Chemical analysis of surfaces and organic thin films by means of XPS

Size: px
Start display at page:

Download "Chemical analysis of surfaces and organic thin films by means of XPS"

Transcription

1 Chemical analysis of surfaces and organic thin films by means of XPS

2 X-ray photoelectron spectroscopy The photoelectric effect Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) K after s Wilhelm Hallwachs and Philipp Lenard, around 1900: flux density: D = 10-5 Wm -2 flux density per K atom: DA K = 10-5 Wm m 2 = W energy at 1 s irradiation: E prim = Ws energy to remove one electron: E i = 2.24 ev = Ws During irradiation only the 1/2,000,000 part of energy is supplied which is necessary to remove one electron.

3 X-ray photoelectron spectroscopy The photoelectric effect Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) h. n E kin core level valence band Einstein s Photochemical Equivalence Law (1905) h n = E bind + E kin ii [ev] to determine experimentally value specific for each element and level primary energy

4 X-ray photoelectron spectroscopy The photoelectric effect Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) K after s Wilhelm Hallwachs and Philipp Lenard, around 1900: flux density: D = 10-5 Wm -2 flux density per K atom: DA K = 10-5 Wm m 2 = W energy at 1 s irradiation: E prim = Ws energy to remove one electron: E i = 2.24 ev = Ws During irradiation only the 1/2,000,000 part of energy is supplied which is necessary to remove one electron.

5 X-ray photoelectron spectrometer Kai Manne Börje Siegbahn (1954/1955) the first spectrum was recorded from common salt Born in Lund (Sweden), April 20, 1918 Son of K.M.G. Siegbahn Studies at the Univ. of Uppsala 1944: PhD (Univ. of Stockholm) 1951:Professor in Stockholm at the Royal Institute of Technology since 1954: University of Uppsala Nobel Prize of Physics 1981 hn = E bind + E kin Siegbahn, K.: Beta-ray-spectrometer theory and design. High resolution spectroscopy. In: Beta- and gamma-ray spectroscopy. (ed. by K. Siegbahn). Nort-Holland Publ. Co., Amsterdam (1955), S. 52

6 Modern X-ray photoelectron spectrometer Axis Ultra (Kratos Analytical, Manchester, United Kingdom) Excellent vacuum: ca mbar, at 20 C, one collision each 30 years (at 1000 mbar: ca collisions/s)

7 Modern X-ray photoelectron spectrometer X-ray source hn = E bind + E kin mirror analyzer S i h. n i filament trajectories of image mode outer hemisphere slit plate + 20 kv cooling water I K a K b l min D E 0.2 ev K a 1,2 characteristic radiation L l anode (Mg, Al or Ag) block of copper Bremsstrahlung electrostatic lenses slit plate X-ray sample on sample holder inner hemisphere photoelectrons mono- chromator detector system screen CCD camera deflection plates charge compensation unit magnetic lense analysis chamber E max = e. U E vacuum pumps

8 Measuring the kinetic energy of the photoelectrons (E kin ) e.g. 180 hemispheric analyzer mirror analyzer trajectories of image mode outer hemisphere slit plate E E E E outer hemisphere detection system electrostatic lenses slit plate inner hemisphere photoelectrons mono- chromator detector system screen CCD camera deflection plates charge compensation unit inner hemisphere E - de E E + 3dE E + 2dE E + de X-ray sample on sample holder magnetic lense analysis chamber vacuum pumps

9 High surface sensitivity vs. X-rays S i h. n i + 20 kv cooling water filament anode Mg, Al or Ag block of Cu XPS A surface sensitive technique How depth we do analyze? di A N exp x = - l dx Middle free path of photoelectrons In the sample material l (C 1s, Al a ) = 1.2 nm I d = I - - d 1 exp l X-rays Photoelectron contributes to the spectrum inelastically scattered photoelectrons only contribute to the spectrum background n l d probability W 60 Å at W = nm at W = information depth [nm]

10 Interpretation of XPS spectra Wide-scan spectrum of poly(3-hydroxybutyrate) I [kcounts/s] KLL series 1s C 1s Si 2s Si 2p 2s binding energy [ev] qualitative surface anlysis all elements were detected (without hydrogen and helium) elements with higher numbers in the periodic table show a couple of peaks. background element peaks relaxation phenomena (Auger peaks) CH 3 CH CH 2 C n

11 Cu 2p 3/2 Interpretation of XPS spectra Designation of the peaks Coupling of orbit quantum number and electron spin: j = l + s s = ± ½ l total orbit quantum number j orbit quantum number l main quantum number s chemical symbol D BE = 19.9 ev Cu 2p 3/2 Cu 2p 1/2 E M L 3 2 d (l = 2) p (l = 1) s (l = 0) p (l = 1) s (l = 0) 5/2 3/2 3/2 1/2 1/2 3/2 1/2 1/2 3d 3d 3p 3p 3s 2p 2p 2s 5/2 3/2 3/2 1/2 3/2 1/ binding energy [ev] K 1 s (l = 0) 1/2 1s n l j BE [ev]

12 Interpretation of XPS spectra Quantification I [kcounts/s] KLL series 1s C 1s C 1s Si 2s Si 2p 2s Binding energy [ev] qualitative surface analysis (showing all elements), quantitative surface analysis [C] [] [Si] = At-% = At-% = 0.39 At-% CH 3 CH CH 2 C n []:[C] = [Si]:[C] = []:[C] should be = 0.5

13 Interpretation of XPS spectra Quantification I(X) = [n(x),, (X,i,h (E, ] photon n), l kin ), A,T(Ekin ) Usually only relative values are the matter of interest: e.g.si transmission area of 2 means elemental or atomic ratio of [Si]:[] = 1:2 acceptance take-off angle middle free path of Hence, electrons results are given in atom percents [At-%] cross section of the photon-electron interaction I ( X ) n ( X ) ( X flux ) density ( E [ X of ]) the T photons ( E [ X ]) c ( X ) T ( E [ X ]) S ( X ) l = 1 kin 1 kin 1 number of kin atoms = 1 1 I ( X ) n ( X ) ( X ) l ( E [ X ]) T ( E [ X ]) c ( X ) T ( E [ X ]) S ( X ) kin 2 kin 2 2 kin 2 2 measured intensity Relative sensitivity factors are experimentally determined Peak S C 1s s s s Ag 3d 5/ Different elements have a different sensitivity and will be analyzed with different minimum concentration limits. However, all elements having a minimum concentration of ca. 0.1 at-% will be trustworthy analyzed.

14 Analyzing the chemical structure and binding states Chemical shifts in the C 1s and 1s spectra of poly(3-hydroxybutyate) C C CH 3 CH 3 CH CH 1 : 1 1 : 1 C C CH CH 3 3 CH CH 1 : 1:1:1 CH 3 C H C H 2 C qualitative surface analysis (showing all elements), quantitative surface analysis C C H 3 chemistry of the element s neighbourhood controls the electron density chemical shift (types of functional groups, degree of oxidation), CH 3 - H2C C CH Bindungsenergie [ev] - CH 3 - H2C C CH CH 3 CH CH 2 C n

15 Chemical shifts and binding states Qualitative and quantitative detection of functional groups binding energy [ev] C C ; C H C = C C = C C C (ether) C H C C= (ester) C = (keto group) xirane C C = (ester) H C = (carbonic acid) anhydride carbonate C Cl C 2 C 3 + C NR 2 ; C NR D BE [ev] primary shift CH 2 CH 2 CH C 2 - H b-shift by strongly electronegative groups CH 2 C H H C C ev C() C ev C C Cl C C DBE ev 0.4 ev

16 Binding energy [ev] C 1s spectra to analyze chemical structures Polymethacrylates with different alcohol rests A CH 2 A CH 2 A CH 2 ACH 3 B C EC C1 CH 2 GC 2 HC 3 ACH 3 B C EC C1 CH 2 HC 3 ACH 3 B C EC C CH 3 n n n Binding energy [ev] A CH 2 R C CH 2 G G G G G R C CH 2 B1 CH 2 G1C 2 GC 2 HC 3 A CH 3 B C E C C1 CH 2 G C 2 G C 2 H C 3 4 n n n

17 C 1s spectra to analyze surface reactions Hydrophobic fluorocarbon films should get hydrophilic properties PE-dimethacrylate UV-grafted onto an oxygen plasma treated C film PE-monoacrylate melt-grafted onto an oxygen plasma treated C film C film with PE-PP-PE cross-linked in an argon plasma PE-monoacrylate UV-grafted onto an oxygen plasma treated C film unmodified fluoro carbon film (C film) PE-monoacrylate grafted onto an oxygen plasma treated C film

18 Derivatization to analyze of functional surface groups Double bonds and carbonic acids Double bonds Carbonic acids + Br 2 Br Br + H H 3 C CH 3 Si N CH 3 N CH 3 Si CH 3 CH 3 + HN N + s 4 s + H R 3 N R 3 NH + H NaH in MeH Na + H AgN 3 in H 2 + Ag HN 3

19 Derivatization to analyze of functional surface groups Alcohol, oxiran and amino groups Alcohol groups xiran groups H + 3 C C H 3 + HCl 3 C H C Cl 3 3 C + Amino groups 3 C NR2 + Cl CH 2 C 3 C 3 R N CH 2 NH 2 + CS 2 H N S SH

20 Chemical shift in the Si 2p spectrum Detection of silanol groups and the condensation of silanes on glass surfaces No significant chemical shift at BE ca. 102 ev. Separation of component peaks of Si( ) 3, Si H und Si C seemed to be impossible. C 2 H 5 H 2 N CH 2 CH 2 CH 2 Si C 2 H 5 C 2 H 5 CH 3 H 2 N CH 2 CH 2 CH 2 Si CH 3 CH 3 Si 2p 1/2 Si 0 Si 2p 3/2 H 2 N CH 2 CH 2 HN CH 2 CH 3 CH 2 CH 2 Si CH 3 CH 3 CH 3 Si Cl CH 3 Si _ binding energy [ev] binding energy [ev] binding energy [ev]

21 Chemical shift in the Si 2p spectrum Detection of silanol groups and the condensation of silanes on glass surfaces Ag L Al Ka Si 1s Si 2p 1s Si 2s C 1s N 1s Si KLL KLL C KVV Bindungsenergie [ev] Pleul, D.; renzel, R.; Eschner, M.; Simon,.: X-ray photoelectron spectroscopy for the detection of different Si bonding states of silicon. Analytical and Bioanalytical Chemistry, 375 (2003)

22 Chemical shift in the Si 2p spectrum Detection of silanol groups and the condensation of silanes on glass surfaces Si C Si Si C C Si Si H

23 Angle-resolved X-ray photoelectron spectroscopy (ARXPS) Depth profiles in the range of a few nanometers Spectrometer C 3 C 2 C 3 ED = ID = 5l = 0 75 (C 2 ) 5 C 2 H N hydrophobic end-group sample 60 0 ID = 5 l. cos () binding energy [ev] ED = 5 l [X]:[C] information depth []:[C] []:[C] CH 3 n

24 XPS employed to study biological surfaces XPS spectra recorded at low temperature (Cryo-XPS) gel Na 1s Zn 2p KLL 1s Na KLL Ca 2p N 1s C 1s Cl 2p S 2p P 2p skin S 2p gel 10 µm Baum, C.; Simon,.; Meyer, W.; leischer, L.G.; Siebers, D.: Surface properties of the skin of Delphinids. Biofouling 19 (2003) skin Si 2p binding energy [ev] K 2p

25 Ag 4d 3/2 Imaging XPS Y Y Y colloidal silver Ag 3d polyelectrolyte layer N 1s binding energy [ev] semi-fluorinated silane 1s S S S silicone wafer ø 3.05 mm reactive anchor HS C 10 H 20 CH S 2p laterally structured gold dots Au 4f metal oxide Si 2p silicon wafer laterally structured gold dots gilded surface

26 Imaging XPS Laterally structured samples a) b) Eschner, M.; Simon,.; Pleul, D.; Spange, S.: In: "Dresdener Beiträge zur Sensorik", Band 16, w.e.b. Universitätsverlag, Dresden (2002) , ISBN µm 100 µm Si 2p S 2s c) d) e) N 1s before silanisation N 1s after silanisation N 1s + Ag 3d after silver deposition

27 Small spot XPS real XPS-imaging 50 µm µm 110 µm 60 µm 27 µm spot size hollow fibre of an artificial kidney cut along its length axis KLL 1s N 1s C 1s S 2s S 2p binding energy [ev]

28 Summary XPS XPS is a method oriented to detect elements in the surface region of samples qualitative surface analysis: identification of all elements (H and He are excluded), quantitative surface analysis relative amounts of the elements, e.g. [X]:[Y], peak deconvolution allows to analyze (qualitatively and quantitatively) functional surface groups or the oxidation states, labelling can be helpful to identify the species, depth profile analysis on molecular scale without destroying the sample, sputtering is also able, special features: cryo-xps, thermo- XPS, imaging XPS, small spot XPS

29 Auger electron spectroscopy (AES) Relaxation: Competition between Auger process and X-ray fluorescence Small atomic number: High atomic number: I [kcounts/s] KLL Serie E Auger = hn E kin Auger process is preferred X-ray fluorescence takes place 1s C 1s Si 2s Si 2p 2s Bindungsenergie [ev] E e - h. n photo ionisation relaxation h. n' e - h. n' Auger emission

30 sample X-ray source Auger electron spectroscopy (AES) Auger electron spectrometer electron gun detection system qualitative surface analysis quantitative surface analysis chemistry of the element s neigh- bourhood controls the electron density chemical shift (types of functional groups, degree of oxidation) depth profiling combined with sputtering imaging AES in nanometer resolution cylindrical analyzer trajectories SEM Al Si 10 µm

31 Auger electron spectroscopy (AES) Spectral information KL 1 L 1 KL 1 L 23 KL 23 L 23 KL 1 L 1 KL 1 L 23 KL 23 L 23 2p 2s Bindungsenergie binding energy [ev] 1st derivation 1s 2p 2s 2s 0 2p 6 KL 1 L ( 1 1 S) 2s 1 2p 5 2s 1 2p 5 KL 1 L 23 ( 1 3 P) KL 1 L 23 ( P) 0 1s 2s 2 2p 4 KL 23 L ( 1 23 S) 2s 2 2p 4 2s 2 2p 4 KL ( 3 P) ( 1 23 L 23 KL 23 L 23 D) kinetische kinetic Energie energy [ev]

32 Summary AES AES is also a method oriented to detect elements in the surface region of samples qualitative surface analysis: identification of all elements (H and He are excluded), quantitative surface analysis relative amounts of the elements, e.g. [X]:[Y], peak deconvolution allows to analyze (qualitatively and quantitatively) functional surface groups or the oxidation states, labelling can be helpful to identify the species, depth profile analysis by sputtering techniques imaging of the lateral distribution of elements in nanometer resolution

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex. For MChem, Spring, 2009 5) Surface photoelectron spectroscopy Dr. Qiao Chen (room 3R506) http://www.sussex.ac.uk/users/qc25/ University of Sussex Today s topics 1. Element analysis with XPS Binding energy,

More information

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Dmitry Zemlyanov Birck Nanotechnology Center, Purdue University Outline Introduction

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) XPS X-ray photoelectron spectroscopy (XPS) is one of the most used techniques to chemically characterize the surface. Also known

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

QUESTIONS AND ANSWERS

QUESTIONS AND ANSWERS QUESTIONS AND ANSWERS (1) For a ground - state neutral atom with 13 protons, describe (a) Which element this is (b) The quantum numbers, n, and l of the inner two core electrons (c) The stationary state

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

An Introduction to Auger Electron Spectroscopy

An Introduction to Auger Electron Spectroscopy An Introduction to Auger Electron Spectroscopy Spyros Diplas MENA3100 SINTEF Materials & Chemistry, Department of Materials Physics & Centre of Materials Science and Nanotechnology, Department of Chemistry,

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

5.8 Auger Electron Spectroscopy (AES)

5.8 Auger Electron Spectroscopy (AES) 5.8 Auger Electron Spectroscopy (AES) 5.8.1 The Auger Process X-ray and high energy electron bombardment of atom can create core hole Core hole will eventually decay via either (i) photon emission (x-ray

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Electron Spettroscopies

Electron Spettroscopies Electron Spettroscopies Spettroscopy allows to characterize a material from the point of view of: chemical composition, electronic states and magnetism, electronic, roto-vibrational and magnetic excitations.

More information

PHOTOELECTRON SPECTROSCOPY (PES)

PHOTOELECTRON SPECTROSCOPY (PES) PHOTOELECTRON SPECTROSCOPY (PES) NTRODUCTON Law of Photoelectric effect Albert Einstein, Nobel Prize 1921 Kaiser-Wilhelm-nstitut (now Max-Planck- nstitut) für Physik Berlin, Germany High-resolution electron

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

X-ray Photoelectron Spectroscopy/ Electron spectroscopy for chemical analysis (ESCA), By Francis Chindeka

X-ray Photoelectron Spectroscopy/ Electron spectroscopy for chemical analysis (ESCA), By Francis Chindeka X-ray Photoelectron Spectroscopy/ Electron spectroscopy for chemical analysis (ESCA), By Francis Chindeka X-ray photoelectron spectroscopy (XPS) or Electron spectroscopy for chemical analysis (ESCA), Surface

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

ABC s of Electrochemistry: X-Ray Photoelectron Spectroscopy (XPS) Madhivanan Muthuvel

ABC s of Electrochemistry: X-Ray Photoelectron Spectroscopy (XPS) Madhivanan Muthuvel ABC s of Electrochemistry: X-Ray Photoelectron Spectroscopy (XPS) Madhivanan Muthuvel Center for Electrochemical Engineering Research (CEER) Chemical and Biomolecular Engineering Ohio University Athens,

More information

Auger Electron Spectroscopy *

Auger Electron Spectroscopy * OpenStax-CNX module: m43546 1 Auger Electron Spectroscopy * Amanda M. Goodman Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Basic

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Lecture 5-8 Instrumentation Requirements 1. Vacuum Mean Free Path Contamination Sticking probability UHV Materials Strength Stability Permeation Design considerations Pumping speed Virtual leaks Leaking

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

XPS & Scanning Auger Principles & Examples

XPS & Scanning Auger Principles & Examples XPS & Scanning Auger Principles & Examples Shared Research Facilities Lunch Talk Contact info: dhu Pujari & Han Zuilhof Lab of rganic Chemistry Wageningen University E-mail: dharam.pujari@wur.nl Han.Zuilhof@wur.nl

More information

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) 1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving

More information

X- ray Photoelectron Spectroscopy and its application in phase- switching device study

X- ray Photoelectron Spectroscopy and its application in phase- switching device study X- ray Photoelectron Spectroscopy and its application in phase- switching device study Xinyuan Wang A53073806 I. Background X- ray photoelectron spectroscopy is of great importance in modern chemical and

More information

Photoelectron Peak Intensities in Solids

Photoelectron Peak Intensities in Solids Photoelectron Peak Intensities in Solids Electronic structure of solids Photoelectron emission through solid Inelastic scattering Other excitations Intrinsic and extrinsic Shake-up, shake-down and shake-off

More information

An introduction to X- ray photoelectron spectroscopy

An introduction to X- ray photoelectron spectroscopy An introduction to X- ray photoelectron spectroscopy X-ray photoelectron spectroscopy belongs to a broad class of spectroscopic techniques, collectively called, electron spectroscopy. In general terms,

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Lecture 7 Chemical/Electronic Structure of Glass

Lecture 7 Chemical/Electronic Structure of Glass Lecture 7 Chemical/Electronic Structure of Glass Syllabus Topic 6. Electronic spectroscopy studies of glass structure Fundamentals and Applications of X-ray Photoelectron Spectroscopy (XPS) a.k.a. Electron

More information

Bonds in molecules are formed by the interactions between electrons.

Bonds in molecules are formed by the interactions between electrons. CHEM 2060 Lecture 6: Electrostatic Interactions L6-1 PART TWO: Electrostatic Interactions In the first section of this course, we were more concerned with structural aspects of molecules. In this section

More information

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev Characterization of Secondary Emission Materials for Micro-Channel Plates S. Jokela, I. Veryovkin, A. Zinovev Secondary Electron Yield Testing Technique We have incorporated XPS, UPS, Ar-ion sputtering,

More information

X-Ray Photoelectron Spectroscopy: Theory and Practice

X-Ray Photoelectron Spectroscopy: Theory and Practice X-Ray Photoelectron Spectroscopy: Theory and Practice PHYS-581 (Fall 2010) Contact Information for EMS in RRC-East Alan Nicholls, PhD Director of Research Service Facility - Electron Microscopy Research

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

X-ray Photoemission Spectroscopy (XPS - Ma4)

X-ray Photoemission Spectroscopy (XPS - Ma4) Master Laboratory Report X-ray Photoemission Spectroscopy (XPS - Ma4) Supervisor: Andrew Britton Students: Dachi Meurmishvili, Muhammad Khurram Riaz and Martin Borchert Date: November 17th 2016 1 Contents

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Fig Photoemission process.

Fig Photoemission process. 1.1 Photoemission process (Ref. 3.1, P. 43) When a sample surface is irradiated with photons of energy hυ, electrons are emitted from the sample surface. Figure 1.1.1 shows the essence of this photoemission

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification Jin Zhou, Pei Lin, Juanjuan Ma, Xiaoyue Shan, Hui Feng, Congcong

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Practical Surface Analysis

Practical Surface Analysis Practical Surface Analysis SECOND EDITION Volume 1 Auger and X-ray Photoelectron Spectroscopy Edited by D. BRIGGS ICI PLC, Wilton Materials Research Centre, Wilton, Middlesbrough, Cleveland, UK and M.

More information

Dr. Tim Nunney Thermo Fisher Scientific, East Grinstead, UK Dr. Nick Bulloss Thermo Fisher Scientific, Madison, WI, USA Dr. Harry Meyer III Oak Ridge

Dr. Tim Nunney Thermo Fisher Scientific, East Grinstead, UK Dr. Nick Bulloss Thermo Fisher Scientific, Madison, WI, USA Dr. Harry Meyer III Oak Ridge Dr. Tim Nunney Thermo Fisher Scientific, East Grinstead, UK Dr. Nick Bulloss Thermo Fisher Scientific, Madison, WI, USA Dr. Harry Meyer III Oak Ridge National Laboratory, TN, USA Introduction New materials

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques 2nd Edition Editors johnc.vickerman Manchester Interdisciplinary Biocentre, University of Manchester, UK IAN S. GILMORE National Physical Laboratory, Teddington,

More information

Technical description of photoelectron spectrometer Escalab 250Xi

Technical description of photoelectron spectrometer Escalab 250Xi Technical description of photoelectron spectrometer Escalab 250Xi Resource center Physical Methods of Surface Investigations 2014 Table of contents Common description 3 Analytical chamber 8 Preparation

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements Uwe Scheithauer, 82008 Unterhaching, Germany E-Mail: scht.uhg@googlemail.com Internet: orcid.org/0000-0002-4776-0678;

More information

Auger Electron Spectrometry. EMSE-515 F. Ernst

Auger Electron Spectrometry. EMSE-515 F. Ernst Auger Electron Spectrometry EMSE-515 F. Ernst 1 Principle of AES electron or photon in, electron out radiation-less transition Auger electron electron energy properties of atom 2 Brief History of Auger

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) Introduction to X-ray Photoelectron Spectroscopy (XPS) Comparison of Sensitivities

Introduction to X-ray Photoelectron Spectroscopy (XPS) Introduction to X-ray Photoelectron Spectroscopy (XPS) Comparison of Sensitivities Introduction to X-ray Photoelectron Spectroscopy (XPS) Sources of Information Principles of XPS and Auger How to prepare samples for XPS Instrumentation, X rays, Photoelectron detection Data acquisition

More information

Modern Methods in Heterogeneous Catalysis Research

Modern Methods in Heterogeneous Catalysis Research Modern Methods in Heterogeneous Catalysis Research Axel Knop-Gericke, January 09, 2004 In situ X-ray photoelectron spectroscopy (XPS) In situ near edge X-ray absorption fine structure (NEXAFS) in the soft

More information

X-ray photoelectron spectroscopy - An introduction

X-ray photoelectron spectroscopy - An introduction X-ray photoelectron spectroscopy - An introduction Spyros Diplas spyros.diplas@sintef.no spyros.diplas@smn.uio.no SINTEF Materials & Chemistry, Materials Physics -Oslo & Centre of Materials Science and

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Application of Surface Analysis for Root Cause Failure Analysis

Application of Surface Analysis for Root Cause Failure Analysis Application of Surface Analysis for Root Cause Failure Analysis David A. Cole Evans Analytical Group East Windsor, NJ Specialists in Materials Characterization Outline Introduction X-Ray Photoelectron

More information

Photoelectron Spectroscopy. Xiaozhe Zhang 10/03/2014

Photoelectron Spectroscopy. Xiaozhe Zhang 10/03/2014 Photoelectron Spectroscopy Xiaozhe Zhang 10/03/2014 A conception last time remain Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated

More information

Lecture 11 Surface Characterization of Biomaterials in Vacuum

Lecture 11 Surface Characterization of Biomaterials in Vacuum 1 Lecture 11 Surface Characterization of Biomaterials in Vacuum The structure and chemistry of a biomaterial surface greatly dictates the degree of biocompatibility of an implant. Surface characterization

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Supporting Information

Supporting Information Supporting Information of highly concentrated cellulose to 1, 2-propanediol and ethylene glycol over high efficient CuCr catalysts Zihui Xiao, Shaohua Jin, Min Pang and Changhai Liang Experimental The

More information

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes e -? 2 nd FEBIP Workshop Thun, Switzerland 2008 Howard Fairbrother Johns Hopkins University Baltimore, MD, USA Outline

More information

Period: Chemistry Semester 1 Final Exam Review Packet. 1. What is the difference between a hypothesis and a theory?

Period: Chemistry Semester 1 Final Exam Review Packet. 1. What is the difference between a hypothesis and a theory? Chemistry Name: Period: Chemistry Semester 1 Final Exam Review Packet 1. What is the difference between a hypothesis and a theory? 2. Distinguish between quantitative and qualitative observations. States

More information

The photoelectric effect

The photoelectric effect The photoelectric effect E K hν-e B E F hν E B A photoemission experiment Lifetime broadening ΔE.Δτ~ħ ΔE~ħ/Δτ + Experimental resolution Hüfner, Photoelectron Spectroscopy (Springer) A photoemission experiment

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Chemistry CRT Study Guide First Quarter

Chemistry CRT Study Guide First Quarter Number AL COS # 1. #1.0 Classify sodium chloride as an element, mixture, compound, or colloid. Compound 2. #1.0 Classify air as an element, mixture, compound, or colloid. Mixture 3. #1.0 Classify a blueberry

More information

Table 1: Residence time (τ) in seconds for adsorbed molecules

Table 1: Residence time (τ) in seconds for adsorbed molecules 1 Surfaces We got our first hint of the importance of surface processes in the mass spectrum of a high vacuum environment. The spectrum was dominated by water and carbon monoxide, species that represent

More information

Which of the following chemical elements corresponds to the symbol Cu?

Which of the following chemical elements corresponds to the symbol Cu? Which of the following chemical elements corresponds to the symbol Cu? A) copper B) gold C) lead D) silver E) none of the above Which of the following chemical elements corresponds to the symbol Cu? A)

More information

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 18, Number 1/2017, pp. 42 49 MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES Ion GRUIA University

More information

PHOTOELECTRON SPECTROSCOPY PROBLEMS:

PHOTOELECTRON SPECTROSCOPY PROBLEMS: PHOTOELECTRON SPECTROSCOPY PROBLEMS: 1. A hydrogen atom in its ground state is irradiated with 80 nm radiation. What is the kinetic energy (in ev) of the ejected photoelectron? Useful formulae: ν = c/λ

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Applications of XPS, AES, and TOF-SIMS

Applications of XPS, AES, and TOF-SIMS Applications of XPS, AES, and TOF-SIMS Scott R. Bryan Physical Electronics 1 Materials Characterization Techniques Microscopy Optical Microscope SEM TEM STM SPM AFM Spectroscopy Energy Dispersive X-ray

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

8.6 Relaxation Processes

8.6 Relaxation Processes CHAPTER 8. INNER SHELLS 175 Figure 8.17: Splitting of the 3s state in Fe which is missing in Zn. Refs. [12,13]. be aligned parallel or antiparallel with the spins of the 3d electrons of iron. 13 Thus we

More information

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger XPS/UPS and EFM Brent Gila XPS/UPS Ryan Davies EFM Andy Gerger XPS/ESCA X-ray photoelectron spectroscopy (XPS) also called Electron Spectroscopy for Chemical Analysis (ESCA) is a chemical surface analysis

More information

AES - Auger Electron Spectrosopy

AES - Auger Electron Spectrosopy Advanced Materials - Lab Intermediate Physics Ulm University Institute of Solid State Physics AES - Auger Electron Spectrosopy Sebastian Schnurr March 13, 2013 Safety Precautions MAKE SURE THAT YOU UNDERSTAND

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Surface and Interface Characterization of Polymer Films

Surface and Interface Characterization of Polymer Films Surface and Interface Characterization of Polymer Films Jeff Shallenberger, Evans Analytical Group 104 Windsor Center Dr., East Windsor NJ Copyright 2013 Evans Analytical Group Outline Introduction to

More information

Physics 30 Modern Physics Unit: Atomic Basics

Physics 30 Modern Physics Unit: Atomic Basics Physics 30 Modern Physics Unit: Atomic Basics Models of the Atom The Greeks believed that if you kept dividing matter into smaller and smaller pieces, you would eventually come to a bit of matter that

More information

A Beginners Guide to XPS

A Beginners Guide to XPS A Beginners Guide to XPS XPS Instrumentation Figure 1: Schematic of an XPS instrument. Photoemission occurs when photon energy is transferred to electrons within bound-states of atoms causing the electron

More information