Uranium biosorption by Spatoglossum asperum J. Agardh:

Size: px
Start display at page:

Download "Uranium biosorption by Spatoglossum asperum J. Agardh:"

Transcription

1 Chapter 6 Uranium biosorption by Spatoglossum asperum J. Agardh: 76

2 Chapter 6. Uranium biosorption by Spatoglossum asperum J. Agardh: Characterization and equilibrium studies Materials Collection of biomass Biomass of brown alga S. asperum was collected from the sea shores of Malvan (Maharashtra, India). The biomass after collection was washed thoroughly with tap water. This was followed by washing three times with the deionised water and finally by glass distilled water in order to get a clean biomass that is free from silt, sand, diatoms and other epiphytic organisms. Biomass after cleaning was dried at an ambient temperature of 25 ± 2 ºC and stored as whole biomass at room temperature. Some portion of the biomass was powdered using the mortar and pestle. The particle size that could pass through the sieve of 500 µm but was retained by the 250 µm sieve size was used for the experiment Chemicals UO 2 (NO 3 ) 2.6H 2 O (Merck, Germany) was used to prepare the uranium solution. The ph of the uranium solution was adjusted to required values by using Na 2 CO 3 or HNO Methods Unless otherwise indicated, for all experiments 25 mg of dry biomass was introduced into 50 ml of uranium solution in 150 ml conical flasks. After 3 hours of shaking at 150 rpm and 30 C, the supernatant was separated by centrifugation (10,000 rpm for 10 minutes) and used for estimating the dissolved uranium concentration. Estimation 77

3 of uranium (VI) was done by Arsenazo (III) method (Savvin, 1961). The data presented in the result represents the average of triplicate readings ± standard error. The statistical analysis was done for Analysis of variance (One way ANOVA and Tukey s significance test) OriginPro 7.5 software. The values having P<0.05 were considered as significantly different. All experiments were performed using powdered biomass having particle size between µm, and, whole biomass, at ph 5.5. For each of the experiments, solutions without biomass were used as controls. The biosorption equilibrium of uranium per unit algal biomass (mg of U / g dry weight of algal biomass) was calculated using following expression q e = (C 0 C)V /W (6.1) where C 0 and C are the concentrations of uranium (mg/l) in the solution before and after the biosorption respectively. V is the volume of uranium solution used in liters and W is the amount of biomass used in grams Effect of ph on the sorption of uranium The effect of ph on the biosorption of uranium was studied using initial uranium concentrations of 20 mg/l, 50 mg/l, and and100 mg/l. The residual uranium concentration was estimated from the samples withdrawn after 2 hours of contact time. The range of ph studied was 2 to 10. Uranium solution was continuously stirred while adjusting the ph until a constant required reading was observed Effect of contact time on the sorption of uranium Effect of contact time was investigated using an initial uranium concentration of 100 mg/l. The initial ph was adjusted to 5.5. Periodically 0.5 ml of sample was 78

4 withdrawn, centrifuged at 10,000 rpm for 10 minutes and the dissolved uranium concentration was estimated Protonation of sorbent Biomass (Whole and powdered biomass) was protonated by using three different protonating agents viz 0.1 M HCl, 0.1 M HNO 3, and 0.1 M H 2 SO 4. For protonation biomass was brought in contact with protonating agent at a concentration of 10 g biomass/l. After 4 hours of contact time, at 25 ºC and a shaking of 150 rpm, biomass was filtered and washed thoroughly by distilled water, till a constant ph of 5.5 was achieved. Biomass was then dried at an ambient temperature of 37 C. 25 mg of this protonated biomass was then brought in contact of 50 ml of uranium solution having an initial concentration of 300 mg/l Effect of ions on the sorption of uranium Uranium sorption in presence of various cations and anions was investigated in bimetallic combination. Equimolar concentrations of test ion (420 µm) and uranium (420 µm equivalent to 100 mg/l) were prepared. 50 mg of biomass was brought in contact with 150 ml of bimetallic solution having ph 5.5. The cations used were Na +, K +, Pb 2+, Cd 2+, Ag 2+, NH 4, and Mg 2+ (all nitrate salts), and the anions used for the study were CO 2-3, NO - 3, SO 2-4, Acetate, and Citrate Effect of temperature on the sorption of uranium Temperature effects were investigated for five different temperatures 15 ºC ± 3ºC, 25 ºC ± 3ºC, 35 ºC ± 3ºC, 45 ºC ± 3ºC, and 55 ºC ± 3 ºC. Initial uranium concentration used was 500 mg/l and initial ph was

5 Effect of initial metal ion concentration on the sorption of uranium Experiment was performed for five different initial uranium concentrations ranging from 20 mg/l to 600 mg/l at an initial ph value of Results and Discussions Effect of ph on the sorption of uranium Effect of ph on the biosorption of uranium was studied using initial uranium concentrations of 20 mg/l, 50 mg/l, and 100 mg/l. Range of ph studied was 2 to 10. The ph of aqueous solution is an important controlling factor in a sorption process. It influences both, the speciation of uranium in aqueous solution, and binding sites present on surface of biomass (Kalin et al., 2005). For initial uranium concentration of 20 mg/l using both the types of biomass, a decreased uranium uptake was observed at ph 2. Percent removal of uranium was more than 95 across the ph range 3-9, and decreased to 80 at ph 10, Fig 6.1(a&b). Such a ph independent uranium removal has not been reported for any of the biosorbents. 80

6 Fig. 6.1(a). Effect of ph on uranium removal by powdered biomass. V = 50 ml, W = 25 mg, agitation speed = 150 rpm, contact time = 2 hours mg/l 50 mg/l 100 mg/l Percent removal of U ph Fig. 6.1(b). Effect of ph on uranium removal by whole biomass. V = 50 ml, W = 25 mg, agitation speed = 150 rpm, contact time = 2 hours mg/l 50 mg/l 100 mg/l Percent removal of U ph 81

7 The ph independent uranium removal by S. asperum from dilute wastes gives an additional advantage for use of this biomass as biosorbent. To the best of our knowledge this is first report on a uranium biosorbent exhibiting a ph independent uranium removal from dilute aqueous wastes. For 50 mg/l initial uranium concentration, and while using powdered biomass we observed more than 88% removal of uranium across the ph range 4-10, and 82% of uranium removal was observed for whole biomass across a ph range 3-8. Percent removal of uranium versus ph for the initial uranium concentration of 100 mg/l resulted in a bell shaped curve with optimum uranium removal (>96%) at ph 5-6. The reason for the decreased sorption at ph 2 could be because at this ph there is a very high concentration of H + and H 3 O +, which compete with other ions for binding sites present on surface of biomass. The sorption of uranium at different ph values has been attributed to the binding of uranium to ionized functional groups present on surface of biomass. Different functional groups present on the biomass remain in ionized form at or near their pk values. Ligands like carboxyl, amino, and phosphate having the pk values in the range of 3-5 would be involved in uranium sorption in the ph range 3 to 5. Removal of uranium from ph 6-10 could be due to presence of ligands having pk values between 6 and 13 (hydroxyl, Imidazole, Sulphide, Amino and Imino) (Davis et al., 2003: Kalin et al., 2005). Carbonates form uranyl-carbonate complexes above ph 6 and reduce bioavailability of uranium. It is not carbonate that competes with uranyl ions for surface binding sites on the biomass. Rather, aqueous carbonate competes with surface binding sites for uranyl ions (Wazne et al., 2006). In our study we used Na 2 CO 3 for adjusting ph of solution, and also effect of 82

8 atmospheric CO 2 comes into picture. Above ph 6, due to the presence of these carbonates, formation of mixed carbonato-hydroxo-u (VI) complex ion (UO 2 ) 2 CO 3 (OH) 3 - takes place. This mixed complex ion (UO 2 ) 2 CO 3 (OH) 3 - predominates but coexists with significant amounts of (UO 2 ) 3 (OH) + 5, (UO 2 ) 4 (OH) + 7, (UO 2 ) 3 (OH) 2-8 and UO 2 (CO 3 ) 4-3 complex ions in the solution in the ph range 7-8. Above ph 8 all U (VI) complex ions in the solution are transformed to UO 2 (CO 3 ) 4-3 complex ion (Krestou and Panias, 2004). As already discussed, that, the affinity to cell wall ligands for anionic metal species is low. Thus formation of these carbonato-hydroxo-u (VI) complex ions reduces the availability of U (VI) for biosorption. This could be the reason that various researchers could not observe U (VI) sorption at high ph values. But in this study percent removal of uranium observed above ph 6 using an initial uranium concentration of 100 mg/l by powdered biomass was 96 ± 0.2 at ph 6, 94.5 ± 0.14 at ph 7, 85.3 ± 0.46 at ph 8, 70.3 ± 0.7 at ph 9, and 30.1 ± 1.1 at ph 10. For whole biomass percent removal of uranium was 97.7 ± 0.3 at ph 6, 89.8 ± 0.3 at ph 7, 63.3 ± 0.4 at ph 8, 55.6 ± 0.6 at ph 9, and 23 ± 1.4 at ph 10.Wazne et al., (2006) reported the removal of U (VI) in presence of carbonates from aqueous solutions at ph>6 while using TiO 2 as sorbent and an initial uranium concentration of 1 mg/l. The advantage of S. asperum over TiO 2 as a sorbent for uranium is due to its natural availability in nature, which cuts down its cost of synthesis as compared to TiO 2. For the best of our knowledge there are no reports on any sorbent from biological origin that has efficiently removed uranium from aqueous solutions in presence of carbonates, as we are reporting in this study Effect of contact time on the sorption of uranium 83

9 Sorption kinetics was investigated at an initial uranium concentration of 100 mg/l. The effect of contact time on sorption of uranium brings out two important physicochemical aspects viz. kinetics and equilibria of the process. Kinetics describes the metal ion uptake rate. The fast rate of uptake is considered a good characteristic of sorbent. The state of equilibrium achieved in a sorption process helps in determining the distribution of metal ions in solid and liquid phases, and capacity of sorbent for sorption. Plot of q e versus time is shown in Fig The metal removal was rapid with more than 65% and 49% of total biosorption taking place in 30 minutes using powdered and whole biomass respectively. Equilibrium could be achieved in two hours of contact time. Amount of uranium biosorbed at the time of equilibrium was 185 ± 1.5 and 190 ± 1.3 mg/g for powdered and whole biomass respectively. Fig Biosorption kinetics for powdered and whole biomass. V = 50 ml, W =25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm, C 0 = 100 mg/l q (mg/g) whole biomass powdered biomass time (min) 84

10 After the equilibrium was attained, q e remained constant (studied for 24 hours, data not shown). The higher rate of biosorption in the initial stage of the biosorption could be due the electrostatic interactions between the metal ions and the surface ligands on the algal biomass. Binding sites or ligands present on the surface of biomass bind to uranyl ions as soon as they come in contact with each other. As time progresses availability of these binding sites reduces, thus reducing rate of biosorption (Bhat et al., 2008). The fast rate of sorption in powdered biomass as compared to whole biomass could be due to increased surface area (caused because of powdering of the biomass) and thus possibly increasing the availability of surface ligands, which in turn would have led to faster initial rate as compared to the whole biomass Effect of protonation on the sorption of uranium The aim of protonation of the sorbent was to eliminate metal ions like Na +, K +, Ca 2+, and Mg + 2 etc, which bind to the acid functional groups of alga in sea water. At ph<2, H + out compete other ions and strip off them from the ligands (Kalin et al., 2005). S. asperum is a brown marine alga. In general 40% of dry weight of brown algae is constituted by alginates. Alginates in brown algae are rich in carboxylic groups. The adsorption capacity of algae has been directly related to the presence of these sites on alginate. In the chemical alterations implied by the protonation, the proton displaces light metal ions from these binding sites (Davis et al., 2003). Thus making a binding site available, that would have earlier been occupied by a light metal ion. The results of the protonation of dried biomass S. asperum are shown in Table

11 A slight increase in q e was observed in protonated powdered biomass, and a slight decrease was observed while using protonated whole biomass. Difference in q e for protonated and non protonated biomass (whole and powdered biomass) was not significant. The reason for these observations could be due to higher affinity of uranium towards binding sites as compared to the light metal ions. Therefore, for all the subsequent experiments biomass in non-protonated form was investigated. This gives an additional advantage for the use of S. asperum as sorbent. Because, it makes the process more cost effective, and also eliminates the chances of chemical pollution caused by the use of protonating agents. Table 6.1. Effect of protonation of biomass on the biosorption of uranium. V = 50 ml, W = 25 mg, C 0 = 300 mg/l, Temperature = 25 C, Shaking = 150 rpm, Contact time = 3 hours. Protonating agent q e (mg/g) Powdered biomass Whole biomass Control (Non protonated ± ± 7 biomass) 0.1 M HCl ± ± M HNO ± ± M H 2 SO ± ± Effect of ions on the sorption of uranium Various metal ions remain present in waste waters containing uranium. In mixtures, these metal ions compete with uranium for the binding sites, based on the molecular size, shape, and the configuration of binding site, and, thus decrease the removal of uranium by the sorption process (Kalin et al., 2005). The search for the sorbents of uranium, whose efficiency is not affected by a broad range of cations and anions, has 86

12 been an active field of research in uranium biosorption. Uranium sorption by S. asperum was investigated in presence of equimolar concentration of various ions. The results are presented in Table 6.2. Among the cations investigated, Pb 2+ resulted in a decreased (50 %) removal of uranium, and among the anions tested, citrate showed antagonism in uranium sorption. Citrate ions form multidentate complexes with variety of toxic metal ions and radionuclides. The formation of binuclear complex between citrate and uranium would have reduced its availability for binding to biomass (Francis et al., 1992). Various researchers have reported the effect of ions on uranium sorption by different biosorbents. Table 6.2. Effect of various cations and anions on the biosorption of uranium at ph 5.5. V = 150 ml, W = 50 mg, Contact time = 3 hours, Temperature = 30 C, Shaking = 150 rpm. Cations q e (mg/g) Control 252 ± 5 Na ± 6 K ± 4 Mg ± 5 Cd ± 6 Ag ± 4 + NH ± 5 Pb ± 5 Anions 2- CO ± 4 - NO ± 5 2- SO ± 6 Acetate 256 ± 5 Citrate 119 ± 5 87

13 Effect of temperature on the sorption of uranium Temperature effects were investigated for five different temperatures 15 ºC ± 3ºC, 25 ºC± 3ºC, 35 ºC ± 3ºC, 45 ºC ± 3ºC, and 55 ºC ± 3 ºC at an initial uranium concentration of 500 mg/l. Uranium biosorption increased with increase in temperature as shown in Fig 6.3. When temperature was increased from 15 ºC to 55 ºC, q e increased from ± 3.5 to 459 ± 3.5 and ± 2.5 to 440 ± 2.7 mg/g for whole and powdered biomasses respectively. Different reasons for temperaturedependent variation in metal sorption have been suggested, such as, the increased biosorption at higher temperatures could be due to availability of some new binding sites at higher temperatures, and/or due to higher affinity of binding sites to metal ions (Goyal et al., 2003). A high metal sorption at higher temperature is an indication of chemisorption that is the involvement of strong interactions between uranyl ions and binding sites present on biomass. As at higher temperatures weak interactions like hydrogen bonding and Vander-waal s interactions are broken and do not contribute to sorption of metal ions (Bhat et al., 2008). At all the temperatures studied, whole biomass showed more uranium uptake than powdered biomass. This could be due to non-availability of some binding sites caused by the grinding of biomass. Final ph of the solutions increased. The final ph of the solutions using powdered biomass was 4.5, 4.7, 5.2, 5.5, and 5.9, and for whole biomass it increased to 4.4, 4.5, 5.0, 5.6, and 5.9, when the temperature was 15 ºC ± 3ºC, 25 ºC ± 3ºC, 35 ºC ± 3ºC, 45 ºC ± 3ºC, and 55 ºC ± 3 ºC respectively. The reason for the decrease in ph at 15 ºC ± 3ºC, 25 ºC ± 3ºC and 35 ºC ± 3ºC could be due to exchange of 88

14 hydrogen ions from biomass for uranyl ions, showing ion exchange as the principle of metal biosorption at these temperatures. Fig.6.3. Effect of temperature on uranium biosorption. V = 50 ml, W = 25 mg, ph = 5.5, agitation speed = 150 rpm, C 0 = 500 mg/l. 480 w hole biomass pow dered biomass 460 q e (mg/g) Temperature ( ο C) Effect of initial uranium concentration on the sorption of uranium Experiment was performed for six different initial uranium concentrations ranging from 20 mg/l to 600 mg/l. The results are shown in Fig The highest value of q e was observed to be ± 17.4 and ± 17.6 mg/g, at C e of and mg/l for powdered and whole biomass respectively. Amount of uranium biosorbed increased at a fast rate from the initial uranium concentration of 20 mg/l to 400 mg/l. With the concomitant increase in uranium concentration from mg/l number of uranyl ions increased. At low uranium concentration, saturation of binding sites 89

15 present on biomass could not be achieved, as the number of uranyl ions was low as compared to number of binding sites. Fig Effect of initial metal ion concentration on uranium biosorption. V = 50 ml, W = 25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm Whole biomass Pow dered biomass 500 q, mg/g [U], ppm Increase in concentration of uranium resulted in the increase of uranyl ions, thus increasing q e, till saturation of biomass was achieved. Once the binding sites present on the biomass got saturated with uranium, availability of binding sites present on biomass for uranium decreased. When initial metal ions concentration is high, metal ion sorbed is also high. This is due to efficient use of sorptive capacity of sorbent, because of a higher concentration gradient pressure (Saxena et al., 2006). Biosorption distribution coefficient was also determined. Biosorption distribution coefficient K is defined as the ratio of equilibrium concentration of metal ion in solid and aqueous phase (K = q e /C e ), and has the unit ml/g dry weight of biomass. High distribution coefficient is considered as a characteristic of good biosorbent (Bhainsa and D Souza, 1999). The powdered and whole biomasses exhibited 90

16 maximum K values of 60,005 and 1,95,341 ml/g at C e of and mg/l, respectively (Fig. 6.5). Fig 6.5. Biosorption distribution coefficient versus residual uranium concentration. V = 50 ml, W =25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm w hole biomass pow dered biomass K (ml/g) C f (mg/l) Adsorbents having a distribution coefficient as small as 10 ml/g are being utilized by various industries for separation processes (Akhtar et al., 2007). Bhainsa and D Souza (1999) reported a K value of ml/g for uranium sorption by Asperigillus fumigtus, and in another study Akhtar et al. (2007) repored a K value of ml/g for uranium sorpion using biomass of Trichoderma harzianum. The biosorption distribution coefficient achieved in this study was higher than that achieved in above mentioned reports, and is an indication of high affinity between uranyl ions and S. asperum, and a possible use of this biomass for commercial application in separation techniques. 91

17 Kinetic modeling of uranium sorption Kinetics of uranium uptake was modeled using the pseudo-first order and pseudosecond order Lagergren equation. The integrated form of pseudo-first order reaction of Lagergren for sorption can be expressed as log(q e -q t ) = log(q e ) - (k 1 /2.303) t (6.2) where, q t is the amount of metal sorbed (mg/g dry weight) time t (min) and k 1 is the rate constant of pseudo-first order sorption (min -1 ). The integrated linear form of the pseudo-second order rate of Lagergren (Ho and McKay, 1999) can be expressed as: t/q = 1/ (k 2. q 2 e ) + (1/ q e ) t (6.3) where k 2 (g mg -1 min -1 ) is the rate constant for the pseudo-second order sorption. The observed and experimental values for q e, and r 2 for pseudo-first order, and pseudo-second order kinetics are shown in the Table 6.3. The observed experimental q e values were close to the values of q e (for both powdered and whole biomass) obtained from the slope of the linear plot Fig. 6.6(b) of (t/q t Vs t) for the pseudosecond order rate kinetics as shown in the Table 6.3. Therefore, the pseudo-second order rate kinetics model best described the experimental data. The initial rate of uptake (h) was calculated from the expression h = k 2. q 2 e. It was found to be more than double for the powdered biomass as compared with whole biomass, thus confirming our observations of faster initial rate kinetics in powdered biomass than the whole biomass. 92

18 Fig. 6.6(a). Pseudo-first order plot [log ( q e -q t ) Vs t], for powdered and whole biomass.v = 50 ml, W = 25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm, C 0 = 100 mg/l w hole biomass pow dered biomass log (q e -q t ) t (min) Fig. 6.6(b). Pseudo-second order plot (t/q t Vs t), for powdered and whole biomass. V = 50 ml, W = 25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm, C 0 = 100 mg/l w hole biomass pow dered biomass t/q t t (min) 93

19 Table 6.3. Pseudo-first order, pseudo-second order, and experimental values for whole and powdered biomass. V = 50 ml, W = 25 mg, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm, initial uranium concentration = 100 mg/l. Biomass Experimental q e (mg -1 gm) Pseudo-first order k 1 q e r 2 min -1 mg -1 gm Pseudo-second order k 2 q e r 2 min -1 mg -1 gm Initial rate (h) mg/g.min Whole biomass Powdered biomass * * Equilibrium modeling for uranium sorption Adsorption curve data were fitted to linearized Langmuir and Freundlich adsorption isotherms (Langmuir, 1918; Freundlich, 1907). The Langmuir isotherm is a means to interpret hyperbolic adsorption data. It is based on equation used in Michaelis-Menten enzyme kinetics, and describes the adsorption of metal ions to a finite number of ligand sites in a single layer on the cell surface. Linearised form of Langmuir isotherm can be represented as C e /q e = [(1/q max )*(1/b)] + C e /q max (6.4) Where q max is the maximum metal uptake (mg/g) and b the ratio of adsorption / desorption rates related to energy of adsorption. The linearised form of Freundlich equations is ln q e = ln K f + 1/n * (ln C e ) (6.5) where K f represents Freundlich constant and is a measure of adsorption capacity, and 1/n the intensity of adsorption. The biosorption of uranium (VI) by S. asperum 94

20 was well described by Langmuir isotherm Fig 6.7(a) for both the types of biomasses (whole biomass and powdered biomass). Langmuir isotherm displayed r 2 >0.99 for both the powdered and whole biomass. q max was calculated from the slope of Langmuir isotherm (eq 4) Fig 6.7(a), and its values were 588 and 666 mg/g for powdered and whole biomass respectively. This suggests that biosorption of uranium onto the S. asperum biomass was limited to monolayer and interaction was only between metal ion and biomass binding site, and not among the metal ions (Langmuir, 1918). The value of b was calculated from the intercept of the plot of ln q e Vs ln C e Fig. 7(b) from the equation no (5) and was found out to be 5.84 * 10-2 and 8.87 * 10-2 l/mg for powdered and whole biomass respectively. Uranium sorption data was also fitted to Freundlich isotherm. The r 2 value obtained from the plot (Fig. 6.7(b).) for whole biomass was 0.87 and 0.93 for powdered biomass. K f and n were calculated from the intercept and slope of equation (2). n was 2.5 for powered biomass and 2.8 for whole biomass. As the value obtained for n lies in the range 1 < n < 10, it suggested a beneficial adsorption (Freundlich, 1907). 1/n values for both powdered and whole biomass are less than 1, which is suggestive of heterogeneous surface possession by the biomass having identical adsorption energy in all sites. 95

21 Fig 6.7(a). Langmuir isotherm for powdered and whole biomass. V = 50 ml, W = 25 mg, C 0 = mg/l, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm w hole biomass pow dered biomass 0.5 C e /q e (g/l) C e (mg/l) Fig 6.7(b). Freundlich isotherm for whole biomass and powdered biomass. V = 50 ml, W = 25 mg, C 0 = mg/l, temperature = 25 ºC, ph = 5.5, agitation speed = 150 rpm. 7 pow dered biomass w hole biomass ln q e ln C e 96

22 Table 6.4. Values obtained from Freundlich and Langmuir isotherms for whole and powdered biomass. Langmuir isotherm Freundlich isotherm Type of biomass q max (mg/gm) b r 2 K f n r 2 Whole biomass Powdered biomass Conclusion There are number of biosorbents for uranium which have been already reported. But, to the best of our knowledge none has proved to be an ideal biosorbent. For metal uptake biosorbents having a metal loading capacity >15% are considered as good biosorbents. Search for sorbents from biological origin having higher metal loading capacities has been an active field of research. In the same context from our lab we have earlier reported a fungal biomass of Asperigillus fumigatus having a metal loading capacity of 423 mg/g (Bhainsa and D Souza, 1999), and a bacterial biomass of Pseudomonas spp. having a metal loading capacity of 541 mg/g (Sar and D Souza, 2001). Akhtar et al. (2007) reported another fungal biomass Trichoderma harzianum having a metal loading capacity of 612 mg/g. In comparison to the above mentioned biomasses, the biosorbent (S. asperum) used in our study has several advantages as described below: Natural occurrence of S. asperum on the sea coasts makes it an easily available biomass.being photosynthetic it is a cheap source for biosorbent material. 97

23 A ph independent uranium removal across ph range of 3 to 9 at a low initial metal concentration by S. asperum is a desired characteristic for an ideal biosorbent. This is the first study reporting a ph independent uranium sorption across such a wide range of ph. An efficient uranium sorption by S. asperum across the temperature range of C, indicates the feasibility of sorption process at varying temperatures. High biosorption distribution coefficient of ml/g, elucidated a high affinity of S. asperum towards uranium. A high q max is characteristic of a good biosorbent. In this study we could achieve a high q max (666 mg/g) as compared to the reported uranium biosorbents used in dead form. The better performance of S. asperum in form of whole biomass as compared with powdered biomass eliminates the possibilities of excessive bed compression caused by the use of powdered biomass in the fixed bed reactors. Biosorption characterization revealed S. asperum to be a promising and ideal biosorbent for the removal of uranium from the dilute aqueous solutions (having varying ph and temperatures). In subsequent studies sorption process involving the use of S. asperum for the removal of uranium, the feasibility and spontaneity of the reaction, and, the reusability of the biomass was checked by studying the thermodynamics and desorption of the process. 98

Chapter 7 Adsorption thermodynamics and recovery of uranium

Chapter 7 Adsorption thermodynamics and recovery of uranium Chapter 7 Adsorption thermodynamics and recovery of uranium 99 Chapter 7. Adsorption thermodynamics and recovery of uranium from aqueous solutions by Spatoglossum 7.1. Materials 7.1.1. Preparation of sorbent

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 2 ABSTRACT Calcium alginate beads generated from alginic acid sodium salt from brown algae were 3 used to explore the adsorption

More information

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE EXPERIMENTAL PROCEDURE The present experimentation is carried out on biosorption of chromium and lead from aqueous solutions by biosorbents Ageratum conyzoides leaf and Anacardium occidentale testa powder.

More information

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Ahmad Ashfaq* and Mohd Kaifiyan Civil Engineering Section, Faculty of Engineering & Technology, Aligarh

More information

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Nikazar, M.*, Davarpanah, L., Vahabzadeh, F. * Professor of Department of Chemical Engineering, Amirkabir University

More information

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

a variety of living species. Therefore, elimination of heavy metals/dyes from water and Chapter IV Studies on the adsorption of metal ions and dyes The presence of heavy metals/dyes in the aquatic environment can be detrimental to a variety of living species. Therefore, elimination of heavy

More information

Current World Environment Vol. 4(2), (2009)

Current World Environment Vol. 4(2), (2009) Current World Environment Vol. 4(2), 413-417 (2009) Removal of divalent manganese from water by adsorption using gac loaded with Ethylene Di-amine Tetra Acetic acid (EDTA) and Nitrilo Tri-acetic Acid (NTA)

More information

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Anoop Raj J R Anil K Das Aishwarya B S Sruthi Suresh Abstract- Batch sorption experiments

More information

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum Iranian J Env Health Sci Eng, 24, Vol.1, Barkhordar No.2, pp.58-64 B and Ghiasseddin M: Comparing of Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum * B Barkhordar

More information

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution ISSN : 0974-746X Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution Zahra Abbasi 1 *, Mohammad Alikarami 2, Ali Homafar 1 1 Department of Chemistry, Eyvan-e-Gharb Branch,

More information

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Suman Mor a,b*, Khaiwal Ravindra c and N. R. Bishnoi b a Department of Energy and Environmental Science, Chaudhary

More information

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal 5.1 Introduction Different contaminants are released to water bodies due to the rapid industrialization of human society, including heavy metal

More information

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Removal Of Copper From Waste Water Using Low Cost Adsorbent IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 3, Issue 6 (Jan. Feb. 2013), PP 51-55 Removal Of Copper From Waste Water Using Low Cost Adsorbent Jubraj Khamari* Sanjeet Kumar Tiwari**

More information

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho Polish Journal of Environmental Studies Vol. 1, No. 1 (26), 81-86 Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods Department of Environmental

More information

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Removal of Copper (II) from Aqueous Solutions using Chalk Powder Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (2): Pg. 713-717 Removal

More information

Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite

Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite Vol.2, Issue.6, Nov-Dec. 2012 pp-3989-3995 ISSN: 2249-6645 Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite Venkateswaran Vinayagam 1, Priya Thangaraju 2 1

More information

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 2319-2402,p- ISSN: 2319-2399.Volume 12, Issue 4 Ver. II (April. 2018), PP 43-48 www.iosrjournals.org Removal

More information

Sriperumbudur , INDIA

Sriperumbudur , INDIA The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 1 Pages 287-292 2013 Issn: 2319 1813 Isbn: 2319 1805 Adsorption Studies On Reactive Blue 4 By Varying The Concentration Of Mgo

More information

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes Portugaliae Electrochimica Acta 2010, 28(2), 125-133 DOI: 10.4152/pea.201002125 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous

More information

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski ADSORPTION OF CADMIUM IONS ON CHITOSAN MEMBRANES: KINETICS AND EQUILIBRIUM STUDIES Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski Chair of Nuclear and Radiation Chemistry Faculty of

More information

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34 Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Adsorption Lecture # 34 Last class we were discussing about advanced wastewater treatment

More information

CHAPTER 5. EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND

CHAPTER 5. EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND CHAPTER 5 EQUILIBRIUM AND THERMODYNAMIC INVESTIGATION OF As(III) AND As(V) REMOVAL BY MAGNETITE NANOPARTICLES COATED SAND 85 86 5.1. INTRODUCTION Since temperature plays an important role in the adsorption

More information

Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass

Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 7, Issue 1 Ver. II. (Feb. 14), PP 29-37 Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia

More information

Luke Chimuka. School of Chemistry, University of Witwatersrand

Luke Chimuka. School of Chemistry, University of Witwatersrand Preparation, characterization and application of NaHCO 3 leached bulk U(VI) imprinted polymers endowed with γ-mps coated magnetite in contaminated water Luke Chimuka School of Chemistry, University of

More information

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves Chemical Science Transactions DOI:10.7598/cst2013.15 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular

More information

Sorption of Cr(III) from aqueous solutions by spent brewery grain

Sorption of Cr(III) from aqueous solutions by spent brewery grain Sorption of Cr(III) from aqueous solutions by spent brewery grain Ana I. Ferraz 1, Maria T. Tavares 1, José A. Teixeira 1 1 Centro de Engenharia Biológica, IBQF, University of Minho, Campus de Gualtar,

More information

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT Ma. Brida Lea D. Diola 1, Christian R. Orozco 1 1 Institute of Civil Engineering, University of the Philippines, Diliman,

More information

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT Shashikant.R.Mise 1, Ravindra P. Amale 2, Rejendra K.Lamkhade 3 1 Professor, Department of Civil Engineering, PDA College

More information

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA) Oriental Journal of Chemistry Vol. 25(3), 799-803 (2009) Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent

Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent Suresh Gupta a, a Assistant Professor, Chemical Engineering Group Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India

More information

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (4):283-290 ISSN: 0976-8610 CODEN (USA): AASRFC Removal of Basic Dyes from Aqueous Solutions by Sugar Can

More information

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo.

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo. INFLUENCE OF TEMPERATURE ON METHYLENE BLUE SORPTION FROM SYNTHETIQUE AQUEOUS SOLUTIONS USING ALMOND PEEL (HARD VARIETY): EXPERIMENTAL, THERMODYNAMIQUE AND MODELLING STUDIES H. Benaïssa* 1, M. Boumediene

More information

GROUNDNUT SHELL: EFFECTIVE ADSORBENT FOR DEFLUORIDATION FROM AQUEOUS SOLUTION

GROUNDNUT SHELL: EFFECTIVE ADSORBENT FOR DEFLUORIDATION FROM AQUEOUS SOLUTION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 6, November-December 216, pp. 51 6, Article ID: IJCIET_7_6_6 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=6

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Korean J. Chem. Eng., 18(5), 692-697 (2001) Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Hak Sung Lee and Jung Ho Suh* Department of Chemical Engineering, *Department of

More information

NSave Nature to Survive

NSave Nature to Survive ISSN: 0974-0376 NSave Nature to Survive : Special issue, Vol. 1; 335-339 QUARTERLY www.theecoscan.in DEVELOPMENT OF CONTROL RELEASE PHOSPHATIC FERTILISER FROM PALM FRUIT HUSK M. Vinolia Thamilarasi et

More information

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Universities Research Journal 2011, Vol. 4, No. 3 Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Chaw Su Hlaing, 1

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.7, pp 3095-3099, 2015 ICEWEST-2015 [05 th - 06 th Feb 2015] International Conference on Energy, Water and Environmental

More information

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS Tero Luukkonen, Kateřina VĕžnÍková, Emma-Tuulia Tolonen, Hanna Runtti, Juho Yliniemi, Tao Hu, Kimmo

More information

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL Engineering Postgraduate Conference (EPC) 2008 ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL R. Rosli 1, A. T. A Karim 1, A. A. A. Latiff 1 and M. R. Taha 2 Faculty

More information

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS Int. J. Chem. Sci.: 12(4), 2014, 1550-1556 ISSN 0972-768X www.sadgurupublications.com STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS AMITA SHARMA * Chemistry Department,

More information

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Dinesh Kumar a, Sambi S. S. a, Sharma S. K. a, Kumar, V. b a University School of Chemical Technology, GGS IPU, Delhi - 110006,

More information

Biosorption of Cu (II) from aqueous solutions: Kinetics and characterization studies

Biosorption of Cu (II) from aqueous solutions: Kinetics and characterization studies Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 25, 7 (3):25-23 (http://scholarsresearchlibrary.com/archive.html) ISSN 975-57 USA CODEN: DPLEB4 Biosorption

More information

PREFACE About the Author

PREFACE About the Author Contents / vii CONTENTS PREFACE About the Author CONTENTS v vi vii INTRODUCTION Sorption and Biosorption Share the Methodology 1 1. POTENTIAL OF BIOSORPTION 5 1.1 METALS: ENVIRONMENTAL THREAT 5 1.2 BIOSORPTION

More information

pechischeva@gmail.ru germanium from the poor raw materials and for the arsenic removal from the technological solutions ties studies were performed. The mechanical activation in the high-energy planetary

More information

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017 Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel Sundus Saleh Nehaba Al-Qasim Green University / College of Agriculture Snasna71@yahoo.com Abstract This study

More information

Adsorption of Pb(II) Ions on Teak Leaves Activated Carbon- A Kinetic and Equilibrium Study

Adsorption of Pb(II) Ions on Teak Leaves Activated Carbon- A Kinetic and Equilibrium Study Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2010, 1 (2): 35-43 ISSN: 0976-8505 CODEN (USA) CSHIA5 Adsorption of Pb(II) Ions on Teak Leaves Activated

More information

EQUILIBRIUM ANALYSIS FOR BATCH STUDIES OF ADSORPTION OF FLUORIDE IN WATER USING ACTIVATED ALUMINA R AND D 651-X

EQUILIBRIUM ANALYSIS FOR BATCH STUDIES OF ADSORPTION OF FLUORIDE IN WATER USING ACTIVATED ALUMINA R AND D 651-X Int. J. Chem. Sci.: 6(4), 2008, 1900-1912 EQUILIBRIUM ANALYSIS FOR BATCH STUDIES OF ADSORPTION OF FLUORIDE IN WATER USING ACTIVATED ALUMINA R AND D 651-X WAHEED S. DESHMUKH and S. J. ATTAR Department of

More information

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell International Journal of Environmental Engineering and Management ISSN 2231-1319, Volume 4, Number 4 (213), pp. 273-28 Research India Publications http://www.ripublication.com/ ijeem.htm Removal of Cd

More information

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent International Journal of Scientific and Research Publications, Volume 4, Issue 10, October 2014 1 Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

More information

CHAPTER 3. BATCH STUDIES FOR As(III) REMOVAL FROM WATER BY USING MAGNETITE NANOPARTICLES COATED SAND: ADSORPTION KINETICS AND ISOTHERMS

CHAPTER 3. BATCH STUDIES FOR As(III) REMOVAL FROM WATER BY USING MAGNETITE NANOPARTICLES COATED SAND: ADSORPTION KINETICS AND ISOTHERMS CHAPTER 3 BATCH STUDIES FOR As(III) REMOVAL FROM WATER BY USING MAGNETITE NANOPARTICLES COATED SAND: ADSORPTION KINETICS AND ISOTHERMS 41 42 3.1. INTRODUCTION Arsenic contamination of ground water and

More information

FEASIBILITY STUDY OF ACID DYE REMOVAL FROM SYNTHETIC AQUEOUS SOLUTIONS BY SORPTION USING TWO VARIETIES OF ORANGE PEEL IN BATCH MODE

FEASIBILITY STUDY OF ACID DYE REMOVAL FROM SYNTHETIC AQUEOUS SOLUTIONS BY SORPTION USING TWO VARIETIES OF ORANGE PEEL IN BATCH MODE FEASIBILITY STUDY OF ACID DYE REMOVAL FROM SYNTHETIC AQUEOUS SOLUTIONS BY SORPTION USING TWO VARIETIES OF ORANGE PEEL IN BATCH MODE H. Benaïssa, A. Benaïssa, Z. Senouci-Berekci Laboratory of Sorbent Materials

More information

IRON AND ALUMINIUM OXIDES POROUS MATERIALS FROM LATERITE: EFFICIENT ARSENIC ADSORBENTS

IRON AND ALUMINIUM OXIDES POROUS MATERIALS FROM LATERITE: EFFICIENT ARSENIC ADSORBENTS IRON AND ALUMINIUM OXIDES POROUS MATERIALS FROM LATERITE: EFFICIENT ARSENIC ADSORBENTS Y. Glocheux 1, S.J. Allen 1 and G.M. Walker 1 1. School of Chemistry and Chemical Engineering, Queen s University

More information

Research in Chemistry and Environment

Research in Chemistry and Environment International Journal of Research in Chemistry and Environment Available online at: www.ijrce.org ISSN 2248-9649 Research Paper Adsorption of Eosin Dyes Onto Activated Carbon Prepared from Wood of Adina

More information

Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements

Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements - 11490 Vladimir M.Gelis, Vitaly V.Milyutin, Evgeny A.Kozlitin, Natalya A.Nekrasova,

More information

Technical Note Modelling of equilibrium heavy metal biosorption data at different ph: a possible methodological approach

Technical Note Modelling of equilibrium heavy metal biosorption data at different ph: a possible methodological approach The European Journal of Mineral Processing and Environmental Protection Technical Note Modelling of uilibrium heavy metal biosorption data at different ph: a possible methodological approach F. Vegliò*

More information

Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder

Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder Available online at www.ijacskros.com Indian Journal of Advances in Chemical Science 5(2) (207) 8-85 Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes

More information

Novel dendrimer-like magnetic bio-sorbent based on modified orange peel. waste: adsorption-reduction behavior of arsenic

Novel dendrimer-like magnetic bio-sorbent based on modified orange peel. waste: adsorption-reduction behavior of arsenic Supplementary Information: Novel dendrimer-like magnetic bio-sorbent based on modified orange peel waste: adsorption-reduction behavior of arsenic Fanqing Meng1, Bowen Yang1, Baodong Wang 2, Shibo Duan1,

More information

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass A publication of 151 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 213 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-23-5; ISSN 1974-9791 The Italian

More information

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin ANALELE ŞTIINłIFICE ALE UNIVERSITĂłII Al. I. CUZA IAŞI Seria Chimie, Tomul XVI, 2008 Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin Adriana Bârsănescu a*, Rodica Buhăceanu, a and Viorica Dulman

More information

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS Seventh International Water Technology Conference Egypt 1-3 April 23 879 REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS H. BENAISSA* and M.A. ELOUCHDI * Laboratory of Sorbent

More information

Removal of lead from aqueous solutions by spent tea leaves

Removal of lead from aqueous solutions by spent tea leaves Removal of lead from aqueous solutions by spent tea leaves Roberto Lavecchia, Alessio Pugliese and Antonio Zuorro Department of Chemical Engineering, Materials & Environment Sapienza University Via Eudossiana,

More information

STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS

STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS I.J.S.N., VOL. 2(2) 211: 327-333 ISSN 2229 6441 STUDIES ON THE SORPTION OF PHOSPHATE ON SOME SOILS OF INDIA SATURATED WITH DIFFERENT CATIONS Bansal, O. P. Chemistry Department, D.S. College, Aligarh-221

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Cyclic Molecule Aerogels: A Robust Cyclodextrin

More information

The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations from an Aquatic Environment

The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations from an Aquatic Environment 212 International Conference on Geological and Environmental Sciences IPCBEE vol.3 6(212) (212)IACSIT Press, Singapoore The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations

More information

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers All Rights Reserved Available online at: http://www.wjpsonline.org/ Original

More information

Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous Solutions by Using Hebba Clay and Activated Carbon

Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous Solutions by Using Hebba Clay and Activated Carbon Portugaliae Electrochimica Acta 21, 28(4), 231-239 DOI: 1.4152/pea.214231 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous

More information

Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents

Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 407-415, 2016 Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents

More information

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(12):78-83 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Removal of toxic metal chromium(vi) from industrial

More information

Egyptian Petroleum Research Institute BY Rasha Hosny Abdel Mawla Yousef

Egyptian Petroleum Research Institute BY Rasha Hosny Abdel Mawla Yousef Novel Mesoporous Silicas and its Characterizations for Oil Adsorption from Produced Water Injected in Water Injection Projects using Fixed Bed Column Processes BY Rasha Hosny Abdel Mawla Yousef Egyptian

More information

Supporting Information. Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single. and binary metal solutions by regenerated cellulose and

Supporting Information. Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single. and binary metal solutions by regenerated cellulose and Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Supporting Information Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single and binary

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, 2016 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4402 Effect of ph on Cu (II)

More information

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells AASCIT Journal of Environment 2018; 3(4): 24-28 http://www.aascit.org/journal/environment ISSN: 2381-1331 (Print); ISSN: 2381-134X (Online) Equilibrium, Kinetics and Isothem Studies onthe Adsorption of

More information

Evaluation of adsorptive capacity of natural and burnt kaolinitic clay for removal of congo red dye

Evaluation of adsorptive capacity of natural and burnt kaolinitic clay for removal of congo red dye Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (2):939-946 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Evaluation

More information

Studies on the Removal of Ni(II) from Aqueous Solution using Fire Clay-TiO 2 Nanocomposite and Fire Clay

Studies on the Removal of Ni(II) from Aqueous Solution using Fire Clay-TiO 2 Nanocomposite and Fire Clay DOI:1.7598/cst216.1239 Chemical Science Transactions ISSN:2278-3458 216, 5(3), 555-566 RESEARCH ARTICLE Studies on the Removal of Ni(II) from Aqueous Solution using Fire Clay-TiO 2 Nanocomposite and Fire

More information

Kinetic Studies on Removal of Fluoride from Drinking Water by using Tamarind Shell and Pipal leaf Powder

Kinetic Studies on Removal of Fluoride from Drinking Water by using Tamarind Shell and Pipal leaf Powder Kinetic Studies on Removal of Fluoride from Drinking Water by using Tamarind Shell and Pipal leaf Powder V. Ramanjaneyulu, M. Jaipal, Nookala Yasovardhan, S. Sharada* Department of Chemical Engineering,

More information

Dye Removal Using Peat

Dye Removal Using Peat Dye Removal Using Peat By Konduru R. Ramakrishna, T. Viraraghavan Faculty of Engineering, University of Regina, Saskatchewan, Canada The textile industry, a major consumer of water for several of its wet

More information

Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering

Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering Encapsulation of silica nanotubes from elephant grass with graphene oxide/reduced graphene oxide and its application in

More information

In- vitro adsorption of Pb on low cost and Eco-friendly Biosorbent Sargassum

In- vitro adsorption of Pb on low cost and Eco-friendly Biosorbent Sargassum Bioscience Discovery, 8(4): 679-683, October - 207 RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in ISSN: 2229-3469 (Print); ISSN: 223-024X (Online) Research

More information

Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri. Nigeria.

Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri. Nigeria. International Letters of Chemistry, Physics and Astronomy Submitted: 2016-06-11 ISSN: 2299-3843, Vol. 69, pp 49-57 Revised: 2016-07-22 doi:10.18052/www.scipress.com/ilcpa.69.49 Accepted: 2016-07-26 2016

More information

Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns

Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns Waruntara Tannkam, Mahidol University, Thailand Naowarut Charoenca, Mahidol University, Thailand Nipapun Kungskulniti,

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Removal of copper ions from aqueous solution by tree fern

Removal of copper ions from aqueous solution by tree fern Water Research 37 (2003) 2323 2330 Removal of copper ions from aqueous solution by tree fern Yuh-Shan Ho* School of Public Health, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan Received

More information

Methylene blue adsorption by pyrolytic tyre char

Methylene blue adsorption by pyrolytic tyre char NATIONAL UNIVERSITY OF SINGAPORE Division of Environmental Science and Engineering Division of Environmental Science and Engineering EG2605 UROP Report Methylene blue adsorption by pyrolytic tyre char

More information

Equilibrium, kinetic and thermodynamic study of adsorption of rhodamine B from aqueous solution by activated carbon from Peltophorum Pterocarpum leaf

Equilibrium, kinetic and thermodynamic study of adsorption of rhodamine B from aqueous solution by activated carbon from Peltophorum Pterocarpum leaf Engineering Conferences International ECI Digital Archives Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies Proceedings Spring 6-12-2014 Equilibrium, kinetic and

More information

HPAN TEXTILE FIBER WASTES FOR REMOVAL OF DYES FROM INDUSTRIAL TEXTILE EFFLUENTS

HPAN TEXTILE FIBER WASTES FOR REMOVAL OF DYES FROM INDUSTRIAL TEXTILE EFFLUENTS HPAN TEXTILE FIBER WASTES FOR REMOVAL OF DYES FM INDUSTRIAL TEXTILE EFFLUENTS D. ŞUTEU 1 D. BÎLBĂ 1 C. ZAHARIA 1 Abstract: The paper presents our new results about efficiency of wastes based on hydrolyzed

More information

Copper biosorption in a column of pretreated Aspergillus niger biomass

Copper biosorption in a column of pretreated Aspergillus niger biomass Copper biosorption in a column of pretreated Aspergillus niger biomass Mausumi Mukhopadhyay a, S.B. Noronha a, G.K. Suraishkumar b a Department of Chemical Engineering, Indian Institute of Technology Bombay,

More information

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk African Journal of Environmental Science and Technology Vol. 4(6), pp. 382-387, June, 2010 Available online at http://www.academicjournals.org/ajest DOI: 10.5897/AJEST09.224 ISSN 1991-637X 2010 Academic

More information

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T G.Burmaa 1, O.Nasantogtokh 1, N.Narantsogt 2, A.Perlee-Oidov 1 1 Institut of Chemistry and Chemical Technology,

More information

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2. Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.16 I. Introduction Hard Water and Water Softening Water that

More information

Evaluation of Nitrate Removal from Water Using Activated Carbon and Clinoptilolite by Adsorption Method

Evaluation of Nitrate Removal from Water Using Activated Carbon and Clinoptilolite by Adsorption Method BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, June 2016. Vol. 13(2), 1045-1054 Evaluation of Nitrate Removal from Water Using Activated Carbon and by Adsorption Method Morteza Kashefi Asl 1, Amir Hesam Hasani

More information

Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems

Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems Journal of Scientific & Industrial Research Vol. 73, April 2014, pp. 267-272 Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems R. Gandhimathi *, S. T.

More information

Adsorption. ScienceDirect. Available online at the adsorption. of Pb(II) by. the kinetic parameters obtained

Adsorption. ScienceDirect. Available online at  the adsorption. of Pb(II) by. the kinetic parameters obtained Available online at www.sciencedirect.com ScienceDirect IERI Procedia 5 (2013 ) 232 237 Linearized Equations of Pseudo Second-order Atlantica a Kinetic for the Adsorption of Pb( (II) on Pistacia Shells

More information

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network Supporting Information Efficient removal of heavy metal ions with EDTA functionalized chitosan/polyacrylamide double network hydrogel Jianhong Ma a,b, Guiyin Zhou c, Lin Chu c, Yutang Liu a,b, *, Chengbin

More information

T. SANTHI a*, S. MANONMANI b, T.SMITHA a

T. SANTHI a*, S. MANONMANI b, T.SMITHA a Kinetics And Isotherm Studies On Cationic Dyes Adsorption Onto Annona Squmosa Seed Activated Carbon T. SANTHI a*, S. MANONMANI b, T.SMITHA a a Department of Chemistry, Karpagam University, Coimbatore-641021,

More information

Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent

Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent Hind Hamed Al-Riyami, Shah Jahan, and Priy Brat Dwivedi Abstract The release of heavy metals into the environment is a worldwide

More information

REMOVAL OF COPPER IONS FROM INDUSTRIAL WASTEWATER USING WALNUT SHELLS AS A NATURAL ADSORBENT MATERIAL

REMOVAL OF COPPER IONS FROM INDUSTRIAL WASTEWATER USING WALNUT SHELLS AS A NATURAL ADSORBENT MATERIAL U.P.B. Sci. Bull., Series B, Vol. 77, Iss. 3, 2015 ISSN 1454-2331 REMOVAL OF COPPER IONS FROM INDUSTRIAL WASTEWATER USING WALNUT SHELLS AS A NATURAL ADSORBENT MATERIAL Firas Hashim KAMAR 1, Aurelia Cristina

More information

Reuse of Newspaper As An Adsorbent For Cu (II) Removal By Citric Acid Modification

Reuse of Newspaper As An Adsorbent For Cu (II) Removal By Citric Acid Modification Reuse of Newspaper As An Adsorbent For Cu (II) Removal By Citric Acid Modification Mardiah, Rif an Fathoni, Pratiwi Pudyaningtyas, Hamdania Gamu, Rinaldy Department of Chemical Engineering, Faculty of

More information