Part A: There is a table attached to the end of this document. For each molecule or ion in the table, provide entries for columns I through IX.

Size: px
Start display at page:

Download "Part A: There is a table attached to the end of this document. For each molecule or ion in the table, provide entries for columns I through IX."

Transcription

1 Chemistry 400 Discussion: VSEPR Theory and Molecular Shapes Instructions: Work through the exercises below. If you have access to molecular model kits, use them to build three dimensional models of the molecules (or polyatomic ions) in the exercises and to help you answer the questions. Part A: There is a table attached to the end of this document. For each molecule or ion in the table, provide entries for columns I through IX. Column I: Draw the best Lewis structure. Label any atoms with nonzero formal charge. Column II: List the total number of resonance structures and draw at least one resonance structure. Column III: ow many electron groups are around the central atom? Column IV: What is the electron geometry? Column V: What is the molecular geometry? Possible answers: linear, trigonal planar, tetrahedral, trigonal bipyramidal, octahedral, bent, trigonal pyramidal, see-saw, T-shaped, square pyramidal, square planar). Column VI: Give values of the bond angles around the central atom. (for example, 109.5, less than 109.5, 120, less than 120, etc.). Column VII: Give the hybridization of the central atom. Column VIII: State how many sigma bonds and pi bonds are present in the molecule or ion. Part B: More Complex Molecules: The questions below make use of more interesting, and more complex, molecules. Many of these examples have more than one central atom. If you have access to molecular models, build 3-D models of the molecules to help you answer the questions. 1. The figure below shows how the atoms in the nerve agent Tabun are connected to each other. Draw the complete Lewis dot structure shown (include any multiple bonds or lone pairs). Assign the hybridization to each atom (except hydrogens). Give an estimate of the P-C-N angle. O C C O P C N N C C 1

2 2. The molecular formula for ethanol is C 3 C 2 O. Draw its Lewis structure. What is the C-O- angle? What is the hybridization of the oxygen atom? 3. The molecular formula for n-octane is C 8 18 with all of the carbons attached in a row. Draw the skeletal structure and answer the questions below. a. What is its hybridization of every carbon? What is the bond angle about every carbon? b. Do single bonds rotate? If so, redraw n-octane above as small as possible while still keeping the bond angle approximately correct. 4. The molecular formula for ozone is O 3. Draw the best Lewis structure and any resonance structures. Label any atoms with nonzero formal charges and answer the questions below. a. What is the O-O-O bond angle? b. What is the hybridization of the central oxygen atom? 2

3 5. The molecular formula for acetic acid is C 3 COO. a. Draw the best Lewis structure. b. What is the hybridization of each of the carbon atoms and the oxygen atom bonded to the hydrogen? 6. The molecular formula for the acetate ion is C 3 COO. Draw all possible valid resonance structures. Label all nonzero formal charges. Label all of the bonds, including bonds that contain partial - character that arise from resonance. Describe the true nature of the carbon oxygen bond in acetate. 7. The structure below is the molecule adrenaline (also called epinephrine). Draw the complete Lewis structure of adrenaline showing all of the atoms (including hydrogens) and lone pairs. Give an estimate of the bond angles involving the carbon atoms in the ring. O O O N C 3 3

4 8. Kevlar is a very strong material that is used in bullet-proof vests and many other applications. It is an example of a class of compounds called polymers which are large molecules made up of small units (monomers) linked together to make a huge chain. The structural formula for the repeat unit of Kevlar is shown below. The brackets indicate that the structure shown below is repeated over and over again. O O N N C C n a. Complete the Lewis structure (i.e., add in the lone pairs). b. Using skeletal structures, draw 4 repeat units of Kevlar 9. Methyl ethyl ketone (MEK) is a solvent that is sometimes used in the Navy for cleaning and degreasing ships. The molecular formula is C 3 C(O)C 2 C 3. The O atom is in parentheses to indicate that it is branched off of the second carbon atom. a. Draw the best Lewis structure. b. Give an estimate of the C-C-O bond angles. c. ow many bonds are there? 4

5 Formula I: Best LS w/ nonzero FC shown II: Total # resonance structures, draw 1 III: e- groups CN Don t answer IV: e- geom. V: Molec. geom. VI: bond angles VII: hybridzation VIII: #, # CO2 NO3 SO2 CO3 2 BCl3

6 Formula SO4 2 I: Best LS w/ nonzero FC II: Total #RS, draw 2 III: e- groups IV: e- geom. V: Molec. geom. VI: bond angles VII: hybridzation VIII: #, # C3Cl N3 PCl5 SF6

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

Chem 121 Exam 4 Practice Exam

Chem 121 Exam 4 Practice Exam Chem 121 Exam 4 Practice Exam 1. What is the correct electron configuration for bromine? b. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 4p 6 c. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 d. 1s 2 2s 2 2p 6 3s 2 3p

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Lewis Structures and Molecular Shapes

Lewis Structures and Molecular Shapes Lewis Structures and Molecular Shapes Drawing Lewis Structures Determine from formula if ionic or covalent Count the electrons If ionic : add valence # to charge if (-), subtract if (+) - = 7+1 electrons;

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2 Do now: Brainstorm how you would draw the Lewis diagram for: 2 O CO 2 Shapes of molecules C 4 N 3 2 O C 2 O CO 2 Shapes of molecules Shapes of molecules are determined by the number of bonding and non-bonding

More information

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Form J Chemistry 1441-023 Name (please print) Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Instructions: 1. This exam consists of 27 questions. 2. No scratch paper is allowed.

More information

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November NAME Student No. SECTIN (circle one): A01 (Codding) A02 (Sirk) A03 (Briggs) Version A UNIVERSITY F VICTRIA CEMISTRY 101 Mid-Term Test 2, November 19 2010 Version A This test has two parts and 8 pages,

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Practice Worksheet for Lewis Structures (Mahaffy Ch )

Practice Worksheet for Lewis Structures (Mahaffy Ch ) Practice Worksheet for Lewis Structures (Mahaffy Ch. 10.1 10.5 ) 1. Main concepts Lewis Structures a. Connectivity b. Bonds & Lone pairs c. Electron Geometry & Molecular Shape d. Resonance Structures Formal

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

CHEMISTRY 110 EXAM 2 Feb 25, 2013 FORM A

CHEMISTRY 110 EXAM 2 Feb 25, 2013 FORM A EMISTRY 110 EXAM 2 Feb 25, 2013 FORM A 1. ow many valence electrons and lone pairs are in the structure of the ammonium ion? # valence electrons # lone pairs A. 8 0 B. 10 1. 8 1 D. 10 2 E. 12 3 2. Which

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

MOLECULAR ORBITAL DIAGRAM KEY

MOLECULAR ORBITAL DIAGRAM KEY 365 MOLECULAR ORBITAL DIAGRAM KEY Draw molecular orbital diagrams for each of the following molecules or ions. Determine the bond order of each and use this to predict the stability of the bond. Determine

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Homework 08 VSEPR. The active ingredient in some oral anesthetics used in sore throat sprays. What is the molar mass of phenol?

Homework 08 VSEPR. The active ingredient in some oral anesthetics used in sore throat sprays. What is the molar mass of phenol? HW08 VSEPR This is a preview of the published version of the quiz Started: Oct 21 at 11:14am Quiz Instruc ons Homework 08 VSEPR Question 1 Consider the structural formula of phenol. The active ingredient

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

Assignment 09 A. 2- The image below depicts a seesaw structure. Which of the following has such a structure?

Assignment 09 A. 2- The image below depicts a seesaw structure. Which of the following has such a structure? Assignment 09 A 1- Give the total number of electron domains, the number of bonding and nonbonding domains, and the molecular geometry, respectively, for the central atom of P 3. a) four electron domains,

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Chang & Goldsby Modified by Dr. Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. Ch10 VSEPR Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. version 1.5 Nick DeMello, PhD. 2007-2016 Valence Shell Electron

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES LEARNING OBJECTIVES To build models of selected molecules using VSEPR theory. To illustrate patterns of molecular shapes. BACKGROUND The shapes exhibited

More information

Valence Shell Electron Pair Repulsion Model

Valence Shell Electron Pair Repulsion Model Valence Shell Electron Pair Repulsion Model Why? Molecules adopt a shape that minimizes their energy. In most cases simply considering the repulsive energy of electron pairs is sufficient to predict molecular

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Chapter 10. The Shapes of Molecules

Chapter 10. The Shapes of Molecules Chapter 10 The Shapes of Molecules Molecules are visualized using Lewis Structures Molecular formula Step 1 Atom placement Step 2 Add A-group numbers ctet Rule Sum of valence e - Step 3 Remaining valence

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

experiment11 Molecular Structures

experiment11 Molecular Structures 59 experiment11 OBJECTIVES To determine the number of valence electrons in molecules. To determine the Lewis structure of molecules. To determine the electron pair geometry and geometry (shape) of molecules.

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity Structures, Shapes and Polarity Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity of Molecules Do now: Brainstorm what you know/remember about these L2 concepts

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

Chapter 11 Answers. Practice Examples

Chapter 11 Answers. Practice Examples hapter Answers Practice Examples a. There are three half-filled p orbitals on, and one half-filled 5p orbital on I. Each halffilled p orbital from will overlap with one half-filled 5p orbital of an I.

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

electronegativity difference greater than or equal to Ionic Bonding occurs between a metal and a nonmetal when there is an

electronegativity difference greater than or equal to Ionic Bonding occurs between a metal and a nonmetal when there is an Chemistry Unit 4 Review Packet Sweeeeeeeettt ANSWER KEY For the following compounds identify the bond types as one of the following: Ionic, Metallic, Polar Covalent, Non Polar Covalent, and Moderately

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

CH 222 Sample Exam Exam I Name: Lab Section:

CH 222 Sample Exam Exam I Name: Lab Section: 222 Sample Exam Exam I Name: Lab Section: Part I: Multiple hoice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. Which of the following statements

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model 1 PREDICTING MOLECULAR SHAPE The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model VSEPR = Valence Shell Electron Pair Repulsion Model - Each BOND

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Lecture B2 VSEPR Theory

Lecture B2 VSEPR Theory Lecture B2 VSEPR Theory Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot

More information

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4 Name AP Chemistry: Bonding Multiple Choice 41. Which of the following molecules has the shortest bond length? (A) N 2 (B) O 2 (C) Cl 2 (D) Br 2 (E) I 2 51. Pi bonding occurs in each of the following species

More information

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry Model 1: Oxidation numbers Oxidation numbers are a useful accountancy tool to help keep track of electrons in compounds and reactions. This is particularly

More information

!!Unsaturated Hydrocarbons. !!Properties of Alkanes

!!Unsaturated Hydrocarbons. !!Properties of Alkanes !Organic Chemistry!Why are there so many organic compounds? (three special properties of carbon)!what is a hydrocarbon?!what are the four classifications of hydrocarbons and how do they differ?!know the

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

Experiment #2. Lewis Structures

Experiment #2. Lewis Structures Experiment #2. Lewis Structures A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H Experiment #12 MOLECULAR MODELS An aspect of chemistry, which traditionally proves to be difficult to many students, is the visualization of compounds, ions, and molecules in three dimensional space. In

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Orbital Shapes Carbon: Electron configuration Carbon: Full. Short form. Orbital energy diagram. Orbital energy levels diagram

Orbital Shapes Carbon: Electron configuration Carbon: Full. Short form. Orbital energy diagram. Orbital energy levels diagram rganic hemistry involves mostly NPS and the halogens. rganic compounds use valence shell electrons to bond. Usually only in the s and p orbitals. rbital Shapes arbon: z y z y z y z y z y x x x x x 1s n=1

More information

Lab #11- Molecular Geometry

Lab #11- Molecular Geometry Objectives Chesapeake Campus Chemistry 111 Laboratory Lab #11- Molecular Geometry Determine the shape of a molecule using the VSEPR. Draw the Lewis structures of a molecule including bond angles and formal

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information