND URANIUM AT DIFFERENT SOLUTION COMPOSITIONS ON SOIL SEDIMENTS Syed Hakimi Sakuma Malaysian Institute for Nuclear Technology Research (MINT), Bangi, 43000

More information

Analysis of Clays and Soils by XRD

Analysis of Clays and Soils by XRD Analysis of Clays and Soils by XRD I. Introduction Proper sample preparation is one of the most important requirements in the analysis of powder samples by X-ray diffraction (XRD). This statement is especially

More information

Adsorption of ions Ion exchange CEC& AEC Factors influencing ion

Adsorption of ions Ion exchange CEC& AEC Factors influencing ion Adsorption of ions Ion exchange CEC& AEC Factors influencing ion exchange- Significance. Adsorption of ions Ion adsorption and subsequent exchange are important processes that take place between soil colloidal

More information

How Does Redox Status Influence Exchangeable Potassium In Soil?

How Does Redox Status Influence Exchangeable Potassium In Soil? How Does Redox Status Influence Exchangeable Potassium In Soil? Michael L. Thompson Taslima Stephen Iowa State University 1 Why do we care about exchangeable K? K is required by all plants. A soil may

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Introduction Scope Numerous organic chemicals are introduced into the environment by natural (e.g. forest fires, volcanic activity, biological processes) and human activities (e.g. industrial

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

pechischeva@gmail.ru germanium from the poor raw materials and for the arsenic removal from the technological solutions ties studies were performed. The mechanical activation in the high-energy planetary

More information

NOTE. Separation of chlorophenols using columns of hydroxyaluminium interlayered clays

NOTE. Separation of chlorophenols using columns of hydroxyaluminium interlayered clays Clay Minerals (1997) 32, 143-147 NOTE Separation of chlorophenols using columns of hydroxyaluminium interlayered clays Clay minerals play an important role in the retention, transport and chemistry of

More information

Adsorption of Glyphosate on the Clay Mineral Montmorillonite: Effect of Cu(II) in Solution and Adsorbed on the Mineral

Adsorption of Glyphosate on the Clay Mineral Montmorillonite: Effect of Cu(II) in Solution and Adsorbed on the Mineral Environ. Sci. Technol. 1997, 31, 3588-3592 Adsorption of Glyphosate on the Clay Mineral Montmorillonite: Effect of Cu(II) in Solution and Adsorbed on the Mineral ESMERALDA MORILLO,* TOMÁS UNDABEYTIA, AND

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

MINERAL CONTENT AND DISTRIBUTION AS INDEXES OF WEATHERING IN THE OMEGA AND AHMEEK SOILS OF NORTHERN WISCONSIN

MINERAL CONTENT AND DISTRIBUTION AS INDEXES OF WEATHERING IN THE OMEGA AND AHMEEK SOILS OF NORTHERN WISCONSIN MINERAL CONTENT AND DISTRIBUTION AS INDEXES OF WEATHERING IN THE OMEGA AND AHMEEK SOILS OF NORTHERN WISCONSIN By L. D. WHITTIG 1 AND M. L. JACKSON University of Wisconsin, Madison, Wisconsin ABSTRACT Quantitative

More information

Chunmei Chen A,B and Donald L Sparks A. Delaware, Newark, DE 19711, USA.

Chunmei Chen A,B and Donald L Sparks A. Delaware, Newark, DE 19711, USA. Environ. Chem. 2015, 12, 64 CSIRO 2015 Supplementary material Multi-elemental scanning transmission X-ray microscopy near edge X-ray absorption fine structure spectroscopy assessment of organo mineral

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION How Does Competition between Anionic Pollutants Affect Adsorption onto Mg-Al Layered Double Hydroxide? Three Competition Schemes Ganna DARMOGRAI, Benedicte PRELOT,* Amine GENESTE,

More information

THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS

THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS Organoclay has great potential as a permeable adsorptive barrier in treating contaminated groundwater

More information

Removal of cationic surfactants from water using clinoptilolite zeolite

Removal of cationic surfactants from water using clinoptilolite zeolite 2098 From Zeolites to Porous MOF Materials the 40 th Anniversary of International Zeolite Conference R. Xu, Z. Gao, J. Chen and W. Yan (Editors) 2007 Elsevier B.V. All rights reserved. Removal of cationic

More information

Studying the Effect of Crystal Size on Adsorption Properties of Clay

Studying the Effect of Crystal Size on Adsorption Properties of Clay Studying the Effect of Crystal Size on Adsorption Properties of Clay M. M. Abdellatif Nuclear and Radiological Regulatory Authority, 3 Ahmed El Zomer st. Nasr City, 11762 Egypt. Email: magdadel200@hotmail.com

More information

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures RADIOLOGICAL CHARACTERIZATION Laboratory Procedures LORNA JEAN H. PALAD Health Physics Research Unit Philippine Nuclear Research Institute Commonwealth Avenue, Quezon city Philippines 3-7 December 2007

More information

A Method, tor Determining the Slope. or Neutron Moisture Meter Calibration Curves. James E. Douglass

A Method, tor Determining the Slope. or Neutron Moisture Meter Calibration Curves. James E. Douglass Station Paper No. 154 December 1962 A Method, tor Determining the Slope or Neutron Moisture Meter Calibration Curves James E. Douglass U.S. Department of Agriculture-Forest Service Southeastern Forest

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (TEVA DISC METHOD) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all aspects

More information

On the Influence of Ionic Strength on Radium and Strontium Sorption to Sandy Loam Soils

On the Influence of Ionic Strength on Radium and Strontium Sorption to Sandy Loam Soils 2014 Governor s Award Winner for Excellence in Scientific Research On the Influence of Ionic Strength on Radium and Strontium Sorption to Sandy Loam Soils Brian A. Powell 1*, Todd Miller 1#, Daniel I.

More information

ANOMALIES IN TILE ETHYLENE GLYCOL SOLVA- TION TECHNIQUE USED IN X-RAY DIFFRACTION * ABSTRACT

ANOMALIES IN TILE ETHYLENE GLYCOL SOLVA- TION TECHNIQUE USED IN X-RAY DIFFRACTION * ABSTRACT ANOMALIES IN TILE ETHYLENE GLYCOL SOLVA- TION TECHNIQUE USED IN X-RAY DIFFRACTION * G. W. KUNZE Agricultural and lv[echanical College of Texas ABSTRACT X-ray diffraction results are presented to show that

More information

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL Engineering Postgraduate Conference (EPC) 2008 ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL R. Rosli 1, A. T. A Karim 1, A. A. A. Latiff 1 and M. R. Taha 2 Faculty

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all

More information

Sorption of an oil sands naphthenic acid mixture to soils implication for transport in groundwater and aquatic toxicity

Sorption of an oil sands naphthenic acid mixture to soils implication for transport in groundwater and aquatic toxicity Sorption of an oil sands naphthenic acid mixture to soils implication for transport in groundwater and aquatic toxicity Arash Janfada, John V. Headley, K.M. Peru, and S.L. Barbour Background - naphthenic

More information

THE USE OF PIPERIDINE AS AN AID TO CLAY-MINERAL IDENTIFICATION

THE USE OF PIPERIDINE AS AN AID TO CLAY-MINERAL IDENTIFICATION THE USE OF PIPERIDINE AS AN AID TO CLAY-MINERAL IDENTIFICATION By J. M. OADES* and W. N. TOWNSEND Department of Agriculture, The University of Leeds. [Received 30th August, 1962] ABSTRACT It is suggested

More information

CHANGES THE STRUCTURE AND CAFFEINE ADSORPTION PROPERTY OF CALCINED MONTMORILLONITE

CHANGES THE STRUCTURE AND CAFFEINE ADSORPTION PROPERTY OF CALCINED MONTMORILLONITE Geotec., Const. Mat. & Env., ISSN: 2186-2982(Print), 2186-2990(Online), Japan CHANGES THE STRUCTURE AND CAFFEINE ADSORPTION PROPERTY OF CALCINED MONTMORILLONITE Kenichiro Yamamoto 1, Takashi Shiono 1,

More information

Boron Desorption Kinetic in Calcareous Soils

Boron Desorption Kinetic in Calcareous Soils Journal of Agricultural Science; Vol. 11, No. ; 2019 ISSN 1916-972 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Boron Desorption Kinetic in Calcareous Soils Baydaa H. A. Al-Ameri

More information

LIQUID SCINTILLATION COUNTERS. {Beta Counters}

LIQUID SCINTILLATION COUNTERS. {Beta Counters} LIQUID SCINTILLATION COUNTERS {Beta Counters} We offer a range of Alpha, Beta & Gama counters, from Hidex Oy, Finland to meet your specific Liquid Scintillation counting requirements. Triathler LSC Sense

More information

Sorption of Uranium (VI) to Graphite under Potential Repository Conditions

Sorption of Uranium (VI) to Graphite under Potential Repository Conditions Sorption of Uranium (VI) to Graphite under Potential Repository Conditions Gary Cerefice, Gregory Schmidt, and Cory Keith University of Nevada, Las Vegas GSA Annual Meeting 11/5/12 This work was supported

More information

BUFFERING MECHANISM AND SENSITIVITY TO ACID DEPOSITION OF SOILS OF AKWA IBOM STATE, NIGERIA

BUFFERING MECHANISM AND SENSITIVITY TO ACID DEPOSITION OF SOILS OF AKWA IBOM STATE, NIGERIA BUFFERING MECHANISM AND SENSITIVITY TO ACID DEPOSITION OF SOILS OF AKWA IBOM STATE, NIGERIA ABSTRACT Akpan *, U. S. and Udoh, B. T. Department of Soil Science and Land Resources Management, University

More information

Adsorption Isotherm of Phosphate Ions onto lica and Amino-modified lica from Lapindo Mud Jaslin Ikhsan 1,2, ti Sulastri 1, Erfan Priyambodo 1 1 Department of Chemistry Education, Faculty of Mathematics

More information

NICKEL-63/59 IN WATER

NICKEL-63/59 IN WATER Analytical Procedure NICKEL-63/59 IN WATER 1. SCOPE 1.1. This is a method for the separation and measurement of nickel- 63/59 in water samples. 1.2. This method does not address all aspects of safety,

More information

List of Equipment, Tools, Supplies, and Facilities:

List of Equipment, Tools, Supplies, and Facilities: Unit D: ph of Soil Lesson 2: Identifying ph Connection With Plant Growth Student Learning Objectives: Instruction in this lesson should result in the students achieving the following objectives: 1. Explain

More information

Supporting Information Environmental Science and Technology

Supporting Information Environmental Science and Technology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Supporting Information Environmental Science and Technology Polyoxyethylene Tallow Amine, a Glyphosate Formulation

More information

Desorption Of (HDTMA) Hexadecyltrimethylammoniumfrom Charged Mineral Surfaces and Desorption Of Loaded Modified Zeolite Minerals

Desorption Of (HDTMA) Hexadecyltrimethylammoniumfrom Charged Mineral Surfaces and Desorption Of Loaded Modified Zeolite Minerals Desorption Of (HDTMA) Hexadecyltrimethylammoniumfrom Charged Mineral Surfaces and Desorption Of Loaded Modified Zeolite Minerals VandanaSwarnkar 1 &RadhaTomar 2 ABSTRACT: The use of surfactant-modified

More information

Examination into the accuracy of exchangeable cation measurement in

Examination into the accuracy of exchangeable cation measurement in Examination into the accuracy of exchangeable cation measurement in saline soils H. B. So 1, N. W. Menzies 1, R. Bigwood 1,2, P. M. Kopittke 1,* 1 School of Land and Food Sciences, The University of Queensland,

More information

Soil Fertility. Fundamentals of Nutrient Management June 1, Patricia Steinhilber

Soil Fertility. Fundamentals of Nutrient Management June 1, Patricia Steinhilber Soil Fertility Fundamentals of Nutrient Management June 1, 2010 Patricia Steinhilber Ag Nutrient Management Program University of Maryland College Park Main Topics plant nutrition functional soil model

More information

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24 Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs Introduction Sorption? Sorption is a physical and chemical process by

More information

Introduction Studies; sorption of PPCPs

Introduction Studies; sorption of PPCPs Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs 1 Introduction Sorption? Sorption is a physical and chemical process

More information

Be sure to show all calculations so that you can receive partial credit for your work!

Be sure to show all calculations so that you can receive partial credit for your work! Agronomy 365T Exam 1 Spring 2004 Exam Score: Name TA Lab Hour Be sure to show all calculations so that you can receive partial credit for your work! 1) List 14 of the plant essential nutrient for plant

More information

Potential Movement of Pesticides Related to Dissolved Organic Matter from Fertilizer Application on Turf

Potential Movement of Pesticides Related to Dissolved Organic Matter from Fertilizer Application on Turf Potential Movement of Pesticides Related to Dissolved Organic Matter from Fertilizer Application on Turf Kun Li*, William A. Torello, J. Scott Ebdon and Baoshan Xing Dept. of Plant and Soil Sciences University

More information

SOIL and WATER CHEMISTRY

SOIL and WATER CHEMISTRY SOIL and WATER CHEMISTRY An Integrative Approach MICHAEL E. ESSINGTON CRC PRESS Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 The Soil Chemical Environment: An Overview 1 1.1

More information

* Tsado, P. A. 1, A. O. Osunde 1, C. A. Igwe 2, P.C. Eze 1 and E. Daniya 3

* Tsado, P. A. 1, A. O. Osunde 1, C. A. Igwe 2, P.C. Eze 1 and E. Daniya 3 INFLUENCE OF ORGANIC ACIDS ON PHOSPHATE SORPTION AND AVAILABILITY IN AN ALFISOL OF NIGERIAN GUINEA SAVANNA * Tsado, P. A. 1, A. O. Osunde 1, C. A. Igwe 2, P.C. Eze 1 and E. Daniya 3 1 Department of Soil

More information

Supplemental Materials. Sorption of Tetracycline to Varying-Sized Montmorillonite Fractions

Supplemental Materials. Sorption of Tetracycline to Varying-Sized Montmorillonite Fractions Supplemental Materials Sorption of Tetracycline to Varying-Sized Montmorillonite Fractions 6 7 8 9 10 11 1 Huaizhou Xu, 1, Xiaolei Qu, 1 Hui Li, Cheng Gu 1, and Dongqiang Zhu 1* 1 State Key Laboratory

More information

The LSC Approach to Radon Counting in Air and Water

The LSC Approach to Radon Counting in Air and Water CHAPTER 32 The LSC Approach to Radon Counting in Air and Water Charles J. Passo, Jr. and James M. Floeckher INTRODUCTION Various methods exist to monitor 222Rn in air. There are seven commonly used types

More information

Major Nuclear and Radiation Physics experimental facilities in. Prepared By Dr M Tanseer Ali

Major Nuclear and Radiation Physics experimental facilities in. Prepared By Dr M Tanseer Ali Major Nuclear and Radiation Physics experimental facilities in Prepared By Dr M Tanseer Ali Research Facilities Atomic Energy Centre (AECD), Dhaka Ministry of Science and Technology Atomic Energy Research

More information

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ DIFFUSION COEFFICIENTS OF CRITICAL RADIONUCLIDES FROM RADIOACTIVE WASTE IN GEOLOGICAL MEDIUM

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ DIFFUSION COEFFICIENTS OF CRITICAL RADIONUCLIDES FROM RADIOACTIVE WASTE IN GEOLOGICAL MEDIUM DIFFUSION COEFFICIENTS OF CRITICAL RADIONUCLIDES FROM RADIOACTIVE WASTE IN GEOLOGICAL MEDIUM ABSTRACT: C. Bucur, A.Popa, C. Arsene and M.Olteanu Institute for Nuclear Research, P.O. Box 78, 0300 Pitesti

More information

Radio-HPLC Flow Cells

Radio-HPLC Flow Cells Radio-HPLC Flow Cells Innovative Technology Expands the Limits of Radio-HPLC Detection The Most Versatile Flow Cells Packard s Radiomatic TM flow scintillation analyzers and flow cells have been integrated

More information

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions.

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions. 5 SIL CHEMISTRY 5.1 Introduction A knowledge of the chemical composition of a soil is less useful than a knowledge of its component minerals and organic materials. These dictate the reactions that occur

More information

J. U. ANDERSON. Agronomy Department, New Mexico State University, University Park, New Mexico ABSTRACT

J. U. ANDERSON. Agronomy Department, New Mexico State University, University Park, New Mexico ABSTRACT Page - 380 - AN IMPROVED PRETREATMENT FOR MINERALOGICAL ANALYSIS AN IMPROVED PRETREATMENT FOR MINERALOGICAL ANALYSIS OF SAMPLES CONTAINING ORGANIC MATTER by J. U. ANDERSON Agronomy Department, New Mexico

More information

Supporting Information

Supporting Information Supporting Information Hydrogen Storage in the Dehydrated Prussian Blue Analogues M 3 [Co(CN) 6 ] 2 (M = Mn, Fe, Co, Ni, Cu, Zn) Steven S. Kaye and Jeffrey R. Long* Dept. of Chemistry, University of California,

More information

HETEROGENEITY IN MONTMORILLONITE. JAMES L. MCATEE, JR. Baroid Division, National Lead Co., Houston, Texas

HETEROGENEITY IN MONTMORILLONITE. JAMES L. MCATEE, JR. Baroid Division, National Lead Co., Houston, Texas HETEROGENEITY IN MONTMORILLONITE By JAMES L. MCATEE, JR. Baroid Division, National Lead Co., Houston, Texas ABSTRACT X-ray diffraction patterns and cation-exchange data are presented for centrifuged Wyoming

More information

DISTRIBUTION LIST To be filled out by Document Author or person requesting document deletion

DISTRIBUTION LIST To be filled out by Document Author or person requesting document deletion DISTRIBUTION LIST To be filled out by Document Author or person requesting document deletion: Once approved, the new or revised document or the notice of deleted document(s) should be distributed to all

More information

Production of Fluorine-18 by Small Research Reactor

Production of Fluorine-18 by Small Research Reactor Journal of NUCLEAR SCIENCE and TECHNOLOGY, 4[4], p.185~189 (April 1967). 185 Production of Fluorine-18 by Small Research Reactor Yoshiaki MARUYAMA* Received October 4, 1966 High purity 18F was prepared

More information

Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices

Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices A. Bartosova, P. Rajec, M. Reich Faculty of Natural Sciences, Department of Nuclear chemistry,

More information

CONTENTS INTRODUCTION...2

CONTENTS INTRODUCTION...2 Contents CONTENTS...1 1. INTRODUCTION...2 2. SAMPLING...3 2.1 CUTTINGS SAMPLES....3 2.2 CORE SAMPLES....3 3. ANALYTICAL METHODS...4 3.1 CLAY MINERALOGY...4 3.2 GAS ADSORPTION, SPECIFIC SURFACE AREA...4

More information

Chapter 7: Anion and molecular retention

Chapter 7: Anion and molecular retention I. Anions and molecules of importance in soils Anions of major importance to agricultural soils and soil chemistry are: H 2 PO - 4, HPO 2-4, SO 2-4, HCO - 3, NO - 3, Cl -, F - and OH -. Also, micronutrients

More information

Uranium biosorption by Spatoglossum asperum J. Agardh:

Uranium biosorption by Spatoglossum asperum J. Agardh: Chapter 6 Uranium biosorption by Spatoglossum asperum J. Agardh: 76 Chapter 6. Uranium biosorption by Spatoglossum asperum J. Agardh: Characterization and equilibrium studies. 6.1. Materials 6.1.1. Collection

More information

Batch Adsorption Test of Phenol on Soils

Batch Adsorption Test of Phenol on Soils Batch Adsorption Test of Phenol on Soils Mohd Raihan Taha Dept. of Civil & Structural Engineering, and Institute for Environment & Development (LESTARI) Universiti Kebangsaan Malaysia Contents Introduction

More information

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA 90 RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA Christopher G. Worley Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545 ABSTRACT Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward

More information

WEATHERING ACCORDING TO THE CATIONIC BONDING ENERGIES OF COLLOIDS I ABSTRACT

WEATHERING ACCORDING TO THE CATIONIC BONDING ENERGIES OF COLLOIDS I ABSTRACT WEATHERING ACCORDING TO THE CATIONIC BONDING ENERGIES OF COLLOIDS I By E. R. GRAHAM University of Missouri ABSTRACT A study was made of the energy changes of several colloidal systems in relation to weathering.

More information

DETERMINATION OF THE PHOSPHATE CONTENT ORIGINALLY ADSORBED ON THE SOIL BY FITTING AN ADSORPTION ISOTHERM MODEL

DETERMINATION OF THE PHOSPHATE CONTENT ORIGINALLY ADSORBED ON THE SOIL BY FITTING AN ADSORPTION ISOTHERM MODEL - 39 - DETERMINATION OF THE PHOSPHATE CONTENT ORIGINALLY ADSORBED ON THE SOIL BY FITTING AN ADSORPTION ISOTHERM MODEL G. FÜLEKY L. TOLNER* Department of Soil Science and Agricultural Chemistry, University

More information

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil 한국환경농학회지제26권제4 호 (7) Korean Journal of Environmental Agriculture Vol. 26, No. 4, pp. 286-293 연구보문 Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil Yong Bok Lee 1) and Pil Joo

More information

Adsorption of perfluorooctanoic acid (PFOA) using graphene-based materials

Adsorption of perfluorooctanoic acid (PFOA) using graphene-based materials Adsorption of perfluorooctanoic acid (PFOA) using graphene-based materials Supriya Lath (PhD Student, The University of Adelaide) Prof. Mike McLaughlin Dr. Divina Navarro Prof. Dusan Losic Dr. Anu Kumar

More information

Supporting Information for. High permeation rates in liposome systems explain rapid glyphosate biodegradation

Supporting Information for. High permeation rates in liposome systems explain rapid glyphosate biodegradation 1 2 3 Supporting Information for High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation 4 5 Benno N. Ehrl, Emmanuel O. Mogusu,, Kyoungtea

More information

Scientific registration n o : 2611 Symposium n o : 13B Presentation : Poster. PAL Yash (1), WONG Mike (2), GILKES Bob (1)

Scientific registration n o : 2611 Symposium n o : 13B Presentation : Poster. PAL Yash (1), WONG Mike (2), GILKES Bob (1) Scientific registration n o : 2611 Symposium n o : 13B Presentation : Poster Forms of potassium and potassium adsorption behavior of south-west Australian soils Formes et modalités d adsorption du potassium

More information

Scintillation Proximity Assay on the TopCount Microplate Scintillation Counter

Scintillation Proximity Assay on the TopCount Microplate Scintillation Counter TCA-004 Scintillation Proximity Assay on the TopCount Microplate Scintillation Counter Abstract Scintillation Proximity Assay (SPA) is a technique for performing binding assays without separation of bound

More information

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil Physical Properties Porosity Pore size and pore size distribution Water holding capacity Bulk density

More information

Boron Adsorption by Some Semi-Arid Soils of North Eastern Nigeria

Boron Adsorption by Some Semi-Arid Soils of North Eastern Nigeria International Journal of Applied Agricultural Research ISSN 0973-2683 Volume 6 Number 1 (2011) pp. 71 76 Research India Publications http://www.ripublication.com/ijaar.htm Boron Adsorption by Some Semi-Arid

More information

Sorption of selected radionuclides to clay in the presence of humic acid

Sorption of selected radionuclides to clay in the presence of humic acid Loughborough University Institutional Repository Sorption of selected radionuclides to clay in the presence of humic acid This item was submitted to Loughborough University's Institutional Repository by

More information

Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments

Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments Engineering Geology 85 (2006) 19 25 www.elsevier.com/locate/enggeo Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments Cynthia A. Coles a,, Raymond

More information

Diffuse Pollution Conference, Dublin 2003 EFFECT OF SALINITY ON HEAVY METALS MIGRATION AMONG DISSOLVED AND SOLID PHASES IN ESTUARY SEDIMENT

Diffuse Pollution Conference, Dublin 2003 EFFECT OF SALINITY ON HEAVY METALS MIGRATION AMONG DISSOLVED AND SOLID PHASES IN ESTUARY SEDIMENT Diffuse Pollution Conference, Dublin 23 EFFECT OF SALINITY ON HEAVY METALS MIGRATION AMONG DISSOLVED AND SOLID PHASES IN ESTUARY SEDIMENT *TsaiL. J. 1, Yu.C. 1, Ho S.T. 2, Chang J. S. 1, Wu T. S. 1 1 Department

More information

Cation Exchange Capacity, CEC

Cation Exchange Capacity, CEC Cation Exchange Capacity, CEC The basic building blocks of clay minerals are: silicon atoms surrounded by four oxygen atoms (tetrahedra), and aluminium atoms surrounded by six hydroxide groups (dioctahedra),

More information

HUMUS CHEMISTRY. Genesis, Composition, Reactions. Second Edition. F. J. STEVENSON Department of Agronomy University of Illinois

HUMUS CHEMISTRY. Genesis, Composition, Reactions. Second Edition. F. J. STEVENSON Department of Agronomy University of Illinois JOHN WILEY & SONS, INC. HUMUS CHEMISTRY Genesis, Composition, Reactions Second Edition F. J. STEVENSON Department of Agronomy University of Illinois New York Chichester Brisbane Toronto Singapore CONTENTS

More information

CHM 152 Lab 5: Qualitative Analysis updated May, 2011

CHM 152 Lab 5: Qualitative Analysis updated May, 2011 CHM 152 Lab 5: Qualitative Analysis updated May, 2011 Introduction In this lab you will see how it s possible to separate a mixture using many of the common reactions you ve learned in General Chemistry

More information

Volume Composition of a Desirable Surface Soil

Volume Composition of a Desirable Surface Soil Soil Chemistry Volume Composition of a Desirable Surface Soil 50% pore space 25% air 45 to 48% mineral matter 50% solid material 25% water 2 to 5% organic matter Soil Organic Matter Soil organic matter:

More information

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer 1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer PerkinElmer LAS (UK) Ltd, Chalfont Rd, Seer Green, Beaconsfield, Bucks HP9 2FX tel: 0800 896046 www.perkinelmer.com John Davies January

More information

COMPARATIVE STUDY BETWEEN EXTERNAL STANDARD METHOD AND INTERNAL STANDARD METHOD FOR LOW-LEVEL TRITIUM MEASUREMENTS

COMPARATIVE STUDY BETWEEN EXTERNAL STANDARD METHOD AND INTERNAL STANDARD METHOD FOR LOW-LEVEL TRITIUM MEASUREMENTS International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Agricultural Fertilizer Applicator Soil Test Results What the heck do they mean?

Agricultural Fertilizer Applicator Soil Test Results What the heck do they mean? Agricultural Fertilizer Applicator Soil Test Results What the heck do they mean? Northeast Ohio Pesticide Safety Education Program Lee Beers, OSU Extension Trumbull County beers.66@osu.edu 330-638-6783

More information

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Jost Eikenberg, Maya Jäggi, Max Rüthi Paul Scherrer Institute, CH-5232 Villigen, Switzerland Content

More information

ADSORPTION OF Co AND ZN ON MONTMORILLONITE IN THE PRESENCE OF A CATIONIC PESTICIDE

ADSORPTION OF Co AND ZN ON MONTMORILLONITE IN THE PRESENCE OF A CATIONIC PESTICIDE Clay Minerals (1996) 31,485M-90 ADSORPTION OF Co AND ZN ON MONTMORILLONITE IN THE PRESENCE OF A CATIONIC PESTICIDE T. UNDABEYTIA, E. MORILLO AND C. MAQUEDA Instituto de Recursos Naturales y Agrobiologla,

More information

KATHOLIEKE UNIV LEUVEN (BELGIUM) READ ONLINE

KATHOLIEKE UNIV LEUVEN (BELGIUM) READ ONLINE Adsorption, Mobility And Organisation Of Organic Molecules At Clay Surfaces Probed By Photophysics And Photochemistry By KATHOLIEKE UNIV LEUVEN (BELGIUM) READ ONLINE If you are looking for the book Adsorption,

More information

Lab 8 Dynamic Soil Systems I: Soil ph and Liming

Lab 8 Dynamic Soil Systems I: Soil ph and Liming Lab 8 Dynamic Soil Systems I: Soil ph and Liming Objectives: To measure soil ph and observe conditions which change ph To distinguish between active acidity (soil solution ph) and exchangeable acidity

More information

Surface Complexation.

Surface Complexation. Surface Complexation. Jean-François Gaillard, Notes for CE-367 OBJECTIVES To show how the presence of particles in natural and engineered systems controls the fate of many trace elements. The concepts

More information

IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS

IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS IJRRAS 4 (1) July 21 IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS Felix F. Udoeyo 1, Robert Brooks 2, Hilary Inyang 3 & Sunyoung Bae 4. 1 Assistant Professor, Temple University, Dept. of Civil and

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

SST3005 Fundamentals of Soil Science LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS

SST3005 Fundamentals of Soil Science LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS Learning outcomes The student is able to: 1. Separate soil particles : sand, silt and clay 2. determine the soil texture class using

More information

Supplementary Data. Size-controlled synthesis of MIL-101(Cr) nanoparticles with. enhanced selectivity for CO 2 over N 2

Supplementary Data. Size-controlled synthesis of MIL-101(Cr) nanoparticles with. enhanced selectivity for CO 2 over N 2 Supplementary Data Size-controlled synthesis of MIL-11(Cr) nanoparticles with enhanced selectivity for CO 2 over N 2 Dongmei Jiang, Andrew D. Burrows* and Karen J. Edler Department of Chemistry, University

More information

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Supporting information for A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Suresh Sanda, Srinivasulu Parshamoni and SanjitKonar* Department of

More information

It is important to recognize two distinct but overlapping uses of the term "clay":

It is important to recognize two distinct but overlapping uses of the term clay: Soil Texture (Particle Size Analysis or Mechanical Analysis) Introduction Texture, or size distribution of mineral particles (or its associated pore volume), is one of the most important measures of a

More information

Influence of soil type and land use on the nature of mobile colloids: implications for the metal transfer in soils

Influence of soil type and land use on the nature of mobile colloids: implications for the metal transfer in soils Symposium no. 01 Paper no. 1289 Presentation: poster Influence of soil type and land use on the nature of mobile colloids: implications for the metal transfer in soils CITEAU Laëtitia, LAMY Isabelle, van

More information

Binding of Polar Organic Contaminants at Water-Mineral Interfaces: Experimental and Computational Studies

Binding of Polar Organic Contaminants at Water-Mineral Interfaces: Experimental and Computational Studies Binding of Polar rganic ontaminants at Water-Mineral Interfaces: Experimental and omputational Studies Ludmilla Aristilde Assistant Professor ollege of Agricultural and Life Sciences Binding of Polar rganic

More information

Supporting Information

Supporting Information Supporting Information Heteroaggregation of Graphene Oxide with Nanometer- and Micrometer-Sized Hematite Colloids: Influence on Nanohybrid Aggregation and Microparticle Sedimentation Yiping Feng, 1, 2,

More information

Instrumental Characterization of Montmorillonite Clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya

Instrumental Characterization of Montmorillonite Clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya Instrumental Characterization of Montmorillonite Clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya Maina,E.W. Wanyika, H.J. Gacanja, A.N. Department of Chemistry, Faculty of Science,

More information

CESIUM SORPTION/DESORPTION ON SALIGNY GEOLOGIC FORMATIONS

CESIUM SORPTION/DESORPTION ON SALIGNY GEOLOGIC FORMATIONS CESIUM SORPTION/DESORPTION ON SALIGNY GEOLOGIC FORMATIONS C. BUCUR 1, M. OLTEANU 1, N. DULAMA 1, M. PAVELESCU 2 1 Institute for Nuclear Research, P.O. Box 78, Pitesti, Romania, E-mail: crina.bucur@nuclear.ro

More information

Procedure for the Determination of Permanganate Oxidizable Carbon

Procedure for the Determination of Permanganate Oxidizable Carbon Procedure for the Determination of Permanganate Oxidizable Carbon Overview: Steve Culman, Mark Freeman, Sieglinde Snapp Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060

More information