Production of Fluorine-18 by Small Research Reactor

Size: px
Start display at page:

Download "Production of Fluorine-18 by Small Research Reactor"

Transcription

1 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 4[4], p.185~189 (April 1967). 185 Production of Fluorine-18 by Small Research Reactor Yoshiaki MARUYAMA* Received October 4, 1966 High purity 18F was prepared by irradiating 1g of lithium hydroxide or otherwise 0.14g of enriched lithium carbonate containing 50% 6Li in the pneumatic tube of a TRIGA-II research reactor at a thermal neutron flux of 1.2x1012 n/cm2,sec. After cooling for 20min, the irradiated lithium hydroxide was dissolved in distilled water. The resulting 18F was separated from the irradiated target by passing the lithium hydroxide solution successively through ion exchange columns of H-, OH- and H-forms. Use was also made of the Coform ion exchange column in place of the H-form for the elimination of impurities. In the case of Li enriched lithium carbonate, the irradiated lithium carbonate was dissolved in hydrochloric acid, 6 and ion exchange columns of Ag-, OH- and H-forms were used for purifying the 18F. The product F was obtained in the form of water containing 18F. The chemical yield for the purification 18of 18F was about 80% and the final radioactive impurities were less than 1ppm. A neutron activation method for determining the isotopic abundance of 6Li was developed using the nuclear reactions 6Li(n,a)3H and 16O(t,n)18F. Aqueous solutions containing lithium were irradiated in pneumatic tube for 1hr. 18F was separated by steam distillation from the irradiated solutions and precipitated as magnesium fluoride. The chemical yield for the separation of 18F was about 80%. The sensitivity limit was estimated to be 4mg of natural lithium. I. INTRODUCTION Fluorine has in nature only one stable isotope of mass 19. The radioactive isotopes F, 18F, 20F and 21F have been produced 17 artificially, but among them only 18F has a halflife long enough to be applicable to tracer studies. The demand for 18F has been increasing in keeping with the growing importance of fluorine chemistry, and the increasing use of this isotope in medicine. Several nuclear reactions such as 18O(p,n) 8F 19F (n,2n)18f, 19F(g,n)18F, 16O(t,n)18F 1 are available for the production of 18F, but one of the most common methods is the 16O(t,n) 18F reaction, because it can be used to produce carrier-free 18F of large activity in nuclear reactor. Various workers(1)~(9) have recently prepared F in reactor using the 6Li(n,a)3H 18 and 16O (t,n)18f reactions, and compounds containing both lithium and oxygen, such as lithium carbonate, lithium nitrate, lithium oxide and lithium hydroxide, have been used as target materials. Several methods such as distillation, precipitation, ion exchange and alumina column chromatography have been reported for the purification of 18F. In this work, 18F was produced by irradiating lithium hydroxide or else 6Li enriched lithium carbonate in the TRIGA-II research reactor. A method has been devised for separating 18F from irradiated target with the use of ion exchange column. Further, a neutron activation method has been developed for determining the isotopic abundance of 6Li utilizing the 6Li(n,a)3H and 16O(ț n)18f reactions. Aqueous solutions containing lithium were irradiated in the reactor. F was separated by steam distillation 18 from irradiated solution and precipitated in the form of magnesium fluoride.. EXPERIMENTAL II 1. Target Material and Irradiation Commercial reagent grade lithium carbonate was used without further purification. Enriched lithium carbonate was obtained from the Oak Ridge National Laboratory. About 1g of lithium hydroxide, or else, 0.14g of enriched lithium carbonate containing 50%6Li was sealed in cylindrical polyethylene capsule (4mm diam., 50mm long) and irradiated in the pneumatic tube of a TRIGA-II. * Atomic Research Laboratory of Musashi Institute of Technology, Kawasaki-shi, Kanagawa-ken. 27

2 186 J. Nucl. Sci. Technol. research reactor for 1hr. The thermal neutron flux in the experimental hole was 1.2x 1012n/cm2,sec. 2. Purification Diaion SK No. 1-a strongly acidic cation exchange resin (100~200 mesh size) and Diaion SA No.100-strongly basic anion (100~200 mesh size) were used for the purification of 18F. After cooling for 20min, the irradiated lithium hydroxide was taken out of the polyethylene capsule and immediately dissolved in 30ml of distilled water. This solution was passed through the first -H-form cationexchange column (1.6cm diam., 6cm high) at a flow rate of 1.5ml/min. The eluate from the first column was passed through the second OH-form anion- exchange column - (1cm diam., 2cm high) underneath and connected to the first column in series; 18F was absorbed on the OH-form resin. These columns were washed with 30ml of distilled water to eliminate tritium. The first column was removed, and the third -H-form cation- exchange column (1 cm diam., 5cm high) was connected underneath the second column. The 18F absorbed on the OH-form resin of the second column was eluted with 10ml of 1N sodium hydroxide solution at a flow rate of 1ml/min. The eluate from the column was passed through the third column, and the eluate therefrom was collected in the 50ml flask. A Co-form cation exchange column (1.6cm diam., 6cm high) was also trially used as first column in onder to eliminate lithium hydroxide. In the case of 6Li enriched target, the irradiated lithium carbonate was dissolved in 5ml of 1N hydrochloric acid, and Ag-form cation exchange column (1cm diam., 5cm high) was used as the first column for eliminating lithium chloride. The eluate from the first column was passed through the same second and third columns as before. In preliminary column experiments for the determination of elution curves, the eluate was collected in a number of fractions, and the 18F activity of each fraction was counted with scintillation counter. The ion exchange columns used here are shown in Table 1. Table 1 Ion Exchange Column used for Purification 3. Activation Analysis of 6Li The relationship between 18F activity per milligram of lithium and 6Li concentration was measured by irradiating samples of varying 6Li enrichment. Samples of lithium carbonate containing 18.2, 35.3, 48.4, 72.9 and 95.6% 6Li were prepared by mixing known weights of enriched and natural lithium carbonate. About 10mg of each lithium carbonate sample was dissolved in 10ml of 0.1N nitric acid, and 1ml from each solution was sealed in a polyethylene tube (1cm diam., 2cm long). Standard lithium solutions were prepared with natural lithium carbonate. Sample and standard solutions containing lithium were irradiated together in the pneumatic tube for 1hr. After irradiation, the sample was transfer- 28

3 Vol. 4, No. 4 (Apr. 1967) 187 red to a round-bottomed distillation flask. Five milliliters of concentrated sulfuric acid and 2ml of 0.5N sodium fluoride solution to serve as carrier for the fluorine were added to the irradiated solution. The fluorine was separated from the irradiated solution by steam distillation. The distillate containing fluorine was collected in a 50ml beaker, and neutralized with sodium hydroxide solution, methyl orange being used as an indicator. Then the fluorine was precipitated in the form of magnesium fluoride by adding 2ml of 1N magnesium chloride solution to the distillate. The precipitate was collected on a small weighed filter paper, and washed with distilled water. The chemical yield was determined by weighing the precipitate after drying. The standard solution was treated in the same manner as before. The radioactivities of 18F were counted with a Hitachi 400 channel pulse height analyzer with 13/4" x2" NaI(T1) crystal. III. RESULTS AND DISCUSSION 1. Purity and Yield The radiochemical purity of the irradiated targets was checked by their g-ray spectra and decay curves. After cooling for 3hr, no activity other than 18F was detectable in the -ray spectra, but after the 18F activity had g decayed away, long-lived impurities could be detected. The major active impurity was Na. The active impurities, such as 24Na, and tritium which had been produced by the 6Li(n,a)3H reaction, as well as the inactive impurities constituted of lithium compounds, were eliminated with the ion exchange columns, as already described. The elution curves are shown in Figs. 1~4. Lithium hydroxide was eliminated with the first H-form cation exchange column. The active impurity 24Na was adsorbed on the H-form resin. Lithium hydroxide was also eliminated by the Co-form cation exchange column. In this case, lithium ions were adsorbed on the resin, and liberated cobalt ions were precipitated in the form of cobalt hydroxide upon reacting with hydroxyl ions. This precipitate was caught in the ion exchange column. Column: 1.5cm diam.x6cm, H-form Eluant: 0.79N LiOH solution containing 18F Flow rate: 1.5ml/min Fig. 1 Elution Curve of F Column: 1.5cm diam.x6cm, Co-form Eluant: 0.79N LiOH solution containing 18F Flow rate: 1.5ml/min Fig. 2 Elution Curve of F Column: 1.0cm diam. x2cm, OH-form Eluant : 1N NaOH solution Material : 18F Flow rate: 1ml/min Fig. 3 Elution Curve of F 29

4 188 J. Nucl. Sci. Technol. was later eliminated. The 18F activity induced at the end of 1hr irradiation was 0.14mCi/g LiOH. The specific activity of 18F was about 1mCi/mg F. The amount of fluorine was determined quantitatively by a photometric method utilizing the bleaching effect of fluorine ion on zirconiumalizarin lake. The results of the foregoing experiment in 18F preparation are summarized in Table 2. Table 2 Product 18F Column: 1.0cm diam.x5cm, Ag-form Eluant : 0.56N LiCI solution containing F 18 Flow rate : 0.5ml/min Fig. 4 Elution Curve of F In the case of lithium chloride, lithium ions were adsorbed on the Ag-form cation exchange resin of the first column, and liberated silver ions were precipitated in the form of silver chloride upon reacting with chlorine ions. For this reason, the eluate from the first column was obtained in the form of water containing 18F and tritium activities. The sodium hydroxide in the eluate from the second column was eliminated by the third H-form cation exchange column. The chemical yield for the purification of 8F was about 80%. In the case of Co-form 1 ion exchange column, the chemical yield was about 65%. It would appear that a part of the 18F was adsorbed on the cobalt hydroxide. The time taken for the purification of lithium hydroxide and lithium chloride solutions containing 18F were approximately 60 and 30 min respectively. The radioactive impurities in the purified solution were below 1ppm. Tritium activity was measured with a liquid scintillation counter after the other activities had decayed away, but it was not detected in the purified solution. Beg, et al(5). have purified 18F by passing the dissolved oxide through H-form cation exchange column. They report however that large tritium activity was contained in the purified solution. In the method used here, the product was obtained in the form of water containing 18F, and tritium activity 2. Sensitivity of Activation Analysis The self-shielding effect must be eliminated in order to obtain accurate results for activation analysis. The allowable concentration of lithium was determined by irradiating solutions containing natural lithium. The experimental results are plotted in Fig. 5. Fig. 5 18F Activity per milligram of Li It shows that the 18F radioactivity per milligram of lithium is independent of lithium concentration below about 3mg Li/ml. This result agrees with the value reported by Winchester, et al(10). The lithium concentration of samples was therefore held down to about 0.2mg Li/ml to prevent neutron self-shielding. Winchester, et al. have also determined the concentration of 6Li in aqueous solution by neutron activation. In their work, the 18F radioactivity has been counted with a welltype scintillation counter without chemical separation. Radiochemical separation of 18F 30

5 Vol. 4, No. 4 (Apr. 1967) 189 is however necessary, because the 18F activity induced in the solution of low 6Li concentration is masked by other active impurities such as 24Na and 64Cu. In this study, fluorine was separated by steam distillation from the irradiated solutions and precipitated as magnesium fluoride. The experimental results are given in Fig. 6. Fig. 6 Relationship between 18F Activities per milligram of Li and 6Li Content Figure 6 shows that the lithium solution brings about 18F radioactivity in proportion to the 6Li concentration. These experimental results demonstrate the possibility of 6Li abundance determination by neutron activation. After the separation of impurities, no activity other than 18F could be detected. The distillation curve for fluorine is shown in Fig. 7. The chemical yield for the separation of 18F was about 80% and the sensitivity limit was estimated to be about 4mg. Fig. 7 Distillation Curve of F IV. CONCLUSION 18F was prepared by irradiating lithium compounds in the TRIGA-II reactor. Separation of the 18F from irradiated targets was carried out with the use of ion exchange columns. This method, as adapted in the present experiment, would appear to be an extremely practical means of separating 6Li enriched target, and 18F was purified simply and rapidly with small ion exchange columns of Ag-, OH- and H-forms. The product 18F was obtained in the form of water containing F, probably in the form of HF. 18 A neutron activation method for the determination of isotopic abundance of 6Li was developed. This method is less accurate and sensitive than mass spectrometry, but it is simple and does not require complex apparatus. ACKNOWLEDGMENTS This research was supported in part by a grant in aid for fundamental scientific research from the Ministry of Education. REFERENCES (1) BERNSTEIN,R.B., KATZ,J.J.: Nucleonics, 11 10], 46 (1953). [ (2) BANKS,H.O., Jr.: ibid., 13 [12], 62 (1955). (3) ADAMS,R.M., SHEET,I., KATZ, J.J.: Proc. 2nd Geneva Conf., Vol. 20, p. 219 (1958), IAEA. (4) BRESESTI,M., del TURCO,A.M., OSTIDICH,A.: Radiochimica Acta, 2, 49 (1963). (5) BEG,K., BROWN,F.: Mt. J. Appl. Radiat. Isotop., 14, 137 (1963). (6) STANG,L.G., Jr.: "Production and Use of Short-lived Radioisotopes from Reactors", Vol. 1, p.3 (1963), IAEA, Vienna. (7) SHIKATA,E.: J. Nucl. Sci. Technol., 1[6], 183 (1964). (8) NAGY,G.A., BEREI,K.: J. Inorg. Nucl. Chem., 26 [4] 659 (1964). (9) THOMAS,C.C., Jr., SONDEL,J.A., KERNS,R.C.: Int. J. Appl. Radiat. Isotop., 16, 71 (1965). (10) WINCHESTER,J.W., BATE,L.C., LEDDICOTTE, RNL CF , (1959). G.W.: O 31

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

white precipitate white precipitate, dissolves in excess of NaOH brown precipitate Identity of Q Identity of R Identity of S...

white precipitate white precipitate, dissolves in excess of NaOH brown precipitate Identity of Q Identity of R Identity of S... Q1.The table below shows observations of changes from some test-tube reactions of aqueous solutions of compounds Q, R and S with five different aqueous reagents. The initial colours of the solutions are

More information

2. 2 Complete this table of the parts of an atom: Particle Charge Location in atom Proton. Negative

2. 2 Complete this table of the parts of an atom: Particle Charge Location in atom Proton. Negative Q Outcome 1. 1 Give a definition of the term matter 2. 2 Complete this table of the parts of an atom: Particle Charge Location in atom Proton In the nucleus Negative 3. 2 Draw an atom and label all particles.

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

Author(s) Shigematsu, Tsunenobu; Oshio, Toshi. Citation University (1959), 37(5-6):

Author(s) Shigematsu, Tsunenobu; Oshio, Toshi. Citation University (1959), 37(5-6): Effect of Cobalt-60 Gamma Radiation Title(Special Issue on Physical, Chemica Gamma Radiation) Author(s) Shigematsu, Tsunenobu; Oshio, Toshi Citation Bulletin of the Institute for Chemi University (1959),

More information

MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS

MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS 1. State two reasons why we use the non- luminous flame for heating in the laboratory instead of using luminous flame. 2. The

More information

Uranium (IV)-(VI) Electron Exchange Reactions in

Uranium (IV)-(VI) Electron Exchange Reactions in Journal of NUCLEAR SCIENCE and TECHNOLOGY, 5[4], F. 179-486 (April 1968) 179 Uranium (IV)-(VI) Electron Exchange Reactions in Anion Exchange Resin, Tri-n-Octyl Amine and Tri-Butyl Phosphate Kozo GONDA*,

More information

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 1 The ph scale is a measure of the acidity or alkalinity of a solution. (a) Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 5 Acid 7 9 Neutral 11 13

More information

Stoichiometry Chapter 9 Practice Assessment B

Stoichiometry Chapter 9 Practice Assessment B NAME Hour Date Stoichiometry Chapter 9 Practice Assessment B Objective 1: Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP. Directions:

More information

A. blue B. green C. red D. violet

A. blue B. green C. red D. violet 1. A chemistry class determines that each atom of a metallic element contains 26 protons and 30 neutrons. When the teacher asks the class what the element is, half the class says iron and half the class

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

AP CHEMISTRY THINGS TO KNOW

AP CHEMISTRY THINGS TO KNOW AP CHEMISTRY THINGS TO KNOW Diatomic Molecules H2-hydrogen gas (do not write H) N2-nitrogen gas (do no write N) O2-oxygen gas (do not write O) F2-fluorine gas (do not write F) Cl2-chlorine gas (do not

More information

Chemical Behavior of Carrier Free Iodine Produced by Beta-Decay and Effects of Iodine Carriers

Chemical Behavior of Carrier Free Iodine Produced by Beta-Decay and Effects of Iodine Carriers Journal of NUCLEAR SCIENCE and TECHNOLOGY. 7 [2] p. (February 1970). Chemical Behavior of Carrier Free Iodine Produced by Beta-Decay and Effects of Iodine Carriers Tetsuo HASHIMOTO*, Tadaharu TAMAI*, Rokuji

More information

Sample Questions Chem 22 Student Chapters Page 1 of 5 Spring 2016

Sample Questions Chem 22 Student Chapters Page 1 of 5 Spring 2016 Sample Questions Chem 22 Student Chapters 13-18 Page 1 of 5 1. The vapor pressure of a liquid is the pressure, at equilibrium, of the a) solid above its liquid. b) liquid above its solid. c) gas above

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride Naming salts A salt is any compound formed by the neutralisation of an acid by a base. The name of a salt has two parts. The first part comes from the metal, metal oxide or metal carbonate. The second

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

URANIUM IN SOIL. Analytical Procedure (2 GRAM SAMPLE) 1. SCOPE

URANIUM IN SOIL. Analytical Procedure (2 GRAM SAMPLE) 1. SCOPE Analytical Procedure URANIUM IN SOIL (2 GRAM SAMPLE) 1. SCOPE 1.1. This is a procedure for the separation of uranium from 2 gram soil samples. After separation of uranium with this method, source preparation

More information

Some standard enthalpies of formation are given in the table below

Some standard enthalpies of formation are given in the table below Q1. Barium can be extracted from barium oxide (BaO) in a process using aluminium. A mixture of powdered barium oxide and powdered aluminium is heated strongly. The equation for this extraction process

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

NICKEL-63/59 IN WATER

NICKEL-63/59 IN WATER Analytical Procedure NICKEL-63/59 IN WATER 1. SCOPE 1.1. This is a method for the separation and measurement of nickel- 63/59 in water samples. 1.2. This method does not address all aspects of safety,

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

Set 4 Marking Scheme: Acid Bases & Salts 2010

Set 4 Marking Scheme: Acid Bases & Salts 2010 Set 4 Marking Scheme: Acid Bases & Salts 00 ACID AND BASES PAPER : STRUCTURE (a) Neutralisation KOH + H SO 4 K SO 4 + H O Correct formulae of reactants and products Balanced equation i. H +, OH -, K +

More information

(CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM)

(CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM) Analytical Procedure RADIUM IN WATER (CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This is a method for separation and measurement of radium-226 and radium-228 in water. This method

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

Cyanide, colorimetric, pyridine-pyrazolone

Cyanide, colorimetric, pyridine-pyrazolone Cyanide, colorimetric, pyridine-pyrazolone Parameters and Codes: Cyanide, dissolved, I-1300-85 mg/l as CN): 00723 Cyanide, total, I-3300-85 (mgll as CN): 00720 Cyanide, total-in-bottom-material, dry wt,

More information

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters]

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters] 1 of 6 10/20/2009 3:55 AM Avogadro s Number, N A = 6.022 10 23 1. [7 points] Given the following mathematical expression: (15.11115.0)/(2.154 10 3 ) How many significant figures should the answer contain?

More information

Year 10 Chemistry. Practice questions. Topics

Year 10 Chemistry. Practice questions. Topics Year 10 Chemistry Practice questions Topics 1 Group 1 2 Group 7 3 Reactivity series 4 Air and Water 5 Rates of reaction 6 Electrolysis 7 Acids, Alkali and Salts Objective: Evaluate group 1 & 7 reactivity

More information

RADIOACTIVE METHODS OF ANALYSIS

RADIOACTIVE METHODS OF ANALYSIS RADIOACTIVE METHODS OF ANALYSIS G. D. CALKINS 1 Battelle Memorial Institute, Columbus, Ohio The application of radioactive materials to the study of the problems in biology, physics, chemistry, and industry

More information

XA IAEA-TECDOC-1051

XA IAEA-TECDOC-1051 XA9848832 IAEA-TECDOC-1051 Management The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies The originating Section of this publication in the IAEA was: Waste

More information

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has.

Set 1 Structure of the atoms & Chemical Equation Perfect Score F Matter is anything that. and has. STRUCTURE OF THE ATOMS 1. Matter is anything that. and has. 2. The particle theory of matter state that matter is.. 3. Type of particle Example 4. Property Solid Liquid Gas Diagrammatic representation

More information

Identification of Ions and Gases

Identification of Ions and Gases Identification of Ions and Gases Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic cids, bases and salts Sub-Topic Identification of ions

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

CHEMISTRY - HIGHER LEVEL

CHEMISTRY - HIGHER LEVEL M34 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2002 CHEMISTRY - HIGHER LEVEL TUESDAY, 18 JUNE - AFTERNOON 2.00 to 5.00 400 MARKS Answer eight questions in all These must include

More information

Uranium from water sample

Uranium from water sample Uranium from water sample Analysis of uranium from water sample Determination of uranium is based on radiochemical separation and alpha spectrometric measurements. Detailed description is presented below.

More information

Ammonium Chloride and sodium hydrogen carbonate. Step II

Ammonium Chloride and sodium hydrogen carbonate. Step II K.C.S.E 2000 CHEMISTRY PAPER 233/1 QUESTIONS 1. Explain the change in mass that occurs when the following substances are separately heated in open crucibles (a) Copper metal (b) Copper (II) nitrate 2.

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *4827396477* CHEMISTRY 9701/35 Advanced Practical Skills October/November

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission Coimisiún na Scrúduithe Stáit State Examinations Commission M. 33 LEAVING CERTIFICATE EXAMINATION, 2006 CHEMISTRY - ORDINARY LEVEL TUESDAY, 20 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions

More information

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions The first type of reactions we will look at today are reactions between an oxide (a compound with oxygen as its anion) and water. There are

More information

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 233/1 CHEMISTRY PAPER 1 (THEORY) TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88 22

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Fluorides Former numbering: ECSS/CN 311-1982 & ESPA/CN-E-110-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all

More information

Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice

Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice Answer these questions on the multiple choice answer sheet provided 2 Isotopes have been found as variations of atoms. Which of

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

1.1. This is a method for the separation and measurement of 228 Ra in water via its beta emitting 228 Ac daughter.

1.1. This is a method for the separation and measurement of 228 Ra in water via its beta emitting 228 Ac daughter. Analytical Procedure RADIUM-228 IN WATER (WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This is a method for the separation and measurement of 228 Ra in water via its beta emitting 228 Ac daughter. 1.2. This method

More information

Describe in full the colour change at the end-point of this titration. ... (1)

Describe in full the colour change at the end-point of this titration. ... (1) Q1. (a) A solution of barium hydroxide is often used for the titration of organic acids. A suitable indicator for the titration is thymol blue. Thymol blue is yellow in acid and blue in alkali. In a titration

More information

CHEMISTRY CORE PRACTICALS

CHEMISTRY CORE PRACTICALS CHEMISTRY CORE PRACTICALS Science (9-1) Combined Science / Chemistry Core Practicals www.chemistryinfo.co.uk Modified 23/03/2018 (MJB) Core Practical INDEX Paper 1 Paper 2 CP1a: Topic: 2.11 Investigate

More information

DETERMINATION OF BETA EMITTERS IN MATERIALS FROM RESEARCH REACTOR DECOMISSIONING

DETERMINATION OF BETA EMITTERS IN MATERIALS FROM RESEARCH REACTOR DECOMISSIONING DETERMINATION OF BETA EMITTERS IN MATERIALS FROM RESEARCH REACTOR DECOMISSIONING Andreas Vesely 1 Herbert Trombitas Helmut Lindauer Nuclear Engineering Seibersdorf, 2444 Seibersdorf, Austria. ABSTRACT.

More information

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water.

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water. 10. Group 2 Atomic radius Atomic radius increases down the Group. As one goes down the group, the atoms have more shells of electrons making the atom bigger. Melting points Down the group the melting points

More information

(a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. salt soluble insoluble.

(a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. salt soluble insoluble. 1 The method used to prepare a salt depends on its solubility in water. (a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. ammonium chloride salt soluble

More information

Chemistry Final Exam Sample Items

Chemistry Final Exam Sample Items Chemistry Final Exam Sample Items 1. Which best describes the current atomic theory? a. Atoms consist of electrons circling in definite orbits around a positive nucleus. b. Atoms are composed of electrons

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Name: Date:.. 5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Introduction to basic chemical laboratory operations: grinding, dissolving, decanting, centrifuging, filtration, crystallization.

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

Determination of 210 Pb and 210 Po in Water Samples

Determination of 210 Pb and 210 Po in Water Samples 1 Determination of 210 Pb and 210 Po in Water Samples Marin Ayranov 1, Zornitza Tosheva 2, Antoine Kies 2 1 Institute for Nuclear Research and Nuclear Energy, 72 Tzarigradsko chaussee, BG-1784 Sofia, Bulgaria

More information

Chemistry Released Questions

Chemistry Released Questions Name: Date: 1. What was Niels Bohr s prediction about the location of the electrons in an atom? 3. An atom with which atomic diagram has chemical properties most similar to calcium? A. Electrons pair with

More information

Determination of 126 Sn in nuclear wastes by using TEVA resin

Determination of 126 Sn in nuclear wastes by using TEVA resin Determination of 126 Sn in nuclear wastes by using TEVA resin Ján Bilohuščin, Silvia Dulanská, Veronika Gardoňová Univerzita Komenského, Prírodovedecká fakulta, Katedra jadrovej chémie, Mlynská dolina,

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

4. a) Complete the nuclear equation below. (1mk) b) 37 37

4. a) Complete the nuclear equation below. (1mk) b) 37 37 KCSE 2006 CHEMISTRY PAPER 1 QUESTIONS 1. (a) What is meant by isomerism? (1mark) (b) Draw and name two isomers of butane. (2 marks) 2. The diagram below represent a set-up that was used to show that part

More information

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used.

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used. Name Index No.. Class...Candidate s Signature... CHEMISTRY 233/2 FORM 4 PAPER2 TIME: 2 HOURS Instructions to Candidates 1. Answer ALL the questions in the spaces provided 2. Mathematical tables and silent

More information

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change.

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. In order to do this, we need to be able to talk about numbers of atoms. The key concept is

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Redox Reactions Rules for Assigning Oxidation Numbers Oxidation state of: Charge Examples Neutral monoatomic or molecular elements 0 Na(s), Cl 2 (g), S 8 (s), O 2 (g), Hg(l) Fluorine

More information

Contact Person(s) : Anna Berne APPLICATION

Contact Person(s) : Anna Berne APPLICATION Se-03 AMERICIUM, PLUTONIUM AND URANIUM IN WATER Contact Person(s) : Anna Berne APPLICATION This procedure describes a method for the separation and measurement of americium, plutonium and uranium in water

More information

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date...

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... 1 Winston Churchill, a British Prime Minister, had his false teeth electroplated with gold. The teeth were coated with a thin layer of carbon and were then placed

More information

Elements, compounds, Mixtures

Elements, compounds, Mixtures Elements, compounds, Mixtures Model Answers 1 Level IGCSE(9-1) Subject Chemistry Exam Board Edexcel IGCSE Module Double Award (Paper 1C) Topic Principles of Chemistry Sub-Topic Booklet Elements, Compounds,

More information

Chemistry 9 Weeks Exam Review Guide

Chemistry 9 Weeks Exam Review Guide Name Date: Chemistry 9 Weeks Exam Review Guide 9 Weeks Exam: Tuesday, October 15 th Topics Covered Unit 1 Measurement: Accuracy & Precision, metric system, Conversions, Significant Figures, Percent Error,

More information

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS INSERT STUDENT I.D. NUMBER (PEN) STICKER IN THIS SPACE APRIL 1996 PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS 1. Insert the stickers with your Student I.D. Number (PEN)

More information

Methods of purification

Methods of purification Methods of purification Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic Experimental techniques Sub-Topic Methods of purification ooklet

More information

Unit Review : Chemistry

Unit Review : Chemistry SNC2DE_09-10 Unit Review : Chemistry 1. A gas can be proved to be oxygen by means of: (a) a burning splint, which causes a small explosion or "pop"; (b) a glowing splint, which bursts into flame; (c) a

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Pearson Edexcel Level 3 GCE Chemistry Advanced Paper 3: General and Practical Principles in Chemistry

Pearson Edexcel Level 3 GCE Chemistry Advanced Paper 3: General and Practical Principles in Chemistry Write your name here Surname Other names Pearson Edexcel Level 3 GCE Centre Number Candidate Number Chemistry Advanced Paper 3: General and Practical Principles in Chemistry Sample Assessment Materials

More information

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road,

More information

Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I. Wednesday 14 January 2015 Morning Time: 1 hour 15 minutes

Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I. Wednesday 14 January 2015 Morning Time: 1 hour 15 minutes Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I Candidate Number Wednesday 14 January

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Cool Chemistry Show Activity 4 Chemical Equations GOALS In this activity you will: Represent chemical changes using word equations and chemical equations. Distinguish between different classes of chemical

More information

Semester 1 Review Chemistry

Semester 1 Review Chemistry Name Period Date Semester 1 Review Chemistry Units & Unit Conversions Ch. 3 (p. 73-94) PART A SI UNITS What type of measurement is indicated by each of the following units? Choices are in the last column.

More information

B410U10-1 S16-B410U10-1. CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions

B410U10-1 S16-B410U10-1. CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions Surname Centre Number Candidate Number Other Names 2 GCE AS NEW AS B410U10-1 S16-B410U10-1 CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions A.M. FRIDAY, 27 May

More information

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths:

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths: A Level Chemistry Ribston Hall High School Pre Course Holiday Task Name: School: GCSE Grades in i) Chemistry or Science: ii) Maths: 1 The following are a series of questions on topics you have covered

More information

TECHNETIUM-99 IN SOIL

TECHNETIUM-99 IN SOIL Analytical Procedure TECHNETIUM-99 IN SOIL 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in soil. 1.2. This method does not address all aspects of safety, quality

More information

Quickly add 50 cm 3 of acid.

Quickly add 50 cm 3 of acid. 1 One of the instructions for an experiment reads as follows. What is the best piece of apparatus to use? Quickly add 50 cm 3 of acid. a a conical flask a a 2 student uses the apparatus shown in the diagram

More information

Which of the following answers is correct and has the correct number of significant figures?

Which of the following answers is correct and has the correct number of significant figures? Avogadro s Number, N A = 6.022 10 23 1. [7 points] Carry out the following mathematical operation: 6.06 10 3 + 1.1 10 2 Which of the following answers is correct and has the correct number of significant

More information

Sample. Test Booklet. Subject: SC, Grade: HS MCAS 2007 HS Chemistry. - signup at to remove - Student name:

Sample. Test Booklet. Subject: SC, Grade: HS MCAS 2007 HS Chemistry. - signup at   to remove - Student name: Test Booklet Subject: SC, Grade: HS Student name: Author: Massachusetts District: Massachusetts Released Tests Printed: Thursday February 14, 2013 1 Which of the following Lewis dot structures represents

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0014911874* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/33 Advanced Practical Skills 1 May/June 2012

More information

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes.

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes. Edexcel GCSE Chemistry Topic 3: Chemical changes Acids Notes 3.1 Rec that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide ions Acids produce H + ions in

More information

THE URANIUM DETERMINATION IN COMMERCIAL IODINATED SALT

THE URANIUM DETERMINATION IN COMMERCIAL IODINATED SALT ENVIRONMENT PHYSICS THE URANIUM DETERMINATION IN COMMERCIAL IODINATED SALT C. A. SIMION, C. CIMPEANU, C. BARNA, E. DUTA Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania, 407

More information

*8733689660* www.onlineexamhelp.com Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/35 Paper 3 Advanced Practical Skills 1 October/November

More information

COMA JOINT EXAM 2014

COMA JOINT EXAM 2014 NAME... INDEX NO... SCHOOL. CANDIDATE S SIGNATURE. 233/1 CHEMISTRY PAPER 1 (THEORY) JUNE 2014 TIME: 2 HOURS DATE.. COMA JOINT EXAM 2014 Kenya Certificate of Secondary Education. CHEMISTRY PAPER 1 (THEORY)

More information

THE CHEMISTRY OF LIFE

THE CHEMISTRY OF LIFE THE CHEMISTRY OF LIFE ATOMS All living things are made up of matter Atoms are the smallest unit of matter Made up of 3 subatomic particles: 1. Protons- positively charged, found in the nucleus, has mass

More information

ANALYTICAL TASK EXPERIMENTAL PROCEDURE

ANALYTICAL TASK EXPERIMENTAL PROCEDURE ANALYTICAL TASK EXPERIMENTAL PROCEDURE Complexometric determination of zinc after separation from cadmium by ion chromatography It is almost impossible to correctly determine the content of zinc(ii) ions

More information

NSS Chemistry Part 2 The Microscopic World I HKCEE Past Paper Questions Structural Questions

NSS Chemistry Part 2 The Microscopic World I HKCEE Past Paper Questions Structural Questions NSS Chemistry Part 2 The Microscopic World I HKCEE Past Paper Questions Structural Questions 1. HKCEE 1994 Q7b The table below lists some physical properties of lead, bromine and lead(ii) bromide. Lead

More information

3.2.6 Group II. Trends in Chemical properties. 164 minutes. 161 marks. Page 1 of 19

3.2.6 Group II. Trends in Chemical properties. 164 minutes. 161 marks. Page 1 of 19 3.2.6 Group II Trends in Chemical properties 164 minutes 161 marks Page 1 of 19 Q1. (a) A small sample of barium metal was added to water in a flask. When the reaction had ceased, the contents of the flask

More information

Trilogy Quantitative chemistry

Trilogy Quantitative chemistry Trilogy Quantitative chemistry Foundation revision questions Name: Class: Date: Time: 6 minutes Marks: 6 marks Comments: Page of 23 (a) Formulae and equations are used to describe chemical reactions. Aluminium

More information

Answer Key Multiple Choice (PART I)

Answer Key Multiple Choice (PART I) Answer Key Multiple Choice (PART I) 1. B 2. B 3. C 4. A 5. D 6. D 7. A 8. C 9. C 10. D 11. C 12. D 13. C 14. D 15. B 16. B 17. D 18. D 19. A 20. D 21. B 22. D 23. A 24. B 25. C 26. C 27. B 28. A 29. D

More information

Name CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Name CHEMISTRY / / Oxide Reactions & Net Ionic Reactions Name CHEMISTRY / / Oxide Reactions & Net Ionic Reactions The first type of reactions we will look at today are reactions between an oxide (a compound with oxygen as its anion) and water. There are two

More information

Answers and Marking Scheme. Chemistry. Chemical Earth + Metals

Answers and Marking Scheme. Chemistry. Chemical Earth + Metals Answers and Marking Scheme Chemistry Chemical Earth + Metals Theory Test 2005 Part A 15 marks Attempt Questions 1 15 Allow about 20 minutes for this part Answer Box for Questions 1 15 1 A B C D 2 A B C

More information

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator LSC2017 Conference 1-5th May, 2017, Copenhagen LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator Xiaolin Hou Technical University of Denmark, Center for Nuclear Technologies Roskilde,

More information

NANDI CENTRAL DISTRICT JOINT MOCK 2013

NANDI CENTRAL DISTRICT JOINT MOCK 2013 NAME:. SIGNATURE: INDEX NO:. DATE :.. 233/1 CHEMISTRY PAPER 1 THEORY JULY / AUGUST 2013 TIME: 2 HOURS NANDI CENTRAL DISTRICT JOINT MOCK 2013 Kenya Certificate of Secondary Education (K.C.S.E.) CHEMISTRY

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

Acid, Bases and Salts (IGCSE Chemistry Syllabus )

Acid, Bases and Salts (IGCSE Chemistry Syllabus ) Acid, Bases and Salts (IGCSE Chemistry Syllabus 2016-2018) Acid o A compound when dissolved in water produces hydrogen ions (H + ) ; proton (H + ) donor o It turns blue damp litmus paper to red o ph 1

More information