HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A)

Size: px
Start display at page:

Download "HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A)"

Transcription

1 HW 6: Review from textbook (p.75 #84, 87, 88(mod), 89, 95, 98,,,, 3, 5, 8,, SG#3,A) 6.84 The pk a of the indicator methyl orange is Over what ph range does this indicator change from 9 percent HIn to 9 percent In? Acid Ionization Rxn for HIn: HIn (aq) + H O (l) In (aq) + H 3O + (aq) Orange yellow HendersonHasselbalch Eq: (no numbers yet.) ph pk a + log [In ] [HIn] Solving for the ph with 9% of the indicator in the HIn form and % in the I form: ph log [] (mostly HIn, orange solution) [9] Solving for the ph with % of the indicator in the HIn form and 9% of the indicator in the In form: ph log [9] (mostly In, yellow solution) [] Thus the ph range varies from.5 to 4.4 as the [HIn] varies from 9% to % The pk a of butyric acid (HBut) is 4.7. Calculate K b for the butyrate ion (But ) K The K a of butyric acid is obtained by setting a K a. The value of K b is: K b K w. 4 K a A solution is made by mixing exactly 5 ml of.67 M NaOH with exactly 5 ml. M HCOOH. Calculate the ph of the solution. Moles NaOH.5 L. mol Moles HCOOH.5 L.5 mol HCOOH HCOOH(aq) + OH (aq) HCOO (aq) + H O(l) Initial (mol): Change (mol): Final (mol): There is excess OH, so the ph is determined by this OH concentration. (The weak base, HCOO does not significantly affect the ph.) Thus, find the [OH ] and then the ph: The volume of the resulting solution is. L (5 ml + 5 ml ml). [OH ].335 mol. L 6.89 Cd(OH) is an insoluble compound. However, it dissolves in excess NaOH in solution. Write a balanced ionic equation for the reaction that must occur in excess NaOH. Most likely the increase in solubility is due to complex ion formation: Cd(OH) (s) + OH Cd(OH) 4 (aq) 6.98 When a KI solution was added to a HgCl solution, a precipitate, HgI, formed. A student plotted the mass of the precipitate versus the volume of the KI solution added and obtained the following graph. Explain the appearance of the graph. As KI is added, more and more of the precipitate, HgI is formed: Hg + (aq) + I (aq) HgI (s) However, with further addition of I, a soluble complex ion is formed and the precipitate dissolves. HgI (s) + I (aq).67 mol [HgI 4] (aq) p mol NaOH.335 M; poh.475 ; ph.55

2 6.95 Find the approximate ph range suitable for separating Mg + from Zn + given a solution that is initially. M in Mg + and. M Zn +. To separate the ions, an NaOH solution is added. K sp of Mg(OH),. K sp of Zn(OH).8 4 For Mg(OH), K sp [Mg + ][OH ] [OH K sp ] [Mg + ] For Zn(OH), K sp [Zn + ][OH ] [OH K sp ] [Zn + ] When [Mg + ]. M, the [OH ] value is When [Zn + ]. M, the [OH ] value is Thus, Zn(OH) will precipitate first at ph 8.. Mg(OH) will precipitate when the ph just exceeds Therefore, to selectively precipitate Zn(OH), the ph must be greater than 8. but less than (It is best to be as close to ph 9.54 as possible without exceeding it. This would cause as much Zn(OH) as possible to precipitate without having any Mg(OH) precipitate.) 6. Cacodylic acid (CacH) is (CH 3) AsO H. Its acid ionization constant is (a) Calculate the ph of 5. ml of a. M solution of CacH. CacH(aq) Cac (aq) + H + (aq) Initial (M):. Change (M): x +x +x Equilibrium (M):. x x x x.5 4 M [H + ], so ph log(.5 4 ) 3.6 (b) Calculate the ph of 5. ml of.5 M NaCac, (CH 3) AsO Na. Cac (aq) + H O(l) CacH(aq) + OH (aq) Initial (M):.5 Change (M): x +x +x Equilibrium (M):.5 x x x The ionization constant, K b, for Cac is: K a [H+ ][Cac ] CacH M.3 6 M x. x x K b K w. 4 K a ; K b [CacH][OH ] x [Cac ].5 x x x [OH ] M; poh log(4.9 5 ) 4.3, so ph (c) Mix the solutions in part (a) and part (b). Calculate the ph of the resulting solution. Number of moles of CacH from (a) is:. mol CacH 5. ml CacH 5. 3 mol CacH or could get [CacH] 5. 3 mol ml.75l Number of moles of Cac from (b) is:.5 mol CacNa 5. ml CacNa mol Cac or could get [Cac ] mol ml.75l At this point we have a buffer solution, so use HendersonHasselbalch to determine ph: ph pk a + log [Cac ] [CacH] log(6.4 7 ) + log mol 5. 3 mol 6.7 [Cac ].5 M or ph pka + log log 6.7 [CacH].67 M Thus, poh 4.47 and ph Mg(OH) will begin to precipitate from this solution at ph of Thus, poh 5.89 and ph 8.. Zn(OH) will begin to precipitate from the solution at ph M.5M

3 3 6. Solid NaBr is slowly added to a solution that is. M in Cu + and. M in Ag +. K sp of CuBr 4. 8 K sp of AgBr (a) Which compound will begin to precipitate first? The solubility product expressions for both substances have exactly the same mathematical form and are therefore directly comparable. The substance having the smaller K sp (AgBr) will precipitate first because it is the least soluble. (b) Calculate [Ag + ] right before CuBr begins to precipitate. When CuBr just begins to precipitate the solubility product expression will just equal K sp (saturated solution). The concentration of Cu + at this point is. M (given in the problem), so the concentration of bromide ion must be: For CuBr: K sp [Cu + ][Br ] (.)[Br ] 4. 8 [Br 4. 8 ] 4. 6 M is [Br ] right before CuBr begins to precipitate.. For AgBr: K sp [Ag + ][Br ] K sp so, [Ag ] [Br ] M is [Ag + ] right before CuBr precipitates. (c) What percent of Ag + remains in solution at this point? % Ag + (aq).8 7 M %.8%. M 6. What reagent (give anion of reagent) would you employ to separate the following pairs of ions in solution? a) Na + and Ba + b) Ca + and Cu + c) Zn + and Pb + SO 4 or many others SO 4 or F Cl, Br, I 6.3 CaSO 4 (K sp.4 5 ) has a larger K sp value than that of Ag SO 4 (K sp.4 5 ). Does it follow that CaSO 4 also has a greater solubility (g/l)? (In other words, find the solubility of each substance.) CaSO 4 Ca + (aq) + SO 4 (aq) I (M) solid C (M) s +s +s E (M) s s K sp [Ca + ][SO 4 ] s.4 5 s ; s M; Solubility mol 36. g mol.67 g / L Ag SO 4 Ag + (aq) + SO 4 (aq) I (M) solid C (M) s +s +s E (M) s s K sp [Ag + ] [SO 4 ] (s) (s).4 5 4s 3 ; s.5 M;.5 mol Solubility 3. g 4.7 g / L mol Ag SO 4 has a larger solubility, due both to the form of K sp (higher molar solubility) and to its larger molar mass. 6.8 Which of the following solutions has the highest [H + ]? Justify. (a). M HF (b). M HF in. M NaF (Not answer b/c added F shifts equilibrium to the left. Less H + (c). M HF in. M SbF 5. (Hint: SbF 5 reacts with F to form the complex ion [SbF 6].) HF (aq) H + (aq) + F (aq). M HF in. M SbF 5. has the highest [H + ] because the formation of complex ion removes F. Thus, ionization equilibrium shifts right to replenish lost F causing further ionization of HF

4 4 6.5 How many milliliters of. M NaOH must be added to a ml of. M NaH PO 4 to make a buffer solution with a ph of 7.5? Some K a values are given at right. Acid K a H 3PO To help you solve this question, do the following steps: H PO HPO a) In the desired buffer, what is the weak acid? H PO 4 What is the weak base? HPO 4 b) Write the acid ionization reaction for the acid and use HH to solve for the needed [base]/[acid] ratio. H PO 4 H + + HPO 4 where K a 6. 8 so, pk a log [HPO 4 ] ; so [H PO 4 ] c) Write the net ionic equation for the NaOH reacting with the weak acid. Do an ICF chart and use the variable, x, to represent the moles of NaOH needed. Do the ICF chart in moles since you don t know the total volume of the buffer. Initially there was. L. M. mol NaH PO 4 present. Let x the amount of NaOH added: H PO 4 + OH HPO 4 + H O Initial (mol):. x Change (mol): x x +x Final (mol):. x x d) Use your [base]/[acid] ratio to solve for x [HPO 4 ] x. [H PO 4 ]. x [HPO 4 ] [H PO 4 ]. so, x.3 mol of NaOH e) Determine the milliliters of. M NaOH needed to make the buffer at the desired ph. V NaOH mol NaOH M NaOH.3 mol. mol/l.3 L 3 ml 6. Water containing Ca + and Mg + ions is called hard water and is unsuitable for some household and industrial uses because these ions react with soap to form insoluble salts. One way to remove the Ca + ions from hard water is to add washing soda (Na CO 3 H O). (a) The molar solubility of CaCO 3 in water is M. What is its molar solubility in a.5 M Na CO 3 (aq)? The K sp of CaCO The dissociation of Na CO 3 is: Na CO 3(s) Na + (aq) + CO 3 (aq) (.5 M).5 M H O CaCO 3(s) Ca + (aq) + CO 3 (aq) Initial (M):..5 Change (M): +s +s Equil. (M): +s.5 + s K sp [Ca + ][CO 3 ] s(.5 + s).5s Molar solubility s.7 7 M (b) Why are Mg + ions not removed from the solution by this procedure? K sp of MgCO Mg + is not removed by this procedure, because MgCO 3 is fairly soluble.

5 5 Study Guide p. 36 #3. mol of AgNO3 solid and. mol of NaCl solid are both dissolved into water to make a. L solution. AgCl solid precipitates. Then, an aqueous NH3 solution is slowly added until all of the AgCl(s) is just able to all dissolve. What is the concentration of NH3 in this final solution? Ksp of AgCl.6 Kf of [Ag(NH3)]+.5 7 Complete these steps to answer the question: a) This question couples the slightly soluble salt, AgCl, with the formation of the complex ion, [Ag(NH3)]+. Determine the net overall reaction and its corresponding equilibrium constant, K. Solubility Equil: AgCl (s) Ag+ (aq) + Cl (aq) Ksp.6 Complex Ion Ag+ (aq) + NH3 (aq) [Ag(NH3)]+ Kf.5 7 Formation: K Ksp Kf Net Overall Rxn: AgCl (s) NH3 (aq) [Ag(NH3)]+ + Cl (aq).4 3 b) To get all of the AgCl solid to dissolve, essentially all of the Ag+ ions (in AgCl) must react and become part of the complex ion, [Ag(NH3)]+, in the final solution. Determine the [Ag(NH3)]+ and [Cl ] in the final solution. + [Ag(NH 3 ) ] mol Ag + volume solution. mol. L All of the Cl comes from NaCl: [Cl ]. M. mol NaCl mol Cl. M. L mol NaCl c) Write the equilibrium constant expression for the overall reaction. Calculate the [NH3] in the final solution. [Ag(NH 3 )+ ][Cl ] (.)(.) (.)(.) K ;.4 3 ; Thus, [NH 3 ].9 M 3 [NH 3 ] [NH 3 ].4 A. The titration curve shown to the right is obtained when 5. ml of a solution of a diprotic acid, HA, is titrated with.m NaOH. nd equiv. pt. a) What is the ph at the first equivalence pt? ~5. b) What is the predominant species in the solution at the first equivalence point? HA First equiv. pt. c) What is the ph at the nd equivalence pt? ~. d) What is the predominant species in the solution at the nd equivalence point? A e) What is the pka of HA? ~.5 Justify. Acid Ionization Eq: HA H+ + HA At first halfequivalence point, [HA] [HA ], so using HH equation, ph pka of HA f) What is pka of HA? ~7.5 Justify. Acid Ionization Eq: HA H+ + A At nd halfequivalence point, [HA ] [A ], so using HH equation, ph pka of HA g) What is the concentration of the initial HA solution? Justify. It takes. ml of.m NaOH to titrate HA to its endpoint (The nd equivalence pt.). mol H A. mol NaOH mol H A. ml NaOH. mol H A;. M H A ml mol NaOH.5 L H A Or, determine initial moles of HA using an ICF chart HA(aq) + NaOH (aq) NaA (aq) + HO(l) I. mol. mol. mol H A. M H A +. mol C. mol. mol.5 L H A F. mol

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 16.3 (a) This is a weak acid problem. Setting up the standard equilibrium table: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Initial (M): 0.40 0.00

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Chapter 15 - Applications of Aqueous Equilibria

Chapter 15 - Applications of Aqueous Equilibria Neutralization: Strong Acid-Strong Base Chapter 15 - Applications of Aqueous Equilibria Molecular: HCl(aq) + NaOH(aq) NaCl(aq) + H 2 O(l) SA-SB rxn goes to completion (one-way ) Write ionic and net ionic

More information

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 16.5 (a) This is a weak acid problem. Setting up the standard equilibrium table: CH 3 COOH(aq) H (aq) CH 3 COO (aq) Initial (): 0.40 0.00 0.00

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria ACIDS-BASES COMMON ION EFFECT SOLUBILITY OF SALTS Acid-Base Equilibria and Solubility Equilibria Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 The common

More information

CHEM 12 Unit 3 Review package (solubility)

CHEM 12 Unit 3 Review package (solubility) CHEM 12 Unit 3 Review package (solubility) 1. Which of the following combinations would form an ionic solid? A. Metalloid - metal B. Metal non-metal C. Metalloid metalloid D. Non-metal non-metal 2. Which

More information

More About Chemical Equilibria

More About Chemical Equilibria 1 More About Chemical Equilibria Acid-Base & Precipitation Reactions Chapter 15 & 16 1 Objectives Chapter 15 Define the Common Ion Effect (15.1) Define buffer and show how a buffer controls ph of a solution

More information

SOLUBILITY REVIEW QUESTIONS

SOLUBILITY REVIEW QUESTIONS Solubility Problem Set 1 SOLUBILITY REVIEW QUESTIONS 1. What is the solubility of calcium sulphate in M, g/l, and g/100 ml? 2. What is the solubility of silver chromate? In a saturated solution of silver

More information

Chapter 19. Solubility and Simultaneous Equilibria p

Chapter 19. Solubility and Simultaneous Equilibria p Chapter 19 Solubility and Simultaneous Equilibria p. 832 857 Solubility Product ) The product of molar concentrations of the constituent ions, each raised ot the power of its stoichiometric coefficients

More information

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY CHAPTER 1 ACID-BASE EQUILIBRIA AND SOLUBILITY 1.1 (a) This is a weak acid problem. Setting up the standard equilibrium table: CHCOOH(aq) H (aq) CHCOO (aq) Initial (M): 0.40 0.00 0.00 Change (M): x x x

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) I. Multiple Choice UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) 1) Which one of the following would form an ionic solution when dissolved in water? A. I 2 C. Ca(NO 3 ) 2 B. CH 3 OH D.

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D.

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. Solubility Multiple Choice January 1999 14. Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. mol/s 15. Consider the following anions: When 10.0mL of 0.20M Pb(NO3)

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry The Common-Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2 (aq) + H 2 O(l) H 3 O + (aq) + C 2 H 3 O 2 (aq) If

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially.

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially. CHAPTER 17: SOLUBILITY AND COMPLEX ION EQUILIBRIA Part One: Solubility Equilibria A. Ksp, the Solubility Product Constant. (Section 17.1) 1. Review the solubility rules. (Table 4.1) 2. Insoluble and slightly

More information

Solubility Equilibria

Solubility Equilibria Chapter 17 SOLUBILITY EQUILIBRIA (Part II) Dr. Al Saadi 1 Solubility Equilibria The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.

More information

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM Dr. Babb s Sections Exam #4 Review Sheet CHEM 116 - Dr. Babb s Sections Exam #4 Review Sheet 158. Explain using the HC 2 H 3 O 2 /NaC 2 H 3 O 2 buffer system how a buffer maintains a relatively constant ph when small quantity of acid (HCl) or

More information

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]= Chem 101B Study Questions Name: Chapters 14,15,16 Review Tuesday 3/21/2017 Due on Exam Thursday 3/23/2017 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

CHAPTER FIFTEEN APPLICATIONS OF AQUEOUS EQUILIBRIA. For Review

CHAPTER FIFTEEN APPLICATIONS OF AQUEOUS EQUILIBRIA. For Review CHAPTER FIFTEEN APPLICATIONS OF AQUEOUS EQUILIBRIA For Review 1. A common ion is an ion that appears in an equilibrium reaction but came from a source other than that reaction. Addition of a common ion

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Contents and Concepts Solubility Equilibria 1. The Solubility Product Constant 2. Solubility and the Common-Ion Effect 3. Precipitation Calculations 4. Effect of ph

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook PART 6A Solution Reference: Chapter 4 in textbook PART 6B Precipitate Reference: Chapter 16.5 16.8 in the textbook 1 Solution Solute, Solvent, and Solution Saturated solution and Solubility Saturated solution:

More information

Chapter 17 Additional Aspects of Aqueous Equilibria

Chapter 17 Additional Aspects of Aqueous Equilibria Chapter 17 Additional Aspects of Aqueous Equilibria Water is a common solvent. Dissolved materials can be involved in different types of chemical equilibria. 17.1 The Common Ion Effect Metal ions or salts

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section Slide 1 / 91 Slide 2 / 91 AP Chemistry Aqueous Equilibria II: Ksp & Solubility Products Table of Contents: K sp & Solubility Products Slide 3 / 91 Click on the topic to go to that section Introduction

More information

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2.

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2. Name: Date: 1. For which of the following equilibria does K c correspond to an acid-ionization constant, K a? A) NH 3 (aq) + H 3 O + (aq) NH 4 + (aq) + H 2 O(l) B) NH 4 + (aq) + H 2 O(l) NH 3 (aq) + H

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Applications of Aqueous Equilibria. Chapter 18

Applications of Aqueous Equilibria. Chapter 18 Applications of Aqueous Equilibria Chapter 18 What we learn from Chap 18 This chapter is the third in the three-chapter sequence about equilibrium, this one building upon the core principles raised in

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product Solubility Equilibria These are associated with ionic solids dissolving in water to form aqueous solutions Chapter 16 Solubility Equilibria It is assumed that when an ionic compound dissolves in water,

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Solubility and Complex Ion. Equilibria

Solubility and Complex Ion. Equilibria Solubility and Complex Ion a mineral formed by marine organisms through biological precipitation CALCITE Equilibria CaCO 3(s) Ca 2+ (aq) + CO 3 2- (aq) K = K sp = [Ca 2+ ][CO 3 2- ] = 2.8 x 10-9 K sp =

More information

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts Arrhenius Definitions produce H + ions in the solution strong acids ionize completely

More information

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution 10/15/01 Commonion effect In the last chapter, we calculated the [H 3 O ] of a M O as 6.010 5 M. The percent dissociation for this solution would be: More Acid and Base Chemistry 6.010 5 100 0.089% [H

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Chapter 18. Solubility and Complex- Ionic Equilibria

Chapter 18. Solubility and Complex- Ionic Equilibria Chapter 18 Solubility and Complex- Ionic Equilibria 1 The common ion effect Le Chatelier Why is AgCl less soluble in sea water than in fresh water? AgCl(s) Ag + + Cl Seawater contains NaCl 2 Problem: The

More information

Chapter 17: Additional Aspects of Aqueous Equilibria

Chapter 17: Additional Aspects of Aqueous Equilibria Chapter 17: Additional Aspects of Aqueous Equilibria -Buffer Problems -Titrations -Precipitation Rx Common Ion Effect- The effect that a common ion (from two different sources) has on an equilibrium. (LeChatelier's

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CALCITE CaCO 3(s) Ca + (aq)+ CO 3 - (aq) K K sp [Ca + ][CO 3 - ].8 x 10-9 K sp solubility product

More information

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Solutions of Acids or Bases Containing a Common Ion A common ion often refers to an ion that is added by two or more species. For

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria CALCITE Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CaCO (s) Ca + (aq)+ CO (aq) K K sp [Ca + ][CO ].8 x 10-9 K sp solubility product constant

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

Chemistry Lab Equilibrium Practice Test

Chemistry Lab Equilibrium Practice Test Chemistry Lab Equilibrium Practice Test Basic Concepts of Equilibrium and Le Chatelier s Principle 1. Which statement is correct about a system at equilibrium? (A) The forward and reverse reactions occur

More information

ANITA S WORK H I4 6 I6 5

ANITA S WORK H I4 6 I6 5 ANITA S WORK Multiple Choice Section: Please DO NOT WRITE or MAKE ANY MARKS on this test paper. Put all answers on your SCANTRON CARD. Please make sure that you fill in your Scantron Card correctly: use

More information

What we learn from Chap 18

What we learn from Chap 18 Applications of Aqueous Equilibria Chapter 18 What we learn from Chap 18 18.2 This chapter is the third in the three-chapter sequence about equilibrium, this one building upon the core principles raised

More information

Chem 12 Practice Solubility Test

Chem 12 Practice Solubility Test Chem 12 Practice Solubility Test 1. Which combination of factors will affect the rate of the following reaction? Zn (s) + 2HCl ZnCl 2 + H 2(g) A. Temperature and surface area only B. Temperature and concentration

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

CHE 107 Spring 2017 Exam 3

CHE 107 Spring 2017 Exam 3 CHE 107 Spring 2017 Exam 3 Your Name: Your ID: Question #: 1 What is the ph of a 0.20 M solution of hydrocyanic acid at 25ºC? The Ka of HCN at 25ºC is 4.9 10 10. A. 2.08 B. 5.00 C. 3.89 D. 8.76 Question

More information

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations Acid-Base Equilibria And the beat goes on Buffer solutions Titrations 1 Common Ion Effect The shift in equilibrium due to addition of a compound having an ion in common with the dissolved substance. 2

More information

Practice Worksheet - Answer Key. Solubility #1 (KEY)

Practice Worksheet - Answer Key. Solubility #1 (KEY) Practice Worksheet - Answer Key Solubility #1 (KEY) 1 Indicate whether the following compounds are ionic or covalent a) NaCl ionic f) Sr(OH) 2 ionic b) CaBr 2 ionic g) MgCO 3 ionic c) SO 2 covalent h)

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility Solubility and Comple-ion Equilibria. Solubility and the Common-Ion Effect a. Eplain how the solubility of a salt is affected by another salt that has the same cation or anion. (common ion) b. Calculate

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS COMMON IONS Common ion effect- The addition of an ion already present(common) in a system causes equilibrium

More information

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section 1. If 1.0 liter solution has 5.6mol HCl, 5.mol NaOH and 0.0mol NaA is added together what is the ph when the resulting solution

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

AP Chemistry: Acid-Base Chemistry Practice Problems

AP Chemistry: Acid-Base Chemistry Practice Problems Name AP Chemistry: Acid-Base Chemistry Practice Problems Date Due Directions: Write your answers to the following questions in the space provided. For problem solving, show all of your work. Make sure

More information

Chapter 16 Aqueous Ionic Equilibrium

Chapter 16 Aqueous Ionic Equilibrium Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Chapter 16 Aqueous Ionic Equilibrium Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall The Danger of Antifreeze

More information

Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College

Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College The Common Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2(aq) + H 2 O (l) H 3 O + (aq)

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Modified Dr. Cheng-Yu Lai

Modified Dr. Cheng-Yu Lai Ch16 Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate Modified Dr. Cheng-Yu Lai Solubility-product constant

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions?

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions? JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 3 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information

Secondary Topics in Equilibrium

Secondary Topics in Equilibrium Secondary Topics in Equilibrium Outline 1. Common Ions 2. Buffers 3. Titrations Review 1. Common Ions Include the common ion into the equilibrium expression Calculate the molar solubility in mol L -1 when

More information

Acids, Bases and Buffers

Acids, Bases and Buffers 1 Acids, Bases and Buffers Strong vs weak acids and bases Equilibrium as it relates to acids and bases ph scale: [H+(aq)] to ph, poh, etc ph of weak acids ph of strong acids Conceptual about oxides (for

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right Problems, Chapter 17 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) In which of these solutions will HNO2 ionize less than it does in pure water? a) 0.10 M NaCl b)

More information

Titration summary (see figures 19-3 & 19-4) from Monday s lecture:

Titration summary (see figures 19-3 & 19-4) from Monday s lecture: Titration summary (see figures 19-3 & 19-4) from Monday s lecture: Strong acid + strong base: 1) initial ph of strong acid calc 2) before equivalence point limiting reactant problem, - ph strong acid calc

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11 Chemistry 12 Solubility Equilibrium Review Package Name: Date: Block: I. Multiple Choice 1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D.

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

Aqueous Equilibria: Part II- Solubility Product

Aqueous Equilibria: Part II- Solubility Product Aqueous Equilibria: Part II- Solubility Product PSI AP Chemistry Name-------------------------- I Solubility Product, K sp MC #63-103 a) Writing K sp expression b) Solving for K sp c) Solving for (molar)

More information

Honors General Chemistry Test 3 Prof. Shattuck, practice

Honors General Chemistry Test 3 Prof. Shattuck, practice Honors General Chemistry Test 3 Prof. Shattuck, practice Name R = 8.314 J mol -1 K -1 1 L atm = 101.3 J T(0 C) = 273.2 K Answer 8 of the following 10 questions. If you answer more than 8 cross out the

More information

CHAPTER 11 AQUEOUS EQUILIBRIA

CHAPTER 11 AQUEOUS EQUILIBRIA CHAPTER 11 AQUEOUS EQUILIBRIA 11.1 (a) When solid sodium acetate is added to an acetic acid solution, the concentration of HO decreases because the equilibrium HC H O (aq) H O(l) H O (aq) C H O (aq) shifts

More information

1 L = L = 434 ml

1 L = L = 434 ml CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC B PROBLEMS 1) We do not need to calculate the original molarity of the solution; all we need is the number of moles of K + in 7.50 g of K 2 CO 3 : 7.50 g K 2 CO 3

More information

III.1 SOLUBILITY CONCEPT REVIEW

III.1 SOLUBILITY CONCEPT REVIEW III.1 SOLUBILITY CONCEPT REVIEW Read Hebden p. 73 76 and review basic solubility definitions. Soluble means Insoluble means The Dissolving Process IONIC Solutions MOLECULAR Solutions (Covalent compounds)

More information

] after equilibrium has been established?

] after equilibrium has been established? Chemistry 1 Solubility Equilibrium onster Review 1. A saturated solution forms when a 0. 10 mol of salt is added to 10. L of water. The salt is A. Li S B. CuBr C. Zn( OH) ( ) D. NH CO 4. Consider the following

More information

For problems 1-4, circle the letter of the answer that best satisfies the question.

For problems 1-4, circle the letter of the answer that best satisfies the question. CHM 106 Exam II For problems 1-4, circle the letter of the answer that best satisfies the question. 1. Which of the following statements is true? I. A weak base has a strong conjugate acid II. The strength

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA APPLICATIONS OF AQUEOUS EQUILIBRIA Operational Skills Calculating the common-ion effect on acid ionization Calculating the ph of a buffer from given volumes of solution Calculating the ph of a solution

More information

CHAPTER 7.0: IONIC EQUILIBRIA

CHAPTER 7.0: IONIC EQUILIBRIA Acids and Bases 1 CHAPTER 7.0: IONIC EQUILIBRIA 7.1: Acids and bases Learning outcomes: At the end of this lesson, students should be able to: Define acid and base according to Arrhenius, Bronsted- Lowry

More information

Worksheet 4.1 Conjugate Acid-Base Pairs

Worksheet 4.1 Conjugate Acid-Base Pairs Worksheet 4.1 Conjugate AcidBase Pairs 1. List five properties of acids that are in your textbook. Acids conduct electricity, taste sour, neutralize bases, change the color of indicators, and react with

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Chapter 8: Applications of Aqueous Equilibria

Chapter 8: Applications of Aqueous Equilibria Chapter 8: Applications of Aqueous Equilibria 8.1 Solutions of Acids or Bases Containing a Common Ion 8.2 Buffered Solutions 8.3 Exact Treatment of Buffered Solutions 8.4 Buffer Capacity 8.5 Titrations

More information

Chapter 15 Additional Aspects of

Chapter 15 Additional Aspects of Chemistry, The Central Science Chapter 15 Additional Aspects of Buffers: Solution that resists change in ph when a small amount of acid or base is added or when the solution is diluted. A buffer solution

More information

Solubility Equilibrium. Solutions. Dissociation Equations. April/May Chemistry 30

Solubility Equilibrium. Solutions. Dissociation Equations. April/May Chemistry 30 Solubility Equilibrium Chemistry 30 Solutions Mixture containing two or more components, but looks like one homogeneous substance Solute: dissolved substance Solvent: dissolving substance In this course:

More information

Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700)

Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700) Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700) Evidence Statement NCEA Level 3 Chemistry (90700) 2009 page 1 of 5 Question Evidence Achievement Achievement with Merit

More information

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16.

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16. discard 1 2 ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW PRINT NAME, LAST: FIRST: I.D.# : EACH QUESTION IS WORTH 1O POINTS 1. 7. 13. 2. 8. 14. 3. 9. 15. 4. 1O. 16. 5. 11. 17. 6. 12.

More information

116 PLTL Activity sheet / Solubility Equilibrium Set 11

116 PLTL Activity sheet / Solubility Equilibrium Set 11 Predicting Solubility Solubility problems are equilibrium problems. The reactant in a solubility equilibrium is a slightly soluble salt and the equilibrium constant for the reaction is the solubility product

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

2] What is the difference between the end point and equivalence point for a monobasicmonoacid 4 Titrations modified October 9, 2013 1] A solution of 0.100 M AgNO 3 is used to titrate a 100.00 ml solution of 0.100 M KCl. The K sp of AgCl is 1.8e-11 a) What is pag if 50.00 ml of the titrant is added

More information