Optical property modi cation of PMMA by ion-beam implantation

Size: px
Start display at page:

Download "Optical property modi cation of PMMA by ion-beam implantation"

Transcription

1 Applied Surface Science 169±170 (2001) 428±432 Optical property modi cation of PMMA by ion-beam implantation Wan Hong *, Hyung-Joo Woo, Han-Woo Choi, Young-Suk Kim, Gi-dong Kim Korea Institute of Geology, Mining and Materials, Yusong-ku, Gajung-dong 30, Taejon , South Korea Received 5 August 1999; accepted 15 December 1999 Abstract Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth pro les of the refractive indices of modi ed regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices. # 2001 Elsevier Science B.V. All rights reserved. Keywords: Waveguide; Ion implantation; PMMA; Optical properties; Refractive index; Index depth pro le; Light loss 1. Introduction Since many devices used in optical communication are composed by waveguides, waveguides play an important role in optical devices such as optical switches, interferometers, couplers and signal-branching devices. A waveguide is characterized by a region of high refractive index bounded by regions of lower index. Historically, the diffusion doping method has been a high priority for fabricating waveguides, because this method can be done with relatively low cost and simple equipments. However, it has some disadvantages; limited choice of dopant materials and index pro les, high temperature processing and disturbances of dopant materials with each other. In the case of diffusion into crystal material, diffusion * Corresponding author. is sensitive to dislocation and grain boundaries, and lateral spreading of dopants beneath a mask. Epitaxial growth and ion exchange have been used also to increase the refractive index of the surface layer of a few micrometers. High energy ion implantation, which is a surfacemodi cation technique, can be applied to form waveguide structures [1±5]. This technique has become a common tool to modify surfaces of semiconductors, crystals and optical materials in order to obtain certain electrical, mechanical and optical properties. Compared with other waveguide fabrication methods, ion implantation has some unique advantages [6]. This method can be applied to produce waveguide structures in the most of optical materials. It has a superior controllability of depth of the waveguide to other techniques since incident energy of ion can be selected freely. Ion implantation is a low temperature process, and is a great advantage in the case of the ferroelectric /01/$ ± see front matter # 2001 Elsevier Science B.V. All rights reserved. PII: S (00)00698-X

2 W. Hong et al. / Applied Surface Science 169±170 (2001) 428± optical material since its phase is more stable at the lower temperature. Inorganic materials such as LiNbO 5, InP have been developed and tested for the production of waveguides [6]. The high cost of these materials, however, is a barrier to the widespread use for optical devices. Polymeric materials offer a solution of the materialcost problem. Polymeric materials are very interesting for the production of optical devices because of their proper wavelength-band characteristics, rapid responses, high optical damage thresholds and low permittivity constants. Especially, poly(methyl methacrylate) (PMMA) is a very attractive material, because it is easy to form a structure with desired optical properties. Many investigations of PMMA have been done for waveguide fabrication [7±11]. In this work, high energy protons were implanted to PMMA to make waveguide structures, and the changes of optical properties were observed. 2. Sample preparation and measurement A PMMA sheet (Goodfellow, ME307901) of 1 mm thickness was cut into three pieces of 5 cm 2cm size. The samples were irradiated by 350 kev protons with ion uences of , and ions per cm 2, respectively. The number of modes and the effective refractive indices of them for 633 nm light were measured by the `m-lines' technique [12]. Samples for obtaining refractive-index depth pro le were prepared for two proton energies of 1 MeV and 350 kev. A PMMA plate of 2 mm thickness was irradiated by 1 MeV protons with a uence of ions per cm 2. All end faces of the sample were ground using 600, 1000, and 2400 mesh sand papers, and polished with diamond paste of 0.4 mm grain size. Index depth pro le was measured using Refracted Near Field (RNF) technique [13]. The measurement system was preform analyzer (York Technology, LTD., Model P104). Light scattering on the sample surface was suppressed by refractiveindex matching oil (n ˆ 1:4587). After measuring of index pro le, the planar waveguide of this sample was observed with a CCD camera. The range of 350 kev proton in PMMA is about 5.5 mm. Since it was too short to pro le the refractive index directly, a unique method was attempted to obtain index pro le. Seven PMMA lms of about 500 AÊ thickness were prepared on a Si wafer by spin coating. The range of 350 kev proton was divided into seven slabs and the proton energies at each slab were calculated. Each sample was irradiated by protons having the calculated energy to simulate the implantation to the thick PMMA with 350 kev proton. The uence for the sample representing the surface was ions per cm 2. For other six samples, uences were corrected along with depths using simulated data. Average refractive indices of the PMMA lms were measured by an ellipsometer. To measure light losses of waveguides, four samples were irradiated by 350 kev protons with irradiation uences of , , and ions per cm 2, respectively. Light from a diode laser (635 nm) was coupled to the samples using a prism. The intensity of the light scattered out from the prism was scanned along the sample surface by a photodiode. To reduce the scattered light from other points, the photodiode was covered with a cylinder contacted tightly with the sample surface. 3. Results and discussion The relation between the number of mode and ion implantation uence in PMMA samples was obtained by `m-lines' measurement. Fig. 1 shows that the number of mode increases along with the uences of 350 kev protons. The PMMA sample with higher Fig. 1. Variation of effective index of PMMA for 633 nm along with implantation uences of 350 kev protons.

3 430 W. Hong et al. / Applied Surface Science 169±170 (2001) 428±432 ion uence has more modes, which means that high uence introduces large variation of refractive index. The effective refractive index of each mode for each sample is also shown in Fig. 1. Considering that the refractive index of pristine PMMA is known to be 1.490, it is clear that refractive index was increased rapidly and this technique is superior to other waveguide fabricating techniques from the point of view of refractive index treatment. Two effects, cross-linking and scission arise by proton implantation. Cross-linking/scission decrease/increase the molecular weights of the polymer molecules. Since the scission effect is dominant in this energy range of proton [14,15], compaction of irradiated layer was observed. Measurement of the compaction and the change of molecular weight distribution of substrate material PMMA are presented elsewhere in this conference [16]. The compaction increases with uence. In the case of protons per cm 2 uence, the modi ed layer shrinks to more than half in depth. Molecular weight distribution spectra also show that the distribution of the scission products moves lower mass along with proton uence. This results show that long main chains of PMMA molecules be broken into shorter ones and compacts to small volume. The refractive index of isotropic polymers is related to the physical and chemical properties by the Lorentz±Lorenz relation [17]. Refractive index increases along with the increase of density and the decrease of molecular weight. The density of modi ed layer increases effectively and molecular weight decreases, therefore, result in the rapid increase of the refractive index. The variation of refractive index is related to the energy transfer ratio from implanted protons to polymer molecules. Energy transfer ratio is directly related to the stopping power of proton. Since the stopping power of the ion has a pro le along with distance through a material, it can be guessed easily that the refractive index will have a similar pro le along the depth direction. A depth pro le of refractive index of PMMA irradiated by 1 MeV protons with a uence of ions per cm 2 was compared with the stopping power curve in Fig. 2. Stopping power was calculated using SRIM2000 code, the new version of TRIM by Ziegler [18]. The maximum value of the stopping power appears at the depth of 24.5 mm from the sample surface. The depth is just before the range (25 mm) of 1 MeV proton in PMMA. The stopping Fig. 2. Comparison of the refractive index depth pro le and the simulated stopping power curve of 1 MeV protons in PMMA. The solid line represents stopping power curve. Fluence was ions per cm 2. The index curve was obtained by the RNF technique. power, then, decreases rapidly. The index pro le resembles the stopping power curve until the maximum point but deviates thereafter. The index decreases slowly until 45 mm where it goes back to the pristine value. The reason may be that protons lose a large portion of their kinetic energy within the several micrometer range just before they stop. Whereas, the energy from protons may transfer deeper. The simulated depth pro le of refractive index of PMMA irradiated by 350 kev protons with a uence of ions per cm 2 and the stopping power curve of 350 kev proton in PMMA were shown in Fig. 3. The stopping power curve was calculated using Fig. 3. Comparison of the refractive index depth pro le and the simulated stopping power curve of 350 kev protons in PMMA. The solid line represents stopping power curve. Fluence was ions per cm 2. Index curve was obtained by ellipsometry measurement of samples irradiated by simulated energies described in the main text.

4 W. Hong et al. / Applied Surface Science 169±170 (2001) 428± Table 1 Light attenuations (in ions per cm 2 ) of PMMA waveguides for 635 nm along with implantation uence Loss (db/cm) SRIM2000. The index curve recorded the maximum value at the position where the stopping power becomes maximum. This result is similar to the case of index pro le of the PMMA sample irradiated by 1 MeV protons. It was found that this new method can be successfully applied to obtain index pro le within a shorter range than 10 mm. The pro le shown in Fig. 3 may be quite different from real index pro le in the waveguide region because of the compaction effect. However, the simulated pro le still gives useful information on the approximate index pro le in the buried waveguide. Light loss of waveguide is another important factor of optical devices. The loss L is de ned as [19] L ˆ 10 log 10 I=I 0 (1) x x 0 Light losses for several implantation conditions are shown in Table 1. Considering that the light loss of pristine PMMA was measured to be 0.03 db/cm for 635 nm, the index increased to two or four times of pristine by implantation for the uence used for this experiment. The general criterion of the light loss in waveguiding element in telecommunication networks is below 1 db. However, since some of optical devices are often less than a centimeter and uence can be reduced because the index change is suf ciently large, the implantation technique may still be applied to manufacture some optical devices by optimizing irradiation conditions. A planar waveguide is shown in Fig. 4, obtained with 1.8 MeV proton implantation. It can be clearly seen that the waveguiding layer is formed in the substrate material PMMA. 4. Conclusion Proton implantation was applied to the fabrication of waveguides in PMMA. Increase of mode number and refractive index of irradiated region was observed. Depth pro les of refractive index were also obtained. Especially, the refractive index pro le in short range was successfully obtained by a unique method. Increase of refractive index is the result of compaction of irradiated layer. Although the light loss increase is rather large with uence, it can be still controlled to a proper level for some optical devices. Acknowledgements The authors would like to thank Prof. Changkwon Hwangbo in the Inha University for `m-line' technique and his kind advice about optics measurement. We also would like to thank Mr. Young-Tark Lee and Mr. Jeong-U Jeon in the Access Network Laboratory of Korea Telecom for the index depth pro ling measurement. References Fig. 4. Buried planar waveguide in PMMA formed by 1.8 MeV proton implantation. [1] J.R. Kulish, H. Franke, A. Singh, R.A. Lessard, E.J. Knystautas, J. Appl. Phys. 63 (1988) [2] P.D. Townsend, Nucl. Instrum. Meth. B89 (1994) 270. [3] C. Darraud, B. Bennamane, C. Gagnadre, J.L. Decossas, J.C. Vareille, J. Stejny, Appl. Optics 33 (1994) [4] D.M. Ruck, J. Schulz, N. Deusch, Nucl. Instrum. Meth. B131 (1997) 149.

5 432 W. Hong et al. / Applied Surface Science 169±170 (2001) 428±432 [5] C. Darraud-Taupiac, B. Bennamane, J.L. Decossas, J.C. Vareille, Nucl. Instrum. Meth. B131 (1997) 198. [6] P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge, 1994, p [7] J.R. Kulish, H. Franke, R. Irmscher, Ch. Buchal, J. Appl. Phys. 71 (1992) [8] S. Brunner, D.M. Ruck, W.F.X. Frank, F. Linke, A. Schosser, U. Behringer, Nucl. Instrum. Meth. B89 (1994) 373. [9] D. Fink, L.T. Chadderton, F. Hosoi, H. Omichi, T. Sasuga, A. Schmoldt, L. Wang, R. Klett, J. Hillenbrand, Nucl. Instrum. Meth. B91 (1994) 146. [10] D.K. Paul, B.J. Markey, SPIE Optoelectron. Interconnects II 2153 (1994) 265. [11] R.A. Lessard, G. Manivannan, Nucl. Instrum. Meth. B105 (1995) 229. [12] P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge, 1994, p [13] R. Goring, M. Rothhardt, J. Opt. Commun. 7 (1986) 82. [14] R.L. Clough, S.W. Shalaby, Radiation Effects on Polymers, American Chemical Society, Washington, DC, 1991, p [15] A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, O. Puglisi, Nucl. Instrum. Meth. B116 (1996) 168. [16] H.W. Choi, H.J. Woo, W. Hong, J.K. Kim, G.D. Kim, Appl. Surface Sci. 169±170 (2001) 193±197. [17] R. Becker, Theorie der Elektrizitat, Teubner, Stuttgart, 1969, p 131. [18] J.F. Ziegler, The Stopping and Range of Ions in Matter, Vols. 2/6, Pergamon Press, Oxford, 1977±1985. [19] S. Brunner, D.M. Ruck, K. Tinschert, W.F.X. Frank, B. Knodler, Nucl. Instrum. Meth. B107 (1996) 333.

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten Yasuhisa Oya 1) *, Makoto Kobayashi 1), Naoaki Yoshida 2),

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Lab1. Resolution and Throughput of Ion Beam Lithography.

Lab1. Resolution and Throughput of Ion Beam Lithography. 1 ENS/PHY463 Lab1. Resolution and Throughput of Ion Beam Lithography. (SRIM 2008/2013 computer simulation) Objective The objective of this laboratory work is to evaluate the exposure depth, resolution,

More information

Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides

Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 3 Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides G. Du, G. Li, S. Zhao,

More information

Optical effects of ion implantation

Optical effects of ion implantation Optical effects of ion implantation P. D. TOWNSEND, P. J. CHANDLER and L. ZHANG School of Mathematical and Physical Sciences University of Sussex 1 CAMBRIDGE UNIVERSITY PRESS Preface 1 An overview of ion

More information

Keywords: mechanical property, polymer optical fibre, radiation, transmission.

Keywords: mechanical property, polymer optical fibre, radiation, transmission. 5 th Australasian Congress on Applied Mechanics, ACAM 27 1-12 December 27, Brisbane, Australia Radiation damage to polymer optical fibres C. Yan 1, S.H. Law 2, N. Suchowerska 3,4 and S.H. Hong 5 1 School

More information

Ion Implantation ECE723

Ion Implantation ECE723 Ion Implantation Topic covered: Process and Advantages of Ion Implantation Ion Distribution and Removal of Lattice Damage Simulation of Ion Implantation Range of Implanted Ions Ion Implantation is the

More information

Implant isolation of AlGaAs multilayer DBR

Implant isolation of AlGaAs multilayer DBR Nuclear Instruments and Methods in Physics Research B 218 (2004) 381 385 www.elsevier.com/locate/nimb Implant isolation of AlGaAs multilayer DBR A.V.P. Coelho a, *, H. Boudinov a, T. v. Lippen b, H.H.

More information

dynamics simulation of cluster beam deposition (1 0 0) substrate

dynamics simulation of cluster beam deposition (1 0 0) substrate Nuclear Instruments and Methods in Physics esearch B 160 (2000) 372±376 www.elsevier.nl/locate/nimb Molecular dynamics simulation of cluster beam Al deposition on Si (1 0 0) substrate H. Zhang, Z.N. Xia

More information

Bi-directional phase transition of Cu/6H SiC( ) system discovered by positron beam study

Bi-directional phase transition of Cu/6H SiC( ) system discovered by positron beam study Applied Surface Science 194 (2002) 278 282 Bi-directional phase transition of Cu/6H SiC(0 0 0 1) system discovered by positron beam study J.D. Zhang a,*, H.M. Weng b, Y.Y. Shan a, H.M. Ching a, C.D. Beling

More information

Position sensitive detection of thermal neutrons with solid state detectors (Gd Si planar detectors)

Position sensitive detection of thermal neutrons with solid state detectors (Gd Si planar detectors) Nuclear Instruments and Methods in Physics Research A 424 (1999) 183 189 Position sensitive detection of thermal neutrons with solid state detectors (Gd Si planar detectors) G. Bruckner*, A. Czermak, H.

More information

Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer

Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer J. Phys. D: Appl. Phys. 3 (1999) 995 999. Printed in the UK PII: S00-377(99)0106-1 Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer Zhixiong Guo, Shigenao

More information

Ion exchange model for phase proton exchange waveguide in LiNbO3.

Ion exchange model for phase proton exchange waveguide in LiNbO3. Downloaded from orbit.dtu.dk on: Jul 10, 2018 Ion exchange model for phase proton exchange waveguide in LiNbO3. Veng, Torben Erik; Skettrup, Torben Published in: Journal of Lightwave Technology Link to

More information

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons Proc. 2nd Japan-China Joint Workshop on Positron Science JJAP Conf. Proc. 2 (2014) 011103 2014 The Japan Society of Applied Physics In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation

More information

Gratings in Electrooptic Polymer Devices

Gratings in Electrooptic Polymer Devices Gratings in Electrooptic Polymer Devices Venkata N.P.Sivashankar 1, Edward M. McKenna 2 and Alan R.Mickelson 3 Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder,

More information

Fabrication of Polymeric Photonic Structures using Proton Beam Writing

Fabrication of Polymeric Photonic Structures using Proton Beam Writing Fabrication of Polymeric Photonic Structures using Proton Beam Writing A.A. Bettiol 1), T.C. Sum 1), S. Venugopal Rao 2), V.I.T.A. Lohmann 3), J.A. van Kan 1) and F. Watt 1) 1) Centre for Ion Beam Applications,

More information

Electrostatic charging e ects in fast H interactions with thin Ar

Electrostatic charging e ects in fast H interactions with thin Ar Nuclear Instruments and Methods in Physics Research B 157 (1999) 116±120 www.elsevier.nl/locate/nimb Electrostatic charging e ects in fast H interactions with thin Ar lms D.E. Grosjean a, R.A. Baragiola

More information

Enhanced Transmission by Periodic Hole. Arrays in Metal Films

Enhanced Transmission by Periodic Hole. Arrays in Metal Films Enhanced Transmission by Periodic Hole Arrays in Metal Films K. Milliman University of Florida July 30, 2008 Abstract Three different square periodic hole arrays were manufactured on a silver film in order

More information

Accelerated ions. ion doping

Accelerated ions. ion doping 30 5. Simulation of Ion Doping of Semiconductors 5.1. Objectives - To give students hand-on experience of numerical simulation of ion doping used for fabrication of semiconductor planar devices. - To familiarize

More information

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition Journal of the Optical Society of Korea Vol. 13, No. 2, June 29, pp. 218-222 DOI:.387/JOSK.29.13.2.218 Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

More information

Lab 3. Ion Implantation

Lab 3. Ion Implantation 1 Lab 3. Ion Implantation (SRIM 2008/2013 computer simulation) 1. Objectives - To give students hand-on experience of numerical simulation of ion doping used for fabrication of semiconductor nanodevices.

More information

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q Optics Communications 218 (2003) 27 32 www.elsevier.com/locate/optcom Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q YanJun Liu a, *, Bin Zhang

More information

Nonionizing Energy Loss (NIEL) for Protons

Nonionizing Energy Loss (NIEL) for Protons Nonionizing Energy Loss (NIEL) for Protons I. Jun', M. A. Xapsos2, S. R. Messenger3,E. A. Burke3,R. J. Walters4,and T. Jordans Jet Propulsion Laboratory, Califomia Institute of Technology, Pasadena CA

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

Tailoring of optical properties of LiNbO 3 by ion implantation

Tailoring of optical properties of LiNbO 3 by ion implantation SMR/1758-14 "Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization" 26 June - 1 July 2006 Tailoring of Optical Properties of LiNbO3 by ion implantation Cinzia SADA

More information

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Ettore Vittone Physics Department University of Torino - Italy 1 IAEA Coordinate Research

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

Stopping power for MeV 12 C ions in solids

Stopping power for MeV 12 C ions in solids Nuclear Instruments and Methods in Physics Research B 35 (998) 69±74 Stopping power for MeV C ions in solids Zheng Tao, Lu Xiting *, Zhai Yongjun, Xia Zonghuang, Shen Dingyu, Wang Xuemei, Zhao Qiang Department

More information

The scanning microbeam PIXE analysis facility at NIRS

The scanning microbeam PIXE analysis facility at NIRS Nuclear Instruments and Methods in Physics Research B 210 (2003) 42 47 www.elsevier.com/locate/nimb The scanning microbeam PIXE analysis facility at NIRS Hitoshi Imaseki a, *, Masae Yukawa a, Frank Watt

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU ) 1 Ion Implant Part 1 Chapter 17: Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2014 Saroj Kumar Patra,, Norwegian University of Science and Technology ( NTNU ) 2 Objectives

More information

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Abstract: By electrically segmenting, and series-connecting

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

A microring multimode laser using hollow polymer optical fibre

A microring multimode laser using hollow polymer optical fibre PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 923 927 A microring multimode laser using hollow polymer optical fibre M KAILASNATH, V P N NAMPOORI and P RADHAKRISHNAN

More information

Proton Beam Writing of Passive Polymer Optical Waveguides

Proton Beam Writing of Passive Polymer Optical Waveguides Proton Beam Writing of Passive Polymer Optical Waveguides T. C. Sum a,a.a.bettiol a, S. Venugopal Rao a,j.a.vankan a, A. Ramam b andf.watt a a Centre for Ion Beam Applications (CIBA), 2 Science Drive 3,

More information

Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process

Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process Predrag Habaš, Roman Stapor, Alexandre Acovic and Maurice Lobet

More information

Lecture 8. Photoresists and Non-optical Lithography

Lecture 8. Photoresists and Non-optical Lithography Lecture 8 Photoresists and Non-optical Lithography Reading: Chapters 8 and 9 and notes derived from a HIGHLY recommended book by Chris Mack, Fundamental Principles of Optical Lithography. Any serious student

More information

Fabrication of micro-optical components in polymer using proton beam writing

Fabrication of micro-optical components in polymer using proton beam writing Fabrication of micro-optical components in polymer using proton beam writing Andrew A. Bettiol, Kambiz Ansari, Tze Chien Sum, Jeroen A. van Kan and Frank Watt Department of Physics, National University

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Introduction Experimental Condensed Matter Research Study of large

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Micro-patterned porous silicon using proton beam writing

Micro-patterned porous silicon using proton beam writing Micro-patterned porous silicon using proton beam writing M. B. H. Breese, D. Mangaiyarkarasi, E. J. Teo*, A. A. Bettiol and D. Blackwood* Centre for Ion Beam Applications, Department of Physics, National

More information

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Multipass-Pumped Semiconductor Disk Lasers 37 A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Markus Polanik The pump absorption of quantum-well-pumped semiconductor disk lasers can

More information

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass Polymer Journal, Vol. 34, No. 6, pp 466 470 (2002) NOTES Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass Norihisa TANIO Faculty of Photonics Science and Technology,

More information

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions VASE J.A. Woollam Co., Inc. Ellipsometry Solutions Accurate Capabilities The VASE is our most accurate and versatile ellipsometer for research on all types of materials: semiconductors, dielectrics, polymers,

More information

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion J. E. Toney *, V. E. Stenger, A. Pollick, J. Retz, P. Pontius, S. Sriram SRICO, Inc. 2724 Sawbury Boulevard, Columbus, OH

More information

Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal Imaging Detector

Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal Imaging Detector IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 4, AUGUST 2001 1423 Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal

More information

HIGH ENERGY IRRADIATION PROPERTIES OF CdTe/CdS SOLAR CELLS

HIGH ENERGY IRRADIATION PROPERTIES OF CdTe/CdS SOLAR CELLS Presented at the 29 th PVSC, New Orleans (2002) HIGH ENERGY IRRADIATION PROPERTIES OF CdTe/CdS SOLAR CELLS D. L. Bätzner, A. Romeo, M. Döbeli 1, K. Weinert 2, H. Zogg, A. N. Tiwari Thin Film Physics Group,

More information

Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging

Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging Anis Rahman and Aunik K. Rahman Applied Research & Photonics 470 Friendship Road, Suite 10 Harrisburg, PA 17111,

More information

I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams

I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams CYRIC Annual Report 2001 I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams Matsuyama S., Ishii K., Yamazaki H., Endoh H., Yuki H., Satoh T., Sugihara S., Amartaivan Ts., Tanaka

More information

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: Ion Implantation alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: mass separation allows wide varies of dopants dose control: diffusion

More information

DETERMINATION OF THE REFRACTIVE INDEX OF THE SE1211 RESIN USING AN SPR SPECTROSCOPY

DETERMINATION OF THE REFRACTIVE INDEX OF THE SE1211 RESIN USING AN SPR SPECTROSCOPY Molecular and Quantum Acoustics vol. 26, (2005) 267 DETERMINATION OF THE REFRACTIVE INDEX OF THE SE1211 RESIN USING AN SPR SPECTROSCOPY Cuma TYSZKIEIWCZ, Erwin MACIAK, Paweł KARASIŃSKI, Tadeusz PUSTELNY

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Session 12: Modification and Damage: Contribute lecture O-35 A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Ettore Vittone Physics

More information

1.1 FEATURES OF SPECTROSCOPIC ELLIPSOMETRY

1.1 FEATURES OF SPECTROSCOPIC ELLIPSOMETRY 1 Introduction to Spectroscopic Ellipsometry Because of recent advances in computer technology, the spectroscopic ellipsometry technique has developed rapidly. As a result, the application area of spectroscopic

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Progress In Electromagnetics Research, PIER 103, 393 401, 2010 A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Y. C. Shi Centre

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Nanostructures Fabrication Methods

Nanostructures Fabrication Methods Nanostructures Fabrication Methods bottom-up methods ( atom by atom ) In the bottom-up approach, atoms, molecules and even nanoparticles themselves can be used as the building blocks for the creation of

More information

Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes

Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes Ming Ma, 1 Ahmed N. Noemaun, 2 Jaehee Cho, 2,* E. Fred Schubert, 2

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Lecture - 9 Diffusion and Ion Implantation III In my

More information

Opportunities for Advanced Plasma and Materials Research in National Security

Opportunities for Advanced Plasma and Materials Research in National Security Opportunities for Advanced Plasma and Materials Research in National Security Prof. J.P. Allain allain@purdue.edu School of Nuclear Engineering Purdue University Outline: Plasma and Materials Research

More information

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1 US 2001 OO10407A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0010407 A1 Ker et al. (43) Pub. Date: (54) LOW-CAPACITANCE BONDING PAD FOR (30) Foreign Application Priority

More information

Introduction. Photoresist : Type: Structure:

Introduction. Photoresist : Type: Structure: Photoresist SEM images of the morphologies of meso structures and nanopatterns on (a) a positively nanopatterned silicon mold, and (b) a negatively nanopatterned silicon mold. Introduction Photoresist

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 3

Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 3 Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 3 Optical and Acoustical Methods in Science and Technology Measurements of the Attenuation by Means of the Scattered Light of Planar Waveguide Structure, Basing

More information

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Ai-Ping Luo, Zhi-Chao Luo,, Wen-Cheng Xu,, * and Hu Cui Laboratory of Photonic Information Technology,

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Chin. Phys. B Vol. 21, No. 1 (212) 1428 A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Liu Huan( 刘欢 ) and Gong Ma-Li( 巩马理 ) State Key Laboratory of Tribology, Center for Photonics and Electronics,

More information

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry Instrumental Analysis Lecture 15. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 15 IR Instruments Types of Instrumentation Dispersive Spectrophotometers (gratings) Fourier transform spectrometers (interferometer) Single beam Double beam

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.3 Photoelectric 1996 Q36 The work function for sodium metal is 2.9x10-19 J. Light of wavelength 5.4x10-7 m strikes the surface of this metal. What

More information

A Study on Radiation Damage in PWO-II Crystals

A Study on Radiation Damage in PWO-II Crystals 2336 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 3, JUNE 2013 A Study on Radiation Damage in PWO-II Crystals Fan Yang, Member, IEEE, Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-yuan

More information

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators Mol. Cryst. Liq. Cryst., Vol. 453, pp. 343 354, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421400600653886 Fast-Response Infrared Ferroelectric Liquid

More information

355 nm Nd:YAG laser ablation of polyimide and its thermal effect

355 nm Nd:YAG laser ablation of polyimide and its thermal effect Journal of Materials Processing Technology 101 (2000) 306±311 355 nm Nd:YAG laser ablation of polyimide and its thermal effect Winco K.C. Yung *, J.S. Liu, H.C. Man, T.M. Yue Department of Manufacturing

More information

European Journal of Engineering and Technology Vol. 4 No. 2, 2016 ISSN

European Journal of Engineering and Technology Vol. 4 No. 2, 2016 ISSN European Journal of Engineering and Technology Vol. 4 No. 2, 26 THE EFFECT OF CO 2 LASER POWER ON THE THERMAL INSULATION OF ACRYLICS Nafie A. Almuslet *, Mohammadi Hassan M. Beteik 2 & Gaafar Abdelhamid

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

beam (as different VSP One element from 400 to 1500nm diffraction, No segments

beam (as different VSP One element from 400 to 1500nm diffraction, No segments APPLICATION NOTE The Arcoptix Variable Spiral plate () The variable Spiral plate (), also called Q plate in literature, is a passive liquid crystal optical element that is capable to modify the spatial

More information

Thermal and Electrical behaviour of 100 kev N + and Ar + ion implanted Poly( methyl methacrylate) (PMMA) polymer

Thermal and Electrical behaviour of 100 kev N + and Ar + ion implanted Poly( methyl methacrylate) (PMMA) polymer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (5):2766-2773 ISSN: 0976-8610 CODEN (USA): AASRFC Thermal and Electrical behaviour of 100 kev N + and Ar

More information

Midterm I - Solutions

Midterm I - Solutions UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I - Solutions Name: SID: Grad/Undergrad: Closed

More information

Electrical isolation of n-type and p-type InP layers by proton bombardment

Electrical isolation of n-type and p-type InP layers by proton bombardment JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 10 15 MAY 2001 Electrical isolation of n-type and p-type InP layers by proton bombardment H. Boudinov, a) H. H. Tan, and C. Jagadish Department of Electronic

More information

NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES

NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES E. OZTURK Cumhuriyet University, Faculty of Science, Physics Department, 58140 Sivas-Turkey E-mail: eozturk@cumhuriyet.edu.tr

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Electrical Characterization with SPM Application Modules

Electrical Characterization with SPM Application Modules Electrical Characterization with SPM Application Modules Metrology, Characterization, Failure Analysis: Data Storage Magnetoresistive (MR) read-write heads Semiconductor Transistors Interconnect Ferroelectric

More information

Spatial coherence measurement of X-ray undulator radiation

Spatial coherence measurement of X-ray undulator radiation 1 August 2001 Optics Communications 195 2001) 79±84 www.elsevier.com/locate/optcom Spatial coherence measurement of X-ray undulator radiation D. Paterson a, *, B.E. Allman a, P.J. McMahon a, J. Lin a,

More information

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure Author Pan, Yue, M. Collins, Aaron, Algahtani, Fahid, W. Leech, Patrick, K. Reeves, Geoffrey, Tanner,

More information

Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal±polymer composite lms

Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal±polymer composite lms 1 January 2001 Optics Communications 187 (2001) 193±198 www.elsevier.com/locate/optcom Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal±polymer composite lms A.Y.-G.

More information

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber Digital imaging of charged particle track structures with a low-pressure optical time projection chamber U. Titt *, V. Dangendorf, H. Schuhmacher Physikalisch-Technische Bundesanstalt, Bundesallee 1, 38116

More information

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO gas M. H. Mahdieh 1, and B. Lotfi Department of Physics, Iran University of Science and Technology,

More information

Introduction to Photonic Crystals

Introduction to Photonic Crystals 1 Introduction to Photonic Crystals Summary. Chapter 1 gives a brief introduction into the basics of photonic crystals which are a special class of optical media with periodic modulation of permittivity.

More information

SIMULATION OF THE THERMAL NEUTRON SEMICONDUCTOR DETECTOR RESPONSE USING MCNPX CODE

SIMULATION OF THE THERMAL NEUTRON SEMICONDUCTOR DETECTOR RESPONSE USING MCNPX CODE SIMULATION OF THE THERMAL NEUTRON SEMICONDUCTOR DETECTOR RESPONSE USING MCNPX CODE Katarína Sedlačková 1, Bohumír Zaťko 2, Andrea Šagátová 1,3, Vladimír Nečas 1 1 Faculty of Electrical Engineering and

More information

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Supporting Information Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Taketo Handa, + Takumi Yamada, + Hirofumi Kubota,

More information

EE 212 FALL ION IMPLANTATION - Chapter 8 Basic Concepts

EE 212 FALL ION IMPLANTATION - Chapter 8 Basic Concepts EE 212 FALL 1999-00 ION IMPLANTATION - Chapter 8 Basic Concepts Ion implantation is the dominant method of doping used today. In spite of creating enormous lattice damage it is favored because: Large range

More information

Optically stimulated luminescence from quartz measured using the linear modulation technique

Optically stimulated luminescence from quartz measured using the linear modulation technique Radiation Measurements 32 (2000) 407±411 www.elsevier.com/locate/radmeas Optically stimulated luminescence from quartz measured using the linear modulation technique E. Bulur a, L. Bùtter-Jensen a, *,

More information

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 TUNABLE WAVELENGTH DEMULTIPLEXER FOR DWDM APPLICATION USING 1-D PHOTONIC CRYSTAL A. Kumar 1, B. Suthar 2, *, V. Kumar 3, Kh. S. Singh

More information