QUANTITATIVE TEY (TOTAL ELECTRON YIELD) - THEORY, INSTRUMENTATION AND EXPRIMENTAL RESULTS

Size: px
Start display at page:

Download "QUANTITATIVE TEY (TOTAL ELECTRON YIELD) - THEORY, INSTRUMENTATION AND EXPRIMENTAL RESULTS"

Transcription

1 732 QUANTITATIVE TEY (TOTAL ELECTRON YIELD) - THEORY, INSTRUMENTATION AND EXPRIMENTAL RESULTS Horst Ebel, Robert Svagera, Maria F. Ebel and Matthias Baron Institut fiir Angewandte und Technische Physik Technische Universitat Wien Wiedner Hauptstrafie S- 1, A 14 Vienna (Austria) INTRODUCTION In 1994 we published for the first time the analytical application of TEY,2 which is based on a fundamental parameter approach similar to XRF. Quantitative analyses of binary alloy systems and layer thicknesses of elemental layers and compositions and thicknesses of ternary layers on binary substrates were the subjects of further papers, to be continued by the evaluation of measured TEY responses, considerations on the statistical significance of measured results and the influence of secondary electrons on analytical results. A further consideration is the sampling depth of the method. In the present paper we report on the application of a new description of the escape probability of electrons in solid matter to the determination of layer thicknesses, a new description of an effective TEY jump and the influence of the x-ray detection efficiency of the electron detector on the description of measured TEY jumps versus layer thickness. THEORY OF THE SUBSTRATE METHOD a. Effective layer thickness TEY deals with the release of electrons in matter due to the interaction of x-rays with atoms. In the energy interval from 1 to 3keV the photoelectric absorption is dominating. Thus, we expect photoelectrons from the absorption processes and Auger electrons from the de-excitation of the atoms. We demonstrate the derivation of the equation for the signal strength in dependence on the layer thickness by the combination of V as substrate element and of Au as layer element and use the TEY information from the V K-jump. The depth distribution of photoelectric absorptions in the substrate is given by t dt dzvk = x,. e-z-w pt,,,,.-. cos a %,VK f? *e AALL -ZE,Au PAu cosa ze,v describes all possible photoelectric absorptions of x-ray photons with energy E in the different atomic shells and subshells j with electron binding energies BE, of V (~~, =I=~:E,vj). xe is the flux of monochromatic x-rays of energy E in photons/s. pv is the density and a the angle of incident x-rays with regard to the surface normal. The second exponential expression describes the absorption of incident x-rays in the Au layer. An exponential decrease with

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 733 depth t characterizes the depth distribution of the number dzv, of photoelectric absorptions in the V K-shell. Photoelectrons of kinetic energies E,i =E-BE,, and Auger electrons of known kinetic energies E,,(VK,kl) are released. A certain percentage of these electrons reaches the surface of the solid after inelastic collisions and can be detected. The detection probability Pdetection depends on the element i, the depth t, the kinetic energy Ekin and the solid angle R of electron acceptance. Fig.1 displays the detection probability for vanadium, E,i,,=SkeV and a detection cone of k2 with regard to the surface normal. The data have been obtained by Monte Carlo calculations under the assumption of an arbitrary direction of the electrons after their start in depth t and are valid for an escape energy from the surface of at least 5eV. We describe the response by a sum of two exponential functions. A systematic investigation of the energy and element dependences of the constants K,, K2, h,, and h,, led to the following general description KI = ln(E,,) -.32.[ln(II?kjn)]2 K, = ~ln(E,)-.31~[ln(E,,)]2 Ai is the atomic weight and Zi the atomic number of element i. K, and K, only depend on Eki,,, whereas h,,l and hi,2 depend on both the element i and Ekin. The equations have been obtained from least squares fits to the results of Monte Carlo calculations3 which have been performed on 2 chemical elements from Z=22 to Z=79 at 19 electron energies from 1 to 3keV. We compared the results from 6 further chemical elements from Z=3 to 19 and found a reasonable agreement with the above given description..2 MC results and approximation (V BkeV, cone O-2).15 * 2 Q z.1 h 4 P depth (nm) 15 2 Fig.1 Depth dependence of the escape (detection) probability of 5keV electrons in electron acceptance of +2 with regard to the surface normal V for an

4 734 A similar distribution is obtained for Au. The resultant amplitudes are nearly identical, but the depth range is different. The amplitudes K, and K, do not depend on the chemical element, but the corresponding values of the electron ranges hv,l, h,,, are approximately three times the values hau,l and hau,2. MC results and approximation (Au SkeV, cone O-2) 1 depth (nm) Fig.2 Depth dependence of the escape (detection) probability of 5keV electrons in Au for an electron acceptance of +2 with regard to the surface normal An integration of dn,, =dzvk.pelectron.pesca,,e,v from depth t=o to t+m cc nvk = xe.e -ze,v b p t cosa E VK =x * A - Per&on Pv E cosa % VK * A * Peiecmn * Pv * cosa M %,I -K2.e r I _ A A 1 TE,V * Pv 1 t+b 1 4lL Iv,2. e-ze,au pau COStXdt = - -K2- e VJ _ E,Au PAu,~ cosa.e re,v * Pv 1 cos a + &,I cos a + 4,* I defines the contribution tc I the measured TEY signal from VK-electrons. pelectron is the probability for the release of either a photo or an Auger electron after photoelectric absorption. For photoelectrons pelectron =l and for VK,kl-Auger electrons pelectron=l-qk (qk is the fl&~rescence yield). Thus, we replace the Au layer by an jnactive V layer of thickness A which does not contribute to the TEY signal. This replacement asks for a transformation of the thickness da,, into A. A comparison between Figs.1 and 2 shows that for V substrate and thickness d,=loonm the escape probability is approximately.2, whereas an identical escape probability for Au at thickness d,,~4nm is observed. An Au layer of approximately 4nm causes an identical attenuation as an jnactive V layer of 1OOnm. AU

5 735 In order to derive an equation for the transformation of thicknesses from V to Au we plot the escape probabilities of V and Au versus reduced depth scales (p,~z,/a,)-t and (p,,~z,,,/a,jt and compare again the escape probabilities (Figs.3 and 4). MC results and approximation (V 5keV, cone O-2) depth*rho*zla 6 Fig.3 As Fig. 1 but versus pv-z,-t/a, MC results and approximation (Au 5keV, cone O-2) depth*rho*zia 6 Fig.4 As Fig.2 but versus pau-z,;t/a,, The responses are now nearly identical and the transformation A A==----- PAU Au dau h V AAu can be performed by

6 736 Consequently, the expression nvk for V substrate and Au layer of thickness d, becomes E VK P.Z.d P.Z.d I, Aa, Au -K2. TE,V e A AU f2 Ekin ZV 1 _ E,Au PAu,~ cosa.e Au OSa + AV *f2(ekin) We used the pair V and Au due to their well pronounced difference of electron ranges at a given electron energy Ekin. b. Effective TEY jumps The following considerations are performed on thin Cr layers on Ti substrates and Ti K-edge jumps were evaluated for Cr layer thicknesses. Thus, we deal with the TEY responses from 25eV below to 25eV above the Ti K-edge. Incident photons with an energy of less than BE,ik=4.965keV are able to ionize the L and M -shells of Ti and of Cr. Therefore, photoelectrons and LMM-Auger electrons from Ti and Cr form the TEY signal in this energy interval and still contribute at photon energies of more than 4.965keV to the TEY responses versus photon energy. The principle of the theoretical treatment with our earlier description of the electron ranges in matter,2 can be adopted to the new concept of escape (detection) probablities by a comparison to the development of the equation for nvk in the foregoing chapter. Fig.5 gives the TEY responses versus photon energy for and 5nm Cr layer thickness. Negative contributions to jumps are from the increase of ZE,Ti from 3.33 to 71.4cm2/g at the Ti K-edge..3 Onm Cr - 5nm Cr -.25 z 5.2 Jz iii s g.15 ii 3 z.$ photon energy (kev) Fig.5 TEY responses due to photoelectrons from L and M-shells and LMM-Auger electrons of Ti and Cr for and 5Onm Cr layer At photon energies E24.965keV it becomes possible to additionally ionize the Ti K-shell. Ti K-radiations and Ti KLL and Ti LMM-Auger electrons are from de-excitation. Ti K- radiations can cause secondary excitations in Ti L and Ti M of the substrate and in Cr L and Cr M of the layer. These secondary ionization processes are responsible for further photo and Auger electrons. The contribution of the photoelectron from photoelectric absorption of

7 Copyright (C) JCPDS-International Centre for Diffraction Data incident x-rays in the Ti K-shell to the TEY signal can be neglected due to the small kinetic energy. Fig.6 gives the complete TEY signal and the,,background corresponding to Fig.5 without Cr layer. In the experiments we measure the sawtooth like response and were not able to recognize the negative jump of the,,background. The loss of the jump is approximately 2%. In our earlier evaluations we used just the jump of Ti K photoelectric absorption and introduced an error of a few percent. Now the evaluations are performed under recognition of the negative background jump. For the sake of completeness the response of Ti with 5nm Cr layer is given in Fig backgr. - Ti K -?? s g. Tii 5 5. P 3 iii g.4 In J A energ; photon 5.5 (kev) Fig.6 TEY signal versus photon energy and,,background for Ti without Cr layer backgr. - Ti K g.35 - c $.3 - s $ s 2 ;.2 -.E *.15 - z t 1 I photon energy (kev) Fig.7 TEY signal versus photon energy and,,background for Ti with 5nm Cr layer. c. X-ray detection efficiency of the electron detector The photon flux of characteristic Ti K-radiations is given by

8 73 R F Ti-K 1 TiK = detector.-.l. -e 4x cosa ETi! TiK,Ti, cosa cosp _ E,Cv + TiK.Cv cosa cosp %Pb with the solid angle R of x-ray detection (in our system R/4x=.226). ZTiK,Cr is the coefficient of photoelectric absorption of Ti K-radiation in Cr, ~TiK,Ti for Ti K-radiation in Ti and re,ti_k for radiation of energy E in the Ti K-shell. For photon energies of 4SkeV (Ti K-radiation) Wiza4 published a detector efficiency of channel electron multipliers sdetecto~=.4. Fig. displays the contribution from the detection of characteristic Ti K-radiation to the measured TEY signals. o-ooo2 I Cr layer thickness (nm) 5 6 Fig. Detection of Ti K-radiation by the electron detector A slight decrease with increasing Cr layer thickness comes from the absorption of incident monochromatic radiation and Ti K-fluorescence radiation in the Cr layer. The contribution to the measured jump of Ti without Cr layer of approximately O.Olelectrons/photon is less than 2% and nearly compensates the negative jump of the,,background (see Figs.5 and 6). The jumplike increase at the Ti K-absorption edge is evaluated for quantitative applications. The main contribution of O.Oelectrons/photon comes from primary excitation and subsequent de-excitation by the emission of Ti KLL and Ti LMM-Auger electrons (see Fig.9, at d,,=onm). Secondary excitations with photoelectrons from photoelectric absorption of characteristic Ti K-radiation in the Cr layer and subsequent Auger electron emission (see dotted curve in Fig. 1) start at d,,=o from zero followed by an increase towards the maximum of.15 electrons/photon at d,,=9nm and a decrease to,9electrons/photon at d,f6nm. Therefore, only the detection of x-rays by the electron detector and the secondary excitations in the layer are responsible for measured Ti K-jumps at Cr layer thicknesses of more than 2nm. Secondary excitations with photoelectrons from photoelectric absorption of characteristic Ti K-radiation in the Ti substrate and subsequent Auger electron emission (see full curve in Fig. 1) are responsible for contributions of O.O13electrons/photon at d,,=o followed by a decrease towards zero at approximately d,,=15nm. We form the sum of these

9 739 contributions under recognition of the breakdown of the,,background and compare our computed results with measured results. It is usual to normalize the computed and the measured signals with regard to a reference - in our application this is the Ti K-jump at d,,=o Cr layer thickness (nm) Fig.9 Contribution from primary excitation of Ti K and de-excitation by emission of Ti KLL and subsequent Ti LMM-Auger electrons to the measured Ti K-jumps sec.1 - sec ' ;.1 ie s 5 e-5 Y 3 1 6e-5.s u) 2 4e-5 2e Crlayerthickness(nm) 5 6 Fig.1 Contributions to the measured Ti K-jumps from secondary excitation processes. sec. 1 describes the substrate contribution from photoelectrons Ti K-radiation+Ti L-shell absorption and Ti K-radiation+Ti M-shell absorption and Ti LMM-Auger electron emission from de-excitation of Ti L sec.2 describes the layer contribution from photoelectrons Ti K-radiation+Cr L-shell absorption and Ti K-radiation-+Cr M-shell absorption and Cr LMM-Auger electron emission from de-excitation of Cr L

10 =I:1 IOnmCr,,._ (-- _ 12 substrate Ti E WI 16, I 4- A, I I I WeV1 1 I I I I 4, 53 5,2 E WI, 4-w,.. I I I 4 5,O 5,2 EWI I I I I 4 5,O 5,2 4tL 4, 5,O 5,2 16 WeV1 WeV1 16, I I, I 4, 59 5,2 WeV1 16, I I I I I 4, 5 52 WeVJ 4-- v I I I 4, 5,o 5,2 EWfl Fig.1 1 Measured TEY responses in the Ti K-region 1 I I I I 4 5,o 532 WeV1

11 741 INSTRUMENTATION AND EXPERIMENTAL RESULTS The measurements were performed employing a ROKAPPA Q-EDP-1 instrument. The x-ray source consists of either a Cu or an Ag target and the desired photon energy is tuned by means of a monochromator assembly, in which several crystals are placed to give best reflection for different energies. We used in general either Si(ll1) or Ge(ll1). The monochromator chamber is purged with He for low absorption at low photon energies. The specimen chamber is separated from the monochromator chamber and pumped to approximately 1m6mbar. A channeltron is used as electron detector. All settings of the instrument are computer controlled. The specimens were prepared by sputter deposition of Cr on Ti substrates and the layer thicknesses were measured by quartz crystal monitor. After deposition we performed thickness determinations by XRF and found reasonable agreement with the monitor values, For the characterization of the specimens we use the monitor values. Ti K-jumps were measured in an energy interval from -25eV to +25eV with regard to the Ti K-absorption edge. Fig.1 1 gives 11 measured TEY responses for Cr layer thicknesses from to 5OOnn-r. Fig.12 displays our theoretical response of normalized Ti K-jumps (Ti K-jump=1 at d,,=o) versus Cr layer thickness and the normalized experimental results of Fig. 11. The theoretical thickness dependence (curve) has been computed under neglection of a possible detection of characteristic Ti K-radiation by the electron detector Y._ c.5 -z.e 3.4 E g.3 I I L-l meas. -theory Cr layer thickness (nm) 5 6 Fig.12 Theoretical and experimental normalized Ti K-jumps An agreement between theory and experiment is only given at Cr layer thicknesses from to Onm. This indicates an additional contribution to the measured signal which has not been included in our theoretical concept. Considering the detection of characteristic Ti K- radiations by the electron detector the curve of Fig. 13 is obtained. This result confirms our theoretical approach, the evaluation procedure of measured TEY responses and the concept of escape probabilities.

12 Copyright (C) JCPDS-International Centre for Diffraction Data Y.- l-.5 m It).4 E g Cr layer thickness (nm) 5 6 Fig13 Experimental (data points) and theoretical normalized Ti K-jumps (curve) considering the detection of x-rays by the electron detector. CONCLUSION We introduce a new description of electron ranges in matter and demonstrate the application by the development of a new theoretical approach for the determination of layer thicknesses by the substrate method. A careful investigation of the TEY responses in dependence on photon energy and layer thicknesses recommends the consideration of a breakdown of the background signal at the absorption edge and of x-ray detection by the electron detector. The new approach is verified by an investigation on thin Cr layers on Ti substrates. REFERENCES [l] M.F.Ebel, R.Svagera, H.Ebel, R.Hobl, M.Mantler, J.Wernisch, and N.Zagler, Adv.X-Ray Ana1.3: 127 (1995) [2] H.Ebel, R.Svagera, M.F.Ebel, and N.Zagler, Adv.X-Ray Anal. 3: 325 (1995) [3] H.Ebel, R.Svagera, W.Werner and M.F.Ebel, this volume [4] J.L.Wiza, Nucl.Instr. and Methods. 162: 57 (1979)

Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner, Johann Wernisch, and Michael Mantler

Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner, Johann Wernisch, and Michael Mantler DETECTION OF SUBMONOLAYERS BY MEASUREMENT OF THE TOTAL ELECTRON YIELD (TEY) OF X-RAY EXCITED ELECTRON EMISSION Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner,

More information

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 380 COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

More information

Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol

Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 386 COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS II. EVALUATION

More information

ESCAPE PROBABILITY OF ELECTRONS IN TOTAL ELECTRON YIELD EXPERIMENTS. Horst Ebel, Robert Svagera, Wolfgang S.M. Werner and Maria F.

ESCAPE PROBABILITY OF ELECTRONS IN TOTAL ELECTRON YIELD EXPERIMENTS. Horst Ebel, Robert Svagera, Wolfgang S.M. Werner and Maria F. Copyright (C) JCPDS International Centre for Diffraction Data 1999 367 ESCAPE PROBABILITY OF ELECTRONS IN TOTAL ELECTRON YIELD EXPERIMENTS Horst Ebel, Robert Svagera, Wolfgang S.M. Werner and Maria F.

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY Copyright -International Centre for Diffraction Data 2010 ISSN 1097-0002 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna,

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

An Analysis of Secondary Enhancement Effects in Quantitative XRFA

An Analysis of Secondary Enhancement Effects in Quantitative XRFA An Analysis of Secondary Enhancement Effects in Quantitative XRFA Michael Mantler Institut fur Angewandte und Technische Physik Vienna University of Technology, Vienna, Austria Secondary enhancement effects

More information

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 363 MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT J.E. Fernández, V.

More information

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA 90 RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA Christopher G. Worley Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545 ABSTRACT Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS 255 Yoshiyuki Kataoka 1, Naoki Kawahara 1, Shinya Hara 1, Yasujiro Yamada 1, Takashi Matsuo 1, Michael Mantler 2 1 Rigaku

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS 390 ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS J. C. Rao 1, 2 *, M. Song 2, K. Mitsuishi 2, M. Takeguchi 2, K. Furuya 2 1 Department

More information

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 219 AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Takao Moriyama 1), Atsushi Morikawa 1), Makoto

More information

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS 176 177 GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS Robert W. Zuneska, Y. Rong, Isaac Vander, and F. J. Cadieu* Physics Dept., Queens College of CUNY, Flushing, NY 11367. ABSTRACT

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES 249 PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES F. I. G. M. Borges, S. J. C. do Carmo, T. H. V. T. Dias, F.

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex. For MChem, Spring, 2009 5) Surface photoelectron spectroscopy Dr. Qiao Chen (room 3R506) http://www.sussex.ac.uk/users/qc25/ University of Sussex Today s topics 1. Element analysis with XPS Binding energy,

More information

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES 122 INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES I. Busch 1, M. Krumrey 2 and J. Stümpel 1 1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

More information

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF)

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Giancarlo Pepponi Fondazione Bruno Kessler MNF Micro Nano Facility pepponi@fbk.eu MAUD school 2017 Caen, France

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

5.8 Auger Electron Spectroscopy (AES)

5.8 Auger Electron Spectroscopy (AES) 5.8 Auger Electron Spectroscopy (AES) 5.8.1 The Auger Process X-ray and high energy electron bombardment of atom can create core hole Core hole will eventually decay via either (i) photon emission (x-ray

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES

ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES 187 188 ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES ABSTRACT W. T. Elam, B. Scruggs, F. Eggert, and J. A. Nicolosi EDAX, a unit of Ametek Inc., 91 McKee Drive, Mahwah,

More information

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) XPS X-ray photoelectron spectroscopy (XPS) is one of the most used techniques to chemically characterize the surface. Also known

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS 302 ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS M. Song 1, K. Mitsuishi 1, M. Takeguchi 1, K. Furuya 1, R. C. Birtcher 2 1 High Voltage Electron Microscopy Station, National

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Photon and primary electron arithmetics in photoconductors for digital mammography: Monte Carlo simulation studies

Photon and primary electron arithmetics in photoconductors for digital mammography: Monte Carlo simulation studies Journal of Instrumentation OPEN ACCESS Photon and primary electron arithmetics in photoconductors for digital mammography: Monte Carlo simulation studies To cite this article: T Sakellaris et al View the

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE

IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE Copyright JCPDS-International Centre for Diffraction Data 2012 ISSN 1097-0002 281 IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE Susumu Imashuku 1, Deh Ping Tee 1, Yasukazu

More information

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 236 ABSTRACT TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Hagen Stosnach Röntec GmbH,

More information

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64) Produced by accelerating electrons with high voltage and allowing them to collide with metal target (anode), e.g, Tungsten. Three Events (Two types of x-ray) a) Heat X-Ray Tube b) bremsstrahlung (braking

More information

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials 296 Time-Resolved μ-xrf and Elemental Mapping of Biological Materials K. Tsuji 1,2), K. Tsutsumimoto 1), K. Nakano 1,2), K. Tanaka 1), A. Okhrimovskyy 1), Y. Konishi 1), and X. Ding 3) 1) Department of

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE 218 Chris M. Sparks 1, Elizabeth P. Hastings 2, George J. Havrilla 2, and Michael Beckstead 2 1. ATDF,

More information

DETERMINATION OF FLUORESCENCE YIELDS USING MONOCHROMATIZED UNDULATOR RADIATION OF HIGH SPECTRAL PURITY AND WELL-KNOWN FLUX

DETERMINATION OF FLUORESCENCE YIELDS USING MONOCHROMATIZED UNDULATOR RADIATION OF HIGH SPECTRAL PURITY AND WELL-KNOWN FLUX Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 349 ISSN 1097-0002 DETERMINATION OF FLUORESCENCE YIELDS USING MONOCHROMATIZED UNDULATOR RADIATION OF HIGH SPECTRAL PURITY AND WELL-KNOWN

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM.

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. 822 ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. Abstract A.P.Morovov, L.D.Danilin, V.V.Zhmailo, Yu.V.Ignatiev, A.E.Lakhtikov,

More information

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 321 X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Kazuhiro Takada 1,

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS

ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS 298 299 ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS M. Krämer 1), R. Dietsch 1), Th. Holz 1), D. Weißbach 1), G. Falkenberg 2), R. Simon 3), U. Fittschen

More information

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR A. C. Neiva 1, J. N. Dron 1, L. B. Lopes 1 1 Escola Politécnica da Universidade de São Paulo

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008

X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008 X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008 1- A bit of History: Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honored by the Noble prize for physics. In

More information

AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS

AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS 96 AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS T. N. Blanton 1, D.R Whitcomb 2, and S.T. Misture 3 1 Eastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106,

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Lecture 20 Auger Electron Spectroscopy

Lecture 20 Auger Electron Spectroscopy Lecture 20 Auger Electron Spectroscopy Auger history cloud chamber Although Auger emission is intense, it was not used until 1950 s. Evolution of vacuum technology and the application of Auger Spectroscopy

More information

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 106 STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION F. A. Selim 1, D.P. Wells 1, J. F. Harmon 1,

More information

Lecture 17 Auger Electron Spectroscopy

Lecture 17 Auger Electron Spectroscopy Lecture 17 Auger Electron Spectroscopy Auger history cloud chamber Although Auger emission is intense, it was not used until 1950 s. Evolution of vacuum technology and the application of Auger Spectroscopy

More information

A MODIFIED APPROACH TO HOMOGENEITY TESTING AT MICROSCALE

A MODIFIED APPROACH TO HOMOGENEITY TESTING AT MICROSCALE Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 74 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section Possible Interactions X-ray Interaction (Part I) Three types of interaction 1. Scattering Interaction with an atom Deflected May or may not loss of energy 1 Possible Interactions Three types of interaction

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS 45 ABSTRACT FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS W. T. Elam, Robert B. Shen, Bruce Scruggs, and Joseph A. Nicolosi EDAX, Inc. Mahwah, NJ 70430 European Community Directive 2002/95/EC

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS , MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS K.O. Goyal, J.W. Westphal Semiconductor Equipment Group Watkins-Johnson Company Scotts Valley, California 95066 Abstract Deposition of borophosphosilicate

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

BENEFITS OF IMPROVED RESOLUTION FOR EDXRF

BENEFITS OF IMPROVED RESOLUTION FOR EDXRF 135 Abstract BENEFITS OF IMPROVED RESOLUTION FOR EDXRF R. Redus 1, T. Pantazis 1, J. Pantazis 1, A. Huber 1, B. Cross 2 1 Amptek, Inc., 14 DeAngelo Dr, Bedford MA 01730, 781-275-2242, www.amptek.com 2

More information

THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE

THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE 302 THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE T. Papp 1,2 * and J. A. Maxwell 1 1 Cambridge Scientific, 175 Elizabeth Street, Guelph, ON, N1E 2X5, Canada, 2 Institute of Nuclear Research of

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Application of X-ray Spectrometry at X-ray Absorption Edges for Investigation of Human Albumin

Application of X-ray Spectrometry at X-ray Absorption Edges for Investigation of Human Albumin 1 Application of X-ray Spectrometry at X-ray Absorption Edges for Investigation of Human Albumin K.Ju. Pogrebitsky*, M.E. Boiko*, M.D. Sharkov*, A.P. Morovov**, M.G. Vasin** *A.F. Ioffe Physico-Technical

More information

Photoelectron Peak Intensities in Solids

Photoelectron Peak Intensities in Solids Photoelectron Peak Intensities in Solids Electronic structure of solids Photoelectron emission through solid Inelastic scattering Other excitations Intrinsic and extrinsic Shake-up, shake-down and shake-off

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE Copyright JCPDS-International Centre for Diffraction Data 26 ISSN 197-2 FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE 31 K. L. Kelly and B. K. Tanner Department

More information

Introduction. X-Ray Production and Quality. Fluorescence Yield. Fluorescence X-Rays. Initiating event. Initiating event 3/18/2011

Introduction. X-Ray Production and Quality. Fluorescence Yield. Fluorescence X-Rays. Initiating event. Initiating event 3/18/2011 X-Ray Production and Quality Chapter 9 F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Introduction Physics of x-ray generation Fluorescence x-rays Bremsstrahlung x-rays Beam quality

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 320 A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Hiroyoshi SOEJIMA and

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) 1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving

More information

The Monte Carlo Simulation of Secondary Electrons Excitation in the Resist PMMA

The Monte Carlo Simulation of Secondary Electrons Excitation in the Resist PMMA Applied Physics Research; Vol. 6, No. 3; 204 ISSN 96-9639 E-ISSN 96-9647 Published by Canadian Center of Science and Education The Monte Carlo Simulation of Secondary Electrons Excitation in the Resist

More information

Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons

Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons Plasma Sources Sci. Technol. 8 (1999) R21 R44. Printed in the UK PII: S0963-0252(99)02255-0 REVIEW ARTICLE Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary

More information

Auger Electron Spectrometry. EMSE-515 F. Ernst

Auger Electron Spectrometry. EMSE-515 F. Ernst Auger Electron Spectrometry EMSE-515 F. Ernst 1 Principle of AES electron or photon in, electron out radiation-less transition Auger electron electron energy properties of atom 2 Brief History of Auger

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 369 ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information