CHM 152 Lab 5: Qualitative Analysis updated May, 2011

Size: px
Start display at page:

Download "CHM 152 Lab 5: Qualitative Analysis updated May, 2011"

Transcription

1 CHM 152 Lab 5: Qualitative Analysis updated May, 2011 Introduction In this lab you will see how it s possible to separate a mixture using many of the common reactions you ve learned in General Chemistry (precipitation, redox, etc.). In Part I, you will separate a solution of eight known cations. The procedure you ll be following is summarized in the flow chart on page 3. In Part II, you ll be given an unknown solution containing four of these eight cations and, using your observations from Part I, you will attempt to determine their identities. Good lab technique and careful recording of your observations are essential to successfully identifying the four cations in your unknown. Concepts to Review Precipitation reactions Net ionic equations Procedure Part I: Analysis of a known mixture A. Initial Separation 1. Place 2-3mL of the known sample in a centrifuge tube and label it B. 2. In a fume hood, add 3mL of 6M NH 4 OH and five drops of 6M HNO 3, then mix with a stir rod. Centrifuge for five minutes, and then add two more drops of NH 4 OH to confirm that precipitation is complete. If additional precipitate forms, centrifuge for another couple of minutes and recheck for completeness. [Note: Remember that a centrifuge has to remain balanced to reduce the risk of an accident, using a solution of approximate equal volume directly across from it (either another group s sample or a test tube with an equal amount of water).] 3. Carefully decant the remaining solution (the supernatant) to another centrifuge labeled D. Set it aside for later analysis. B. Analysis of sample B 1. Wash sample with 5mL of deionized water, mix, and centrifuge. Decant the water into a beaker, and then discard the water by pouring down the drain. 2. Add 2mL of 1M NaOH, mix, and centrifuge. Check for completeness, and then transfer the supernatant to a test tube labeled C. Set sample C aside for later analysis. 3. Add 4mL of deionized water to sample B, then add 6M HNO 3 dropwise until the solution is acidic. Test the acidity using blue litmus paper, which turns red under acidic conditions. 4. Add a small amount of potassium thiocyanate, KSCN, to the solution. If iron (II) ion is present, the solution will turn red from the formation of Fe(SCN) 2+. C. Analysis of sample C Add 2M acetic acid, HC 2 H 3 O 2, dropwise to sample until the solution is acidic. Add 6 drops of aluminon reagent and heat in a hot bath (use a set-up similar to the one used in the Freezing-point Depression lab). If aluminum ion is present, a pink, gelatinous solid will form. D. Analysis of sample D 1. Add 4mL of 1M ammonium carbonate, (NH 4 ) 2 CO 3, mix, and centrifuge. Check for completeness, and then transfer the supernatant to a centrifuge tube labeled E. Set sample E aside for later analysis. 2. Wash the precipitate in sample D (see part B, step 1). 3. Add 2mL of water to sample D, then add 6M HCl dropwise until all of the solid has dissolved. 4. Add 2mL of 1M Na 2 SO 4 and mix. If barium ion is present, barium sulfate will form as a white precipitate.

2 5. Centrifuge and transfer the supernatant to a test tube. To the solution, add six drops of 6M NH 4 OH and 2mL ammonium oxalate, (NH 4 ) 2 C 2 O 4. If calcium ion is present, calcium oxalate will form as a white precipitate. E. Analysis of sample E. 1. Add 2mL of sodium hydrogen phosphate, Na 2 HPO 4, to sample and mix. If magnesium ion is present, magnesium ammonium phosphate, MgNH 4 PO 4, will form as a white precipitate. [Note: cobalt (II), copper (II) and nickel (II) form soluble ammonia complexes, M(NH 3 ) x, which prevent precipitation from occurring.] 2. Centrifuge and transfer the supernatant to a 100mL beaker. Gently heat this solution to dryness, using a hot plate, until the solid is a pale gray color. 3. Redissolve the solid using 5mL of 1M phosphoric acid, H 3 PO 4, and then add 2mL of 1M Na 2 HPO 4. Divide the solution into three test tubes labeled F1, F2, and F3. F. Analysis of Samples F1-F3 1. Add a small amount of potassium iodide, KI, to solution F1. If copper ion is present, copper (I) iodide will form as a pale tan precipitate. 2. Add 2mL of dimethylglyoxime (HDMG) to solution F2. If nickel (II) ion is present, red precipitate will form. 3. Add 2mL of 1-nitroso-2-naaphthol (NN) to solution F3. If cobalt (II) ion is present, a reddish-brown precipitate will form. Part II: Analysis of an unknown mixture You will be assigned a solution with only four of the eight cations from Part I. Repeat the above produce to determine which ions are present. Waste Disposal All solution waste should be disposed of in the Inorganic Waste bottle.

3 Al 3+, Ba 2+, Ca 2+, Co 2+, Cu 2+, Fe 3+, Mg 2+, Ni 2+ NH 4 OH (aq), HNO 3 (aq) Al(OH) 3 (s), Fe(OH) 3 (s) Ba 2+, Ca 2+, Co 2+, Cu 2+, Mg 2+, Ni 2+ NaOH (aq) (NH 4 ) 2 CO 3 Fe(OH) 3 (s) HNO 3 (aq) Al(OH) 4 - (aq) HC 2 H 3 O 2 (aq), aluminon BaCO 3 (s), CaCO 3 (s) HCl(aq) Co 2+, Cu 2+, Mg 2+, Ni 2+ Na 2 HPO 4 (aq) Fe(OH) 3+ 3 (s) Al(OH) 2 (aluminon), pink precipitate Ba 2+, Ca 2+ KSCN(s) Fe(SCN) 2+ (aq), dark red Na 2 SO 4 (aq) MgNH 4 PO 4 (s), white ppt Co 2+, Cu 2+, Ni 2+ 1) Dry 2) H 3 PO 4 (aq), Na 2 HPO 4 (aq) 3) Divide into 3 samples BaSO 4 (s), white ppt Ca 2+ KI(s) HDMG (aq) NN(aq) NH 4 OH(aq), (NH 4 ) 2 C 2 O 4 (a ) CaC 2 O 4 (s), white ppt CuI(s), pale tan ppt Ni(DMG) 2, red ppt Co(NN) 3, red-brown ppt

4

5 Name: Section: Data Part I: Analysis of a known mixture Record your observations from the following steps in the procedure. A. Initial Separation B. Analysis of sample B Step 4 C. Analysis of sample C D. Analysis of sample D Step 4

6 Step 5 E. Analysis of sample E. F. Analysis of samples F1-F3

7 Part II: Analysis of an unknown mixture Unknown #: Record your observations from the following steps in the procedure. If a step was skipped (e.g., a test for an ion that isn t present), simply write NA in the space provided. A. Initial Separation B. Analysis of sample B Step 4 C. Analysis of sample C D. Analysis of sample D Step 4

8 Step 5 E. Analysis of sample E. F. Analysis of samples F1-F3 Unknown # Ions present:

9 Name: Section: Post-Lab Questions 1. During your initial separation (Part A), why doesn t aluminum form Al(OH 4 ) -, as it does in part B? 2. In CHM 151, we would have predicted that all of these ions except barium and calcium would have formed insoluble hydroxide compounds, yet only two precipitated out. Given the results of your initial separation (Part A), what other factor seems to play a part in solubility. 3. What s the point of heating the solution to dryness in part E when you re redissolving it in part F? 4. A solution was analyzed with the following results. Determine which ions are present. In each case explain, which test confirms your answer. A precipitate formed after the addition of ammonium hydroxide and nitric acid. After decanting the supernatant, the solution did not dissolve after adding sodium hydroxide, but the addition of potassium thiocyanate resulted in a red solution. The addition of ammonium carbonate to the supernatant did not yield a precipitate, but one did form from the addition of sodium hydrogen phosphate. This supernatant was dried, redissolved using phosphoric acid and sodium hydrogen phosphate, and separated into three portions. One sample yielded a red precipitate from the addition of dimethylglyoxime while another gave a reddish-brown precipitate from the addition of 1-nitroso-2-naaphthol. 5. A solution contains Al 3+, Ca 2+, Fe 3+, and Ni 2+ ions. Draw a flow chart that outlines the procedure required to separate this mixture (use the back if you need more room)

10 Name: Section: Pre-Lab Questions 1. Each of the following compounds will be formed in this week s lab. For each one, write the net ionic equation for the reaction that will be performed to produce it a) Aluminum hydroxide b) Barium sulfate c) Calcium carbonate d) Calcium oxalate e) Fe(SCN) In part E, step 1, where does the ammonia come from to produce MgNH 4 PO 4? 3. In part E, why are you splitting the sample into three portions before performing the tests for Cu 2+, Ni 2+ and Co 2+ in part F, as opposed to simply adding each indicator reagent to the same solution? 4. When a precipitate forms, why is it important to check for completeness after centrifuging the sample? 5. Why is it important to use deionized water in this lab?

EXPERIMENT 7 Precipitation and Complex Formation

EXPERIMENT 7 Precipitation and Complex Formation EXPERIMENT 7 Precipitation and Complex Formation Introduction Precipitation is the formation of a solid in a solution as the result of either a chemical reaction, or supersaturating a solution with a salt

More information

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 Chem 1B Saddleback College Dr. White 1 Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 2+) Objective To understand the chemical reactions involved

More information

Lab #14: Qualitative Analysis of Cations and Anions

Lab #14: Qualitative Analysis of Cations and Anions Lab #14: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis

More information

Qualitative Analysis I - Cations

Qualitative Analysis I - Cations 1 Qualitative Analysis I - Cations Purpose: To separate and identify several metal cations from a mixture of cations, and to analyze an unknown sample of cations Introduction Qualitative analysis is the

More information

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria E6 Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria Objective! Observe several interesting and colorful chemical reactions that are examples of chemical systems at equilibrium.!

More information

Experiment 14 - Qualitative Analysis

Experiment 14 - Qualitative Analysis Introduction Qualitative analysis involves the identification of the substances in a mixture. When chemical methods are used in the identification of mixtures of metal cations, these ions are usually separated

More information

NCEA Chemistry 2.2 Identify Ions AS 91162

NCEA Chemistry 2.2 Identify Ions AS 91162 NCEA Chemistry 2.2 Identify Ions AS 91162 What is this NCEA Achievement Standard? When a student achieves a standard, they gain a number of credits. Students must achieve a certain number of credits to

More information

Separation and Qualitative Determination of Cations

Separation and Qualitative Determination of Cations Separation and Qualitative Determination of Cations Introduction Much of laboratory chemistry is focused on the question of how much of a given substance is contained in a sample. Sometimes, however, the

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

EXPERIMENT A5: TYPES OF REACTIONS. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT A5: TYPES OF REACTIONS. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT A5: TYPES OF REACTIONS Upon completion of this lab, the student will be able to: 1) Examine different types of chemical reactions. 2) Express chemical equations in molecular,

More information

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION EXPERIMENT 4 Le Chatelier s Principle INTRODUCTION Le Chatelier s Principle states: When a stress is applied to a chemical system at equilibrium, the equilibrium concentrations will shift in a direction

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

CHM 130LL: Double Replacement Reactions

CHM 130LL: Double Replacement Reactions CHM 130LL: Double Replacement Reactions One of the main purposes of chemistry is to transform one set of chemicals (the reactants) into another set of chemicals (the products) via a chemical reaction:

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

Exploring Equilibria

Exploring Equilibria Exploring Equilibria Name: Chem 112 This experiment explores a variety of equilibrium systems. A reference Table of Reactions is attached to aid in your explanations. In this qualitative lab, your observations,

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

Separation and Qualitative Determination of Cations and Anions

Separation and Qualitative Determination of Cations and Anions Separation and Qualitative Determination of Cations and Anions Introduction Much of laboratory chemistry is focused on the question of how much of a given substance is contained in a sample. Sometimes,

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Ion Identification Group 2 Ions Identification Example -3 1. Place 10 drops of 0.1 mol dm barium chloride in a clean test tube. Must be clean to ensure

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

CHEMISTRY 130 General Chemistry I. Five White Powders & Chemical Reactivity

CHEMISTRY 130 General Chemistry I. Five White Powders & Chemical Reactivity CHEMISTRY 130 General Chemistry I Five White Powders & Chemical Reactivity Many substances can be described as a white, powdery solid. Often, their chemical properties can be used to distinguish them.

More information

A Qualitative Analysis for Select Cations

A Qualitative Analysis for Select Cations A Qualitative Analysis for Select Cations To learn about how to develop of a Qualitative Analysis Scheme. To learn about Separation of Cations in an Aqueous Solution. To learn about Precipitation Equilibria.

More information

Synthesis and Analysis of a Coordination Compound

Synthesis and Analysis of a Coordination Compound Synthesis and Analysis of a Coordination Compound In addition to forming salts with anions, transition metal cations can also associate with neutral molecules (and ions) through a process called ligation.

More information

To precipitate nickel (II) sulfide, the sulfide ion concentration must be a lot larger:

To precipitate nickel (II) sulfide, the sulfide ion concentration must be a lot larger: EXPERIMENT 13-14 Qualitative Analysis of Group II Cations THE GROUP II AND GROUP III PRECIPITATING AGENT Once the group I cations have been precipitated out of an unknown solution, and the precipitates

More information

Equilibrium and LeChatelier s Principle

Equilibrium and LeChatelier s Principle 1 Equilibrium and LeChatelier s Principle Purpose: To examine LeChatelier s Principle by studying disturbances applied to several equilibrium systems. Introduction Many chemical reactions reach a state

More information

Lab Section. Observations and evidence for a chemical reaction:

Lab Section. Observations and evidence for a chemical reaction: Experiment #3: Shifting Reactions (Adapted from Exp. I-4 from Inquiries in Chemistry, 3 rd edition) Problem Statement: How can we shift reactions forward and backward? I. Data Collections and Analysis

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Solubility & Net Ionic review

Solubility & Net Ionic review Solubility & Net Ionic review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following statements is/are correct? 1. All ionic compounds

More information

Chemical Reactions: Introduction to Reaction Types

Chemical Reactions: Introduction to Reaction Types Chemical Reactions: Introduction to Reaction Types **Lab Notebook** Record observations for all of the chemical reactions carried out during the lab in your lab book. These observations should include:

More information

Experiment 4: Qualitative Analysis of Cations 1

Experiment 4: Qualitative Analysis of Cations 1 Experiment 4: Qualitative Analysis of Cations 1 Purpose: Develop a systematic scheme for separation and analysis of a selected group of cations. Introduction In this experiment you will separate and identify

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

To explore solubilities and reactivities of different metal ions. To identify ions present in unknown solutions using separation methods.

To explore solubilities and reactivities of different metal ions. To identify ions present in unknown solutions using separation methods. Qualitative Analysis PURPOSE To develop a separation scheme and confirmatory tests for Fe 3+, Ba 2+, and Ag + cations, and to use it to identify the ions in a sample of unknown composition. GOALS To explore

More information

Experiment Eight Acids and Bases

Experiment Eight Acids and Bases Name: Lab Section: Experiment Eight Acids and Bases Objective Identifying and understanding the nature of acids and bases is an important part of the laboratory toolbox, the purpose of this lab is to help

More information

Experiment 12: QUALITATIVE ANALYSIS OF SELECTED CATIONS

Experiment 12: QUALITATIVE ANALYSIS OF SELECTED CATIONS Experiment 12: QUALITATIVE ANALYSIS OF SELECTED CATIONS Purpose: A sample containing one or more of the following ions is to be analyzed for its content: Ag +, Pb 2+, Fe 3+ and Cr 3+ Introduction: Qualitative

More information

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Day Plans

More information

Experiment Nine Acids and Bases

Experiment Nine Acids and Bases Name: Lab Section: Experiment Nine Acids and Bases Objective Identifying and understanding the nature of acids and bases is an important part of the laboratory toolbox, the purpose of this lab is to help

More information

QUALITATIVE ANALYSIS OF GROUP I CATIONS

QUALITATIVE ANALYSIS OF GROUP I CATIONS QUALITATIVE ANALYSIS OF GROUP I CATIONS In previous labs you have determined the amount of an unknown species present, such as percent chloride, identification of an unknown copper, and the molarity of

More information

CSUS Department of Chemistry Experiment 3 Chem.1A

CSUS Department of Chemistry Experiment 3 Chem.1A Experiment 3: Reactions in Aqueous Solutions: Pre lab Name: 10 points Due at the beginning of lab. Section: 1. Precipitation Reactions a. On the reverse side of this page or on a separate piece of paper,

More information

Stresses Applied to Chemical Equilibrium

Stresses Applied to Chemical Equilibrium Stresses Applied to Chemical Equilibrium Objective Many chemical reactions do not go to completion. Rather, they come to a point of chemical equilibrium before the reactants are fully converted to products.

More information

The Copper Cycle. HCl(aq) H + (aq) + Cl (aq) HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq)

The Copper Cycle. HCl(aq) H + (aq) + Cl (aq) HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq) The Copper Cycle Introduction Many aspects of our lives involve chemical reactions from the batteries that power our cars and cell phones to the thousands of processes occurring within our bodies. We cannot

More information

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 TYPE of CHEMICAL REACTIONS Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 2. C 2 H 6 + O 2 H 2 O + CO 2 3. KOH + H 3 PO 4 K 3 PO 4 + H 2 O 4. SnO 2 + H 2 Sn + H 2 O 5.

More information

#35 balance the following chemical equations a) SiI 4(s) + 2Mg (s)! Si (s) + 2MgI 2(s) Si = 1 I = 4 Mg = 1 2. Si = 1 I = 2 4 Mg = 1 2 (1,2,1,2)

#35 balance the following chemical equations a) SiI 4(s) + 2Mg (s)! Si (s) + 2MgI 2(s) Si = 1 I = 4 Mg = 1 2. Si = 1 I = 2 4 Mg = 1 2 (1,2,1,2) #35 balance the following chemical equations a) SiI 4(s) 2Mg (s)! Si (s) 2MgI 2(s) Si = 1 I = 4 Mg = 1 2 Si = 1 I = 2 4 Mg = 1 2 SiI 4(s) 2Mg (s)! Si (s) 2MgI 2(s) (1,2,1,2) b) MnO 2(s) 2Mg (s)! Mn (s)

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

AQA Chemistry A-level

AQA Chemistry A-level AQA Chemistry A-level Required Practical 4 Carry out simple test-tube reactions to identify cations and anions + Cations: Group 2 ions, NH 4 Test for group 2 ions: sodium hydroxide -3 1. Place 10 drops

More information

Qualitative Analysis of Cations

Qualitative Analysis of Cations Experiment 8 Qualitative Analysis of Cations Prepared by Stephen E. Schullery, with a little help from his friends, Eastern Michigan University PURPOSE Identify which of the following ions are present

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform several types of simple chemical reactions, To become familiar with some common observable signs of chemical reactions,

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Cool Chemistry Show Activity 4 Chemical Equations GOALS In this activity you will: Represent chemical changes using word equations and chemical equations. Distinguish between different classes of chemical

More information

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure.

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. NAME SCHOOL INDEX NUMBER DATE NITROGEN AND ITS COMPOUNDS 1. 1990 Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. (2 marks) marks)... (ii) Temperature

More information

CHM152LL Solution Chemistry Worksheet

CHM152LL Solution Chemistry Worksheet Name: Section: CHM152LL Solution Chemistry Worksheet Many chemical reactions occur in solution. Solids are often dissolved in a solvent and mixed to produce a chemical reaction that would not occur if

More information

Separation and Identification of Metal Ions

Separation and Identification of Metal Ions Vivek Kumar, Ph.D. OBJECTIVES: In this experiment, you will analyze an aqueous solution for the presence of Ag +, Pb 2+ and Hg2 2+ ions LEARNING GOALS 1. To understand and apply chemistry of metal ions

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Objectives Perform and observe the results of a variety of chemical reactions. Become familiar with the observable signs of chemical reactions. Identify the products formed

More information

CHAPTER 8 SALTS. NaCl. A salt is an ionic substance produced when the hydrogen ion of the acid is replaced by metal ion or an ammonium ion.

CHAPTER 8 SALTS. NaCl. A salt is an ionic substance produced when the hydrogen ion of the acid is replaced by metal ion or an ammonium ion. CHAPTER 8 SALTS A salt is an ionic substance produced when the hydrogen ion of the acid is replaced by metal ion or an ammonium ion. The salt consists of two parts, cation from base and anion from acid.

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

ORGANIZATION OF THE SCHEME FOR QUALITATIVE ANALYSIS

ORGANIZATION OF THE SCHEME FOR QUALITATIVE ANALYSIS : Precipitation and Separation of Group I Ions PURPOSE To provide an overview of a general scheme for separating and identifying ten cations. To introduce the laboratory techniques used in qualitative

More information

Chem 1B Saddleback College Dr. White 1. Introduction to Qualitative Analysis

Chem 1B Saddleback College Dr. White 1. Introduction to Qualitative Analysis Chem 1B Saddleback College Dr. White 1 Introduction to Qualitative Analysis Chemical analysis can be either quantitative or qualitative in nature. Quantitative analysis seeks to answer questions like "What

More information

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

Chapter 4 Suggested end-of-chapter problems with solutions

Chapter 4 Suggested end-of-chapter problems with solutions Chapter 4 Suggested end-of-chapter problems with solutions a. 5.6 g NaHCO 1 mol NaHCO 84.01 g NaHCO = 6.69 10 mol NaHCO M = 6.69 10 mol 50.0 m 1000 m = 0.677 M NaHCO b. 0.1846 g K Cr O 7 1 mol K 94.0 g

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

Experiment 7 Buffer Capacity & Buffer Preparation

Experiment 7 Buffer Capacity & Buffer Preparation Chem 1B Dr. White 57 Experiment 7 Buffer Capacity & Buffer Preparation Objectives To learn how to choose a suitable conjugate acid- base pair for making a buffer of a given ph To gain experience in using

More information

L REACTIONS AND EQUATIONS

L REACTIONS AND EQUATIONS Experiment 7 Name: CHEMI 20 Ca L REACTIONS AND EQUATIONS In this experiment, you will observe changes that occur during chemical reactions. You will also balance the corresponding chemical equations and

More information

Section B: Some Essential Background Chemistry

Section B: Some Essential Background Chemistry Section B: Some Essential Background Chemistry Soluble and insoluble salts The importance of knowing whether a salt is soluble or insoluble in water You will remember that acids react with carbonates to

More information

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as described in Chemtrek by Stephen Thompson at Colorado

More information

Reaction Writing Sheet #1 Key

Reaction Writing Sheet #1 Key Reaction Writing Sheet #1 Key Write and balance each of the following reactions and indicate the reaction type(s) present: 1. zinc + sulfur zinc sulfide 8 Zn (s) + S 8 (s) 8 ZnS (s) synthesis 2. potassium

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Experiment 5 Equilibrium Systems

Experiment 5 Equilibrium Systems PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar INTRODUCTION One of the most important techniques for chemical analysis is titration to an equivalence point. To illustrate this procedure,

More information

Salts Soluble Insoluble Nitrate salts - All nitrate salts - Carbonate salts - Potassium carbonate, K 2 CO. Except

Salts Soluble Insoluble Nitrate salts - All nitrate salts - Carbonate salts - Potassium carbonate, K 2 CO. Except Chapter 8: Salts 1. Salts - A salt is an ionic compound. - The anion part comes from the acid while the cation part comes from a base. - Example: KCl, KOH(aq) + HCl(aq) KCl(aq) + H 2 O(l) - A salt is a

More information

Name of Anion. (aq) NaCl NaNO 3 NaOH Na 2 SO 4 Na2CO3. MgSO4. AgNO 3. Ba(NO 3 ) 2. Pb(NO 3 ) 2. CuSO (1) AgNO 3 ( ) + NaCl( )

Name of Anion. (aq) NaCl NaNO 3 NaOH Na 2 SO 4 Na2CO3. MgSO4. AgNO 3. Ba(NO 3 ) 2. Pb(NO 3 ) 2. CuSO (1) AgNO 3 ( ) + NaCl( ) Name of Compound Prelab #1 Formula Cation (Metal) Name of Cation silver nitrate Ag Ag + silver magnesium sulfate barium nitrate lead nitrate copper sulfate Cation = (+)positive ion Anion = ()negative ion

More information

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS FV 1-21-16 MATERIALS: Eight 50 ml beakers, distilled water bottle, two 250 ml beakers, conductivity meter, ph paper (A/B/N), stirring

More information

An equation for the decomposition of hydrogen peroxide is shown below.

An equation for the decomposition of hydrogen peroxide is shown below. An equation for the decomposition of hydrogen peroxide is shown below. 2H 2 O 2 2H 2 O + O 2 State the measurements you would take in order to investigate the rate of this reaction............. (Total

More information

PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION

PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION INTRODUCTION Most common metals have insoluble hydroxides. They can be precipitated from solution by the addition of either ammonia solution (often referred

More information

Solution Stoichiometry

Solution Stoichiometry Chapter 8 Solution Stoichiometry Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the

More information

Learning Objectives Progress Tracker Test Date: 6.1 Stoichiometry balanced chemical equation mole ratios theoretical yield limiting reagent

Learning Objectives Progress Tracker Test Date: 6.1 Stoichiometry balanced chemical equation mole ratios theoretical yield limiting reagent Unit 6 Stoichiometry Progress Tracker Learning Objectives 6.1 Stoichiometry Test Date: Webassign Due Score 6.1 Stoichiometry Packet Progress Checks Test Readiness Checks: My webassign scores indicate I

More information

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS 17 CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS WHAT IS A CHEMICAL EQUATION? A chemical equation is a way of representing a chemical reaction in symbolic form. For example, when hydrochloric acid

More information

Qualitative Analysis Worksheet

Qualitative Analysis Worksheet Qualitative Analysis Worksheet As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet. Complete the following table with your results from

More information

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents Chemistry 151 Last Updated Dec. 2013 Lab 8: Precipitation Reactions and Limiting Reagents Introduction In this lab you will perform a simple precipitation reaction between strontium nitrate and potassium

More information

To observe trends in solubility and exceptions to these trends. To write chemical formulas based on cation/anion charges.

To observe trends in solubility and exceptions to these trends. To write chemical formulas based on cation/anion charges. Solubility Rules PURPOSE To develop a set of solubility rules. GOALS To observe trends in solubility and exceptions to these trends. To write chemical formulas based on cation/anion charges. To learn to

More information

Chemistry 150/151 Review Worksheet

Chemistry 150/151 Review Worksheet Chemistry 150/151 Review Worksheet This worksheet serves to review concepts and calculations from first semester General Chemistry (CHM 150/151). Brief descriptions of concepts are included here. If you

More information

Ions in Solution. Solvent and Solute

Ions in Solution. Solvent and Solute Adapted from Peer-led Team Learning Begin at the beginning and go on till you come to the end: then stop." Early ideas of atoms and compounds, developed primarily through the reactions of solids and gases,

More information

Particle Relative Mass Charge

Particle Relative Mass Charge ADVANCED CHEMISTRY REVISION THE FIRST 5 WEEKS 1. Define each of the following words so that you can differentiate between them:- ELEMENT and COMPOUND, ATOM and MOLECULE An element is comprised of one type

More information

Chemical Foundations Part 2

Chemical Foundations Part 2 Chemical Foundations Part 2 Reading: Downloads: Ch 4 sections 8 11 Ch 5 sections1 7 Periodic table Ion Chart * = important homework question Homework: 4.8 question 44*, 46, 52 4.10 questions 66, 68, 70,

More information

enable measurement. This method separates these isotopes effectively.

enable measurement. This method separates these isotopes effectively. Analytical Procedure URANIUM IN WATER 1. SCOPE 1.1. This is a method for the separation and measurement of uranium in water. After completing this method, source preparation for measurement of uranium

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/31 Paper 3 Advanced Practical Skills 1 May/June 2014 2 hours Candidates answer on the

More information

Chapter 5 Classification and Balancing of Chemical Reactions

Chapter 5 Classification and Balancing of Chemical Reactions Chapter 5 Classification and Balancing of Chemical Reactions 5.1 Chemical Equations Chemical equations describe chemical reactions. - As words: hydrogen plus oxygen combine to form water - As a chemical

More information

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds Aqueous Solubility of Compounds Not all compounds dissolve in water. Solubility varies from compound to compound. Chapter 5: Chemical Reactions Soluble ionic compounds dissociate. Ions are solvated Most

More information

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Measure the solubility product constant for a sparingly soluble salt.

More information

Extra Questions. Chemical Formula IUPAC Name Ionic, Molecular, or Acid. ethanol. sulfurous acid. titanium (IV) oxide. gallium sulfate.

Extra Questions. Chemical Formula IUPAC Name Ionic, Molecular, or Acid. ethanol. sulfurous acid. titanium (IV) oxide. gallium sulfate. Chemistry 30 Recap Chemistry 20 Complete the following chart: Extra Questions Name: Chemical Formula IUPAC Name Ionic, Molecular, or Acid PbI2 (s) ethanol NaHS (aq) sulfurous acid H2O2 (l) titanium (IV)

More information

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3 Chemistry 11 Solution Chemistry II Name: Date: Block: 1. Ions in Solutions 2. Solubility Table 3. Separating Ions Ions in Solutions Ionization Equation - Represents the salt breaking apart into ions. Practice:

More information

SOLUBILITY REVIEW QUESTIONS

SOLUBILITY REVIEW QUESTIONS Solubility Problem Set 1 SOLUBILITY REVIEW QUESTIONS 1. What is the solubility of calcium sulphate in M, g/l, and g/100 ml? 2. What is the solubility of silver chromate? In a saturated solution of silver

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Paper 3 Practical Test Candidates answer on the Question

More information

EXPERIMENT 5 Double Replacement Reactions

EXPERIMENT 5 Double Replacement Reactions EXPERIMENT 5 Double Replacement Reactions PURPOSE a) To identify the ions present in various aqueous solutions. b) To systematically combine solutions and identify the reactions that form precipitates

More information

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit.

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit. Solubility Equilibrium The Basics (should be mostly review) Solubility is defined as the maximum amount of a substance which can be dissolved in a given solute at a given temperature. The solubility of

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test tube

More information

Question 8 Chemical properties of metals and nonmetals. 1) magnesium 2) sulfur trioxide 3) iron (II) hydroxide 4) sodium nitrate

Question 8 Chemical properties of metals and nonmetals. 1) magnesium 2) sulfur trioxide 3) iron (II) hydroxide 4) sodium nitrate Question 8 Chemical properties of metals and nonmetals 1. Calcium oxide doesn t react with 1) NaNO 3 2) HCl 3) CO 2 4) H 2 O 2. Calcium oxide reacts with both of the following 1) SO 2 and O 2 2) H 2 O

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information