3D Visualization of Drugs-Protein Complexes

Size: px
Start display at page:

Download "3D Visualization of Drugs-Protein Complexes"

Transcription

1 3D Visualization of Drugs-Protein Complexes Goal: Develop better understanding of Protein Database and its entries Plan Introductory information about protein structure database Learn Molsoft-browser for molecular visualization (and/or imolview for portable devices) Learn how to find a drug-protein complex in the database Molecular visualization exercises Contact: Ruben Abagyan : ucsd.edu Website:

2 Molecular Crystals and X-ray diffraction Wilhelm Röntgen Wavelength of X-rays is around 1 Angstrom An X-ray picture (radiograph), taken by Wilhelm Röntgen in 1896, of Albert von Kölliker's hand.

3 From X-ray diffraction spots to 3D structure Each spot needs: 3 coordinates, h,k,l, intensity and phase, F hkl, A hkl To get the electron density map the Fourier transformation is used We need spot intensities and phases, but we only have intensities. Yet another limitation of quality Direct methods Anomalous diffraction (MAD) molecular replacement

4 Drug Targets in PDB Uniprot contains ~20,250 human proteins, with the mean length of 550 and median of 400 amino acids

5 PDB FILE FORMAT PDB Lingo: ATOM HETATM (het) SEQRES HEADER EXTRACELLULAR MATRIX 22-JAN-98 1A3I TITLE X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)... EXPDTA X-RAY DIFFRACTION AUTHOR R.Z.KRAMER,L.VITAGLIANO,J.BELLA,R.BERISIO,L.MAZZARELLA, AUTHOR 2 B.BRODSKY,A.ZAGARI,H.M.BERMAN... REMARK 350 BIOMOLECULE: 1 REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C REMARK 350 BIOMT REMARK 350 BIOMT SEQRES 1 A 9 PRO PRO GLY PRO PRO GLY PRO PRO GLY SEQRES 1 B 6 PRO PRO GLY PRO PRO GLY SEQRES 1 C 6 PRO PRO GLY PRO PRO GLY... ATOM 1 N PRO A N ATOM 2 CA PRO A C ATOM 3 C PRO A C ATOM 4 O PRO A O ATOM 5 CB PRO A C... HETATM 130 C ACY C HETATM 131 O ACY O HETATM 132 OXT ACY O Each atom has X, Y, Z, O, B Occupancy Bfactor, - how smeared the electron density is

6 Difficult cases for crystallography Membrane proteins: only ten GPCRs out of a thousand human ones Fibrils (tubulin, miosin, actin filaments, amyloid) Large particles: ribosomes Flexible multi-domain proteins

7 Unit Cells and Translations Crystals are regular periodic arrays Unit cell is the smallest volume from which the entire crystal can be constructed by translation only Each unit cell contains one or several Asymmetric Units related by crystallographic symmetry (e.g. a mirror plane or a 2-fold rotation axis) a b Unit Cell

8 Unit Cell and Asymmetric Unit One unit cell may contain elements of crystallographic symmetry

9 Asymmetric Unit Asymmetric Unit is the smallest volume from which the unit cell can be constructed by application of the crystallographic symmetry.

10 Asymmetric unit is not unique Two steps: AU is multiplied by the symmetry elements of the cell (unique for each of 230 space groups) Result is translated in 3D

11 Unit Cell and Asymmetric Unit The Unit cell here is one card since by parallel TRANSLATION only the space can be filled The Asymmetric Unit is half a card, related to another half by ROTATION. There are many ways to define that half however. In protein crystals AU does not break proteins Better choice of AU Legal, but poor choice of AU

12 Non-crystallographic symmetry (NCS) An asymmetric unit may still contain several identical molecules or groups of molecules related by LOCAL symmetry Example: a crystal of viral particles, each virus consists of 60 groups of envelope proteins related by local NCS

13 Space Groups 17 groups in 2D 2D group example: p2 230 groups in 3D The most frequent: P P C P C P P1 P2 1

14 Symmetry Group: P Many biomolecules crystallize in P group It has 4 asymmetric units in a unit cell

15 Reconstructing the biological structure from the asymmetric unit Biological protein a part of a biological assembly (oligomer, homo- or hetero-, a complex,..) A structural domain of interest 1,2,.. domains may form an asymmetric unit via NCS Several asymmetric units form a unit cell Unit cells fill space via translation to form a crystal If you are lucky, your space group will be P1 (no internal symmetry), and the asymmetric unit will consist of only your protein

16 Unit Cell Example Transthyretin binds drugs, transports thyroxine (T4). 2flm (1.65A) TTR Amyloid: Familial amyloid polyneuropathy (or cardiomyopathy) Space group P

17 In P there are four dimers in unit cell The biological unit is a HOMOTETRAMER

18 UNLs (unrecognized ligands) From electron density of a protein drug complex to a full atom model Ambiguities and gaps Missing/unclear ligand density Missing/amb. loop or side chains Rotations of Asn, Gln Crystallographic and non-crystallographic symmetry, bio-molecule, water, UNLs Fantasy Heavy Atoms Wrong atoms with full occupancy and low B- factors Protonation and Tautomerization ε and δ Histidines, His rotations, and ligand tautomers protons in His, Asp, Glu,Arg, Lys, Cys Protonation and tautomerization of the ligand 2o5r 2gb 3

19 imolview on Mobiles

20 imolview on Google/Android

21 ICM-Graphics: Mouse Controls Center of the window: left mouse button = rotate middle button = translate right button = menu Left margin: left mouse button = zoom in/out Top margin: left mouse button = Z-rotation Bottom margin: translate With slides: two triangular arrows = switch to next/previous Right Margin: Bottom: front clipping plane Top: back clipping plane

22 Exercise: Finding a PDB By 4-symbol code Every PDB file has a 4-symbol code starting from a digit, e.g. 1crn Try to find code of interest online Type the code in ICM Search panel By text (eg drug name): Type Aspirin into the PDB/Search field Double click on a result row

23 Exercise: Playing with Graphics Search Aspirin via ICM-PDB-search box Choose 1pth Find Aspirin moiety in Workspace Understand all molecules in the structure Select chain B and delete it Center on the Salicylic Acid Find Sites under chain a Select Ser 530 by double clicking on the site and display modified Serine in CPK Make a picture

24 Exercise: Slides and Prepared.icb Go to the site Download prepared Aspirin.icb file Flip through slides using arrows at the bottom margin of the graphics-window Make a picture

25 MolSoft ICM Reference ICM Selections When a 3D structure of a protein, DNA or small molecule is loaded from PDB or other file format into ICM shell, it exists in a data structure that we term as molecular 'object'. Multiple objects may co-exist in ICM. Each object consists of one or more molecules, each molecule of one or more residues and each residue of one or more atoms. Complete atom-level selection constant contains four fields: a_objects.molecules/residues/atoms Example: read pdb 1stp as_graph = a_1stp.a/15/ca The above selects atom ca in residue number 15 of chain 'a' of object '1stp and puts it into a variable called as_graph. This is a graphical selection in the graphics window you will see green crosses on the selected atoms. Selection examples: a_1stp.a/15 # residue number 15 a_1stp.a # molecule chain a a_1stp. # object a_icm. # ICM-type objects a_.a # polypeptide chains in all objects a_1.w # water molecules of the first object a_1.!w # excludes water molecules from 1 st object a_1.* # everything in first object Current Object selections are useful because most operations are performed on the last loaded object a_ #current object, use: set object a_<n>. to reset a_h # heteroatom molecules (ligands, ions etc) in curent object a_/20:30 # residues from 20 to 30 a_/"vta" # consecutive residues matching sequence 'VTA', i.e. val-thr-ala a_/lys,arg,glu,asp # all lysines,arginines,glutamic and aspartic acids a_/sh # residues in Sec.structure Helices a_//c,ca,n # backbone (C,Ca,N atoms) a_//c* # all carbons Basic ICM Commands An instruction one can execute in the ICM-shell interactively or from an ICM script file. Typically a command consists of a verb (like read or delete ) and a bunch of arguments. The word order in the argument list is not important, if arguments have different types. If two or more argument of the same type are present the order becomes important. Example verbs: display,undisplay,color,center, delete, connect Example nouns: wire,cpk,ball,stick,xstick, Surface,skin,ribbon,label,residue,atom Example: read pdb "1crn" display ribbon color ribbon a_/4:8 blue display xstick a_1.1/10 green center display residue label a_/6:12 display string "Crambin" 36 red Write Image write image window=2*view(window) Display Hydrogen Bonds display hbond a_1.* # display all hbonds in object one Superimpose Protein Structures superimpose a_1.1 a_2.1 align minimize ICM Functions ICM functions have the following general format FunctionName(arg1, arg2...). They can return a variety of types. The order of the function arguments is fiexible Example: avb=min( Bfactor(a_//ca) ) show Bfactor(a_//!h*) color a_//* Bfactor(a_//*) color ribbon a_/a Bfactor(a_/A) ICM Macros A Macro is a group of ICM commands in a separate named function with arguments. Convert PDB to ICM Object (convertobject) To display hydrogen bonds display electrostatic or property surfaces then you need to convert a PDB file into an ICM object using the convert command [more]. read pdb "1abe" convertobject a_1,2 yes yes yes no show r_residualrmsd _macro file. A collection of ICM macros. This file contains a set of ICM macros. You can use them, modify them, or browse them to develop your own macros. _macro is downloaded by the call _macro command. ICM-shell Objects The ICM-shell can handle many different types such as integer, (e.g. a=10, b= -3 ) real, (e.g. c = ) string, text in single or double quotes (e.g. d = Hi, guys" ) logical, (e.g. e = (2 > 43); f = yes ) preference, (i.e. fixed multiple choices, try show wirestyle ) iarray, (i.e. integer arrays, g={-2,3,-1} ) rarray, (i.e. real arrays, h={ -2.3, 3.12, -1.} ) sarray, (i.e. string arrays, i={"mek","yerku","erek"} ) parray, including array of 0D,2D or 3D chemicals, e.g. chm = Chemical({"CC","CC(=O)O","C1CC1"}) matrix, (read from a disk file, e.g. read matrix "def.mat" ) sequence, (i.e. amino acid or nucleotide sequences, e.g. a=sequence("asdqwe") alignment, (i.e. pairwise or multiple sequence alignments, read from a file) grob, mesh, surface of shape table, or spreadsheet. Several arrays of the same size are grouped in a table. Table can also have a header with some additional data fields. Tables are essentially simple databases which can be manipulated with, sorted and searched with ICM commands.

26 iphone &ipad

Drug targets, Protein Structures and Crystallography

Drug targets, Protein Structures and Crystallography Drug targets, Protein Structures and Crystallography NS5B viral RNA polymerase (RNA dep) Hepa88s C drug Sofosbuvir (Sovaldi) FDA 2013 Epclusa - combina8on with Velpatasvir approved in in 2016) Prodrug

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Working with protein structures. Benjamin Jack

Working with protein structures. Benjamin Jack Working with protein structures Benjamin Jack Structure of Triosephosphate Isomerase PDB ID: 1HTI loop beta sheet alpha helix Different perspectives of the same structure Structure of Truncated Hemoglobin

More information

Protein Structure and Visualisation. Introduction to PDB and PyMOL

Protein Structure and Visualisation. Introduction to PDB and PyMOL Protein Structure and Visualisation Introduction to PDB and PyMOL 1 Feedback Persons http://www.bio-evaluering.dk/ 2 Program 8.00-8.15 Quiz results 8.15-8.50 Introduction to PDB & PyMOL 8.50-9.00 Break

More information

X-ray crystallography NMR Cryoelectron microscopy

X-ray crystallography NMR Cryoelectron microscopy Molecular Graphics with PyMOL Overview of: Protein Data Bank Coordinates Jean-Yves Sgro PyMOL interface Hands-on! Experimental Methods 3 Main: X-ray crystallography NMR Cryoelectron microscopy X-ray source

More information

Preparing a PDB File

Preparing a PDB File Figure 1: Schematic view of the ligand-binding domain from the vitamin D receptor (PDB file 1IE9). The crystallographic waters are shown as small spheres and the bound ligand is shown as a CPK model. HO

More information

Pymol Practial Guide

Pymol Practial Guide Pymol Practial Guide Pymol is a powerful visualizor very convenient to work with protein molecules. Its interface may seem complex at first, but you will see that with a little practice is simple and powerful

More information

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Protein Bioinformatics 260.655 Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Goals: Approx. Time [1] Use the Protein Data Bank PDB website. 10 minutes [2] Use the WebMol Viewer.

More information

Chapter 2 Structures. 2.1 Introduction Storing Protein Structures The PDB File Format

Chapter 2 Structures. 2.1 Introduction Storing Protein Structures The PDB File Format Chapter 2 Structures 2.1 Introduction The three-dimensional (3D) structure of a protein contains a lot of information on its function, and can be used for devising ways of modifying it (propose mutants,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Introduction to Structure Preparation and Visualization

Introduction to Structure Preparation and Visualization Introduction to Structure Preparation and Visualization Created with: Release 2018-4 Prerequisites: Release 2018-2 or higher Access to the internet Categories: Molecular Visualization, Structure-Based

More information

Molecular modeling with InsightII

Molecular modeling with InsightII Molecular modeling with InsightII Yuk Sham Computational Biology/Biochemistry Consultant Phone: (612) 624 7427 (Walter Library) Phone: (612) 624 0783 (VWL) Email: shamy@msi.umn.edu How to run InsightII

More information

Right click on the link and save the file on the disk (Save link target as...). Then execute this in the command window:

Right click on the link and save the file on the disk (Save link target as...). Then execute this in the command window: Läkemedelsutveckling ht 2005 Copyright 2005 Lars Brive Excercise Analysis of structures of protein ligand complexes In this excercise you will examine the geometrical features of six x ray structures in

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Let s continue our discussion on the interaction between Fe(III) and 6,7-dihydroxynaphthalene-2- sulfonate.

Let s continue our discussion on the interaction between Fe(III) and 6,7-dihydroxynaphthalene-2- sulfonate. Chemistry 5995(133)-8990(013) Bioinorganic Chemistry: The Good, the Bad, and the Potential of Metals Assignment 2- Aqueous Speciation, Magnetism, Redox, UV-Vis Spectroscopy, and Pymol Let s continue our

More information

Comparing whole genomes

Comparing whole genomes BioNumerics Tutorial: Comparing whole genomes 1 Aim The Chromosome Comparison window in BioNumerics has been designed for large-scale comparison of sequences of unlimited length. In this tutorial you will

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

X-Ray structure analysis

X-Ray structure analysis X-Ray structure analysis Kay Diederichs kay.diederichs@uni-konstanz.de Analysis of what? Proteins ( /ˈproʊˌtiːnz/ or /ˈproʊti.ɨnz/) are biochemical compounds consisting of one or more polypeptides typically

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

Data File Formats. There are dozens of file formats for chemical data.

Data File Formats. There are dozens of file formats for chemical data. 1 Introduction There are dozens of file formats for chemical data. We will do an overview of a few that are often used in structural bioinformatics. 2 1 PDB File Format (1) The PDB file format specification

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets Proteins Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order Perform nearly all cellular functions Drug Targets Fold into discrete shapes. Proteins - cont. Specific shapes

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3.

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.0, December 1, 2006 Updated to Version 3. Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.0, December 1, 2006 Updated to Version 3.01 March 30, 2007 1. Introduction The Protein Data Bank (PDB) is an archive

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

NMR Assignments using NMRView II: Sequential Assignments

NMR Assignments using NMRView II: Sequential Assignments NMR Assignments using NMRView II: Sequential Assignments DO THE FOLLOWING, IF YOU HAVE NOT ALREADY DONE SO: For Mac OS X, you should have a subdirectory nmrview. At UGA this is /Users/bcmb8190/nmrview.

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.30 Document Published by the wwpdb This format complies with the PDB Exchange Dictionary (PDBx) http://mmcif.pdb.org/dictionaries/mmcif_pdbx.dic/index/index.html.

More information

Molecular Visualization. Introduction

Molecular Visualization. Introduction Molecular Visualization Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences Duquesne University Introduction Assessments of change, dynamics, and cause and effect

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Molecular Modeling Lecture 7. Homology modeling insertions/deletions manual realignment

Molecular Modeling Lecture 7. Homology modeling insertions/deletions manual realignment Molecular Modeling 2018-- Lecture 7 Homology modeling insertions/deletions manual realignment Homology modeling also called comparative modeling Sequences that have similar sequence have similar structure.

More information

Building small molecules

Building small molecules Building small molecules Use the Builder (right panel) to build up molecules. Start building clicking a fragment/atom in the builder and it will appear to the workspace. Continue modifying the molecule

More information

Protein Structure Prediction and Display

Protein Structure Prediction and Display Protein Structure Prediction and Display Goal Take primary structure (sequence) and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

X-ray Crystallography

X-ray Crystallography 2009/11/25 [ 1 ] X-ray Crystallography Andrew Torda, wintersemester 2009 / 2010 X-ray numerically most important more than 4/5 structures Goal a set of x, y, z coordinates different properties to NMR History

More information

Computational Structural Biology and Molecular Simulation. Introduction to VMD Molecular Visualization and Analysis

Computational Structural Biology and Molecular Simulation. Introduction to VMD Molecular Visualization and Analysis Computational Structural Biology and Molecular Simulation Introduction to VMD Molecular Visualization and Analysis Emad Tajkhorshid Department of Biochemistry, Beckman Institute, Center for Computational

More information

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE Silica surface - Materials Studio tutorial CREATING SiO 2 SURFACE Our goal surface of SiO2 6.948 Ǻ Import structure The XRD experiment gives us such parameters as: lattice parameters, symmetry group and

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

ICM-Chemist How-To Guide. Version 3.6-1g Last Updated 12/01/2009

ICM-Chemist How-To Guide. Version 3.6-1g Last Updated 12/01/2009 ICM-Chemist How-To Guide Version 3.6-1g Last Updated 12/01/2009 ICM-Chemist HOW TO IMPORT, SKETCH AND EDIT CHEMICALS How to access the ICM Molecular Editor. 1. Click here 2. Start sketching How to sketch

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

Molecular Graphics with PyMOL

Molecular Graphics with PyMOL Molecular Graphics with PyMOL Jean)YvesSgro Instructors Molecular Graphics & Scientific Communication Ann Palmenberg Jean-Yves Sgro Marchel Hill Holly Basta H. Adam Steinberg 1 Lab Book : Section 1 Computer

More information

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis Purpose: The purpose of this laboratory is to introduce some of the basic visualization and modeling tools for viewing

More information

Protein Fragment Search Program ver Overview: Contents:

Protein Fragment Search Program ver Overview: Contents: Protein Fragment Search Program ver 1.1.1 Developed by: BioPhysics Laboratory, Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane, 690-8504, Japan

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

SeeSAR 7.1 Beginners Guide. June 2017

SeeSAR 7.1 Beginners Guide. June 2017 SeeSAR 7.1 Beginners Guide June 2017 Part 1: Basics 1 Type a pdb code and press return or Load your own protein or already existing project, or Just load molecules To begin, let s type 2zff and download

More information

Introduction Molecular Structure Script Console External resources Advanced topics. JMol tutorial. Giovanni Morelli.

Introduction Molecular Structure Script Console External resources Advanced topics. JMol tutorial. Giovanni Morelli. Gen 19th, 2017 1 2 Create and edit Display and view Mesurament and labelling Surface and Orbitals 3 4 from Database Protein Enzyme Crystal Structure and Unit Cell 5 Symmetry Animation General information

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Helpful resources for all X ray lectures Crystallization http://www.hamptonresearch.com under tech support: crystal growth 101 literature Spacegroup tables http://img.chem.ucl.ac.uk/sgp/mainmenu.htm Crystallography

More information

Major Types of Association of Proteins with Cell Membranes. From Alberts et al

Major Types of Association of Proteins with Cell Membranes. From Alberts et al Major Types of Association of Proteins with Cell Membranes From Alberts et al Proteins Are Polymers of Amino Acids Peptide Bond Formation Amino Acid central carbon atom to which are attached amino group

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

Waves. λ = c / f ω = 2π f = 2π / T. E = hf = ω E mole = N A. E X ray. ~ ~ J / mol! Wilhelm Röntgen

Waves. λ = c / f ω = 2π f = 2π / T. E = hf = ω E mole = N A. E X ray. ~ ~ J / mol! Wilhelm Röntgen Waves An X-ray picture (radiograph), taken by Wilhelm Röntgen in 1896, of Albert von Kölliker's hand. Wilhelm Röntgen λ c / f ω 2π f 2π / T E hf ω E mole N A ω E X ray ~ 6 10 23 10 34 10 18 ~ 6 10 7 J

More information

Flexibility and Constraints in GOLD

Flexibility and Constraints in GOLD Flexibility and Constraints in GOLD Version 2.1 August 2018 GOLD v5.6.3 Table of Contents Purpose of Docking... 3 GOLD s Evolutionary Algorithm... 4 GOLD and Hermes... 4 Handling Flexibility and Constraints

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

ATP GTP Problem 2 mm.py

ATP GTP Problem 2 mm.py Problem 1 This problem will give you some experience with the Protein Data Bank (PDB), structure analysis, viewing and assessment and will bring up such issues as evolutionary conservation of function,

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Pose Prediction with GOLD

Pose Prediction with GOLD Pose Prediction with GOLD Version 3.0 November 2018 GOLD v5.7.0 Table of Contents The Purpose of Docking... 2 GOLD s Evolutionary Algorithm... 3 A Checklist for Docking... 3 GOLD and Hermes... 3 Redocking

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro How-To Guide Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro ICM 3D LIGAND EDITOR: SETUP 1. Read in a ligand molecule or PDB file. How to setup the ligand in the ICM 3D Ligand Editor.

More information

UNIT TWELVE. a, I _,o "' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I "-oh

UNIT TWELVE. a, I _,o ' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I -oh UNT TWELVE PROTENS : PEPTDE BONDNG AND POLYPEPTDES 12 CONCEPTS Many proteins are important in biological structure-for example, the keratin of hair, collagen of skin and leather, and fibroin of silk. Other

More information

Assignment A02: Geometry Definition: File Formats, Redundant Coordinates, PES Scans

Assignment A02: Geometry Definition: File Formats, Redundant Coordinates, PES Scans Assignment A02: Geometry Definition: File Formats, Redundant Coordinates, PES Scans In Assignments A00 and A01, you familiarized yourself with GaussView and G09W, you learned the basics about input (GJF)

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Part 7 Bonds and Structural Supports

Part 7 Bonds and Structural Supports Part 7 Bonds and Structural Supports http://cbm.msoe.edu/newwebsite/learntomodel Introduction In addition to covalent bonds between atoms in a molecule, Jmol has the ability to render Hydrogen Bonds and

More information

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

Tutorial: Structural Analysis of a Protein-Protein Complex

Tutorial: Structural Analysis of a Protein-Protein Complex Molecular Modeling Section (MMS) Department of Pharmaceutical and Pharmacological Sciences University of Padova Via Marzolo 5-35131 Padova (IT) @contact: stefano.moro@unipd.it Tutorial: Structural Analysis

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

Any protein that can be labelled by both procedures must be a transmembrane protein.

Any protein that can be labelled by both procedures must be a transmembrane protein. 1. What kind of experimental evidence would indicate that a protein crosses from one side of the membrane to the other? Regions of polypeptide part exposed on the outside of the membrane can be probed

More information

BIOINF527: STRUCTURAL BIOINFORMATICS LAB SESSION

BIOINF527: STRUCTURAL BIOINFORMATICS LAB SESSION BIOINF527: STRUCTURAL BIOINFORMATICS LAB SESSION Introduction to Protein Structure Visualization and Small Molecule Docking Drs. Barry Grant & Guido Scarabelli Nov 2013 Exercise 1: Introduction to the

More information

----- Ver October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed.

----- Ver October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed. ***** Facio's Release History ***** ----- Ver.18.8.2 ----- October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed. ----- Ver.18.8.1 ----- August 14, 2014

More information

Molecular Modeling lecture 2

Molecular Modeling lecture 2 Molecular Modeling 2018 -- lecture 2 Topics 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction 4. Where do protein structures come from? X-ray crystallography

More information

Synteny Portal Documentation

Synteny Portal Documentation Synteny Portal Documentation Synteny Portal is a web application portal for visualizing, browsing, searching and building synteny blocks. Synteny Portal provides four main web applications: SynCircos,

More information

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C Emad Tajkhorshid Center for Computational Biology and Biophysics Email: emad@life.uiuc.edu or tajkhors@uiuc.edu

More information

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 The presentation is based on the presentation by Professor Alexander Dikiy, which is given in the course compedium:

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 01:44 am GMT PDB ID : 1MWP Title : N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN Authors : Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry,

More information

NMR Predictor. Introduction

NMR Predictor. Introduction NMR Predictor This manual gives a walk-through on how to use the NMR Predictor: Introduction NMR Predictor QuickHelp NMR Predictor Overview Chemical features GUI features Usage Menu system File menu Edit

More information

Build_model v User Guide

Build_model v User Guide Build_model v.2.0.1 User Guide MolTech Build_model User Guide 2008-2011 Molecular Technologies Ltd. www.moltech.ru Please send your comments and suggestions to contact@moltech.ru. Table of Contents Input

More information

Bonds and Structural Supports

Bonds and Structural Supports Bonds and Structural Supports Part of the Jmol Training Guide from the MSOE Center for BioMolecular Modeling Interactive version available at http://cbm.msoe.edu/teachingresources/jmol/jmoltraining/struts.html

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution 1. Rates of amino acid replacement The initial motivation for the neutral

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

BSc and MSc Degree Examinations

BSc and MSc Degree Examinations Examination Candidate Number: Desk Number: BSc and MSc Degree Examinations 2018-9 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes Marking

More information

April, The energy functions include:

April, The energy functions include: REDUX A collection of Python scripts for torsion angle Monte Carlo protein molecular simulations and analysis The program is based on unified residue peptide model and is designed for more efficient exploration

More information

Protein Struktur (optional, flexible)

Protein Struktur (optional, flexible) Protein Struktur (optional, flexible) 22/10/2009 [ 1 ] Andrew Torda, Wintersemester 2009 / 2010, AST nur für Informatiker, Mathematiker,.. 26 kt, 3 ov 2009 Proteins - who cares? 22/10/2009 [ 2 ] Most important

More information

Hands-on pdb4dna.

Hands-on pdb4dna. Hands-on pdb4dna http://pdb4dna.in2p3.fr Emmanuel Delage Yann Perrot delage@clermont.in2p3.fr perrot@clermont.in2p3.fr Laboratoire de Physique Corpusculaire de Clermont Ferrand Pôle Physique pour la Santé

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Introduction to Spark

Introduction to Spark 1 As you become familiar or continue to explore the Cresset technology and software applications, we encourage you to look through the user manual. This is accessible from the Help menu. However, don t

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information